1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
|
/* ----------------------------------------------------------------------------
*
* (c) The GHC Team, 1998-2004
*
* Macros for building and manipulating closures
*
* -------------------------------------------------------------------------- */
#ifndef RTS_STORAGE_CLOSUREMACROS_H
#define RTS_STORAGE_CLOSUREMACROS_H
/* -----------------------------------------------------------------------------
Info tables are slammed up against the entry code, and the label
for the info table is at the *end* of the table itself. This
inline function adjusts an info pointer to point to the beginning
of the table, so we can use standard C structure indexing on it.
Note: this works for SRT info tables as long as you don't want to
access the SRT, since they are laid out the same with the SRT
pointer as the first word in the table.
NOTES ABOUT MANGLED C VS. MINI-INTERPRETER:
A couple of definitions:
"info pointer" The first word of the closure. Might point
to either the end or the beginning of the
info table, depending on whether we're using
the mini interpretter or not. GET_INFO(c)
retrieves the info pointer of a closure.
"info table" The info table structure associated with a
closure. This is always a pointer to the
beginning of the structure, so we can
use standard C structure indexing to pull out
the fields. get_itbl(c) returns a pointer to
the info table for closure c.
An address of the form xxxx_info points to the end of the info
table or the beginning of the info table depending on whether we're
mangling or not respectively. So,
c->header.info = xxx_info
makes absolute sense, whether mangling or not.
-------------------------------------------------------------------------- */
#define SET_INFO(c,i) ((c)->header.info = (i))
#define GET_INFO(c) ((c)->header.info)
#define GET_ENTRY(c) (ENTRY_CODE(GET_INFO(c)))
#define get_itbl(c) (INFO_PTR_TO_STRUCT((c)->header.info))
#define get_ret_itbl(c) (RET_INFO_PTR_TO_STRUCT((c)->header.info))
#define get_fun_itbl(c) (FUN_INFO_PTR_TO_STRUCT((c)->header.info))
#define get_thunk_itbl(c) (THUNK_INFO_PTR_TO_STRUCT((c)->header.info))
#define get_con_itbl(c) (CON_INFO_PTR_TO_STRUCT((c)->header.info))
#define GET_TAG(con) (get_itbl(con)->srt_bitmap)
#ifdef TABLES_NEXT_TO_CODE
#define INFO_PTR_TO_STRUCT(info) ((StgInfoTable *)(info) - 1)
#define RET_INFO_PTR_TO_STRUCT(info) ((StgRetInfoTable *)(info) - 1)
#define FUN_INFO_PTR_TO_STRUCT(info) ((StgFunInfoTable *)(info) - 1)
#define THUNK_INFO_PTR_TO_STRUCT(info) ((StgThunkInfoTable *)(info) - 1)
#define CON_INFO_PTR_TO_STRUCT(info) ((StgConInfoTable *)(info) - 1)
#define itbl_to_fun_itbl(i) ((StgFunInfoTable *)(((StgInfoTable *)(i) + 1)) - 1)
#define itbl_to_ret_itbl(i) ((StgRetInfoTable *)(((StgInfoTable *)(i) + 1)) - 1)
#define itbl_to_thunk_itbl(i) ((StgThunkInfoTable *)(((StgInfoTable *)(i) + 1)) - 1)
#define itbl_to_con_itbl(i) ((StgConInfoTable *)(((StgInfoTable *)(i) + 1)) - 1)
#else
#define INFO_PTR_TO_STRUCT(info) ((StgInfoTable *)info)
#define RET_INFO_PTR_TO_STRUCT(info) ((StgRetInfoTable *)info)
#define FUN_INFO_PTR_TO_STRUCT(info) ((StgFunInfoTable *)info)
#define THUNK_INFO_PTR_TO_STRUCT(info) ((StgThunkInfoTable *)info)
#define CON_INFO_PTR_TO_STRUCT(info) ((StgConInfoTable *)info)
#define itbl_to_fun_itbl(i) ((StgFunInfoTable *)(i))
#define itbl_to_ret_itbl(i) ((StgRetInfoTable *)(i))
#define itbl_to_thunk_itbl(i) ((StgThunkInfoTable *)(i))
#define itbl_to_con_itbl(i) ((StgConInfoTable *)(i))
#endif
/* -----------------------------------------------------------------------------
Macros for building closures
-------------------------------------------------------------------------- */
#ifdef PROFILING
#ifdef DEBUG_RETAINER
/*
For the sake of debugging, we take the safest way for the moment. Actually, this
is useful to check the sanity of heap before beginning retainer profiling.
flip is defined in RetainerProfile.c, and declared as extern in RetainerProfile.h.
Note: change those functions building Haskell objects from C datatypes, i.e.,
all rts_mk???() functions in RtsAPI.c, as well.
*/
#define SET_PROF_HDR(c,ccs_) \
((c)->header.prof.ccs = ccs_, (c)->header.prof.hp.rs = (retainerSet *)((StgWord)NULL | flip))
#else
/*
For retainer profiling only: we do not have to set (c)->header.prof.hp.rs to
NULL | flip (flip is defined in RetainerProfile.c) because even when flip
is 1, rs is invalid and will be initialized to NULL | flip later when
the closure *c is visited.
*/
/*
#define SET_PROF_HDR(c,ccs_) \
((c)->header.prof.ccs = ccs_, (c)->header.prof.hp.rs = NULL)
*/
/*
The following macro works for both retainer profiling and LDV profiling:
for retainer profiling, ldvTime remains 0, so rs fields are initialized to 0.
See the invariants on ldvTime.
*/
#define SET_PROF_HDR(c,ccs_) \
((c)->header.prof.ccs = ccs_, \
LDV_RECORD_CREATE((c)))
#endif /* DEBUG_RETAINER */
#else
#define SET_PROF_HDR(c,ccs)
#endif
#define SET_HDR(c,_info,ccs) \
{ \
(c)->header.info = _info; \
SET_PROF_HDR((StgClosure *)(c),ccs); \
}
#define SET_ARR_HDR(c,info,costCentreStack,n_words) \
SET_HDR(c,info,costCentreStack); \
(c)->words = n_words;
/* -----------------------------------------------------------------------------
How to get hold of the static link field for a static closure.
-------------------------------------------------------------------------- */
/* These are hard-coded. */
#define FUN_STATIC_LINK(p) (&(p)->payload[0])
#define THUNK_STATIC_LINK(p) (&(p)->payload[1])
#define IND_STATIC_LINK(p) (&(p)->payload[1])
INLINE_HEADER StgClosure **
STATIC_LINK(const StgInfoTable *info, StgClosure *p)
{
switch (info->type) {
case THUNK_STATIC:
return THUNK_STATIC_LINK(p);
case FUN_STATIC:
return FUN_STATIC_LINK(p);
case IND_STATIC:
return IND_STATIC_LINK(p);
default:
return &(p)->payload[info->layout.payload.ptrs +
info->layout.payload.nptrs];
}
}
#define STATIC_LINK2(info,p) \
(*(StgClosure**)(&((p)->payload[info->layout.payload.ptrs + \
info->layout.payload.nptrs + 1])))
/* -----------------------------------------------------------------------------
INTLIKE and CHARLIKE closures.
-------------------------------------------------------------------------- */
#define CHARLIKE_CLOSURE(n) ((P_)&stg_CHARLIKE_closure[(n)-MIN_CHARLIKE])
#define INTLIKE_CLOSURE(n) ((P_)&stg_INTLIKE_closure[(n)-MIN_INTLIKE])
/* ----------------------------------------------------------------------------
Macros for untagging and retagging closure pointers
For more information look at the comments in Cmm.h
------------------------------------------------------------------------- */
static inline StgWord
GET_CLOSURE_TAG(StgClosure * p)
{
return (StgWord)p & TAG_MASK;
}
static inline StgClosure *
UNTAG_CLOSURE(StgClosure * p)
{
return (StgClosure*)((StgWord)p & ~TAG_MASK);
}
static inline StgClosure *
TAG_CLOSURE(StgWord tag,StgClosure * p)
{
return (StgClosure*)((StgWord)p | tag);
}
/* -----------------------------------------------------------------------------
Forwarding pointers
-------------------------------------------------------------------------- */
#define IS_FORWARDING_PTR(p) ((((StgWord)p) & 1) != 0)
#define MK_FORWARDING_PTR(p) (((StgWord)p) | 1)
#define UN_FORWARDING_PTR(p) (((StgWord)p) - 1)
/* -----------------------------------------------------------------------------
DEBUGGING predicates for pointers
LOOKS_LIKE_INFO_PTR(p) returns False if p is definitely not an info ptr
LOOKS_LIKE_CLOSURE_PTR(p) returns False if p is definitely not a closure ptr
These macros are complete but not sound. That is, they might
return false positives. Do not rely on them to distinguish info
pointers from closure pointers, for example.
We don't use address-space predicates these days, for portability
reasons, and the fact that code/data can be scattered about the
address space in a dynamically-linked environment. Our best option
is to look at the alleged info table and see whether it seems to
make sense...
-------------------------------------------------------------------------- */
INLINE_HEADER rtsBool LOOKS_LIKE_INFO_PTR_NOT_NULL (StgWord p)
{
StgInfoTable *info = INFO_PTR_TO_STRUCT(p);
return info->type != INVALID_OBJECT && info->type < N_CLOSURE_TYPES;
}
INLINE_HEADER rtsBool LOOKS_LIKE_INFO_PTR (StgWord p)
{
return p && (IS_FORWARDING_PTR(p) || LOOKS_LIKE_INFO_PTR_NOT_NULL(p));
}
INLINE_HEADER rtsBool LOOKS_LIKE_CLOSURE_PTR (void *p)
{
return LOOKS_LIKE_INFO_PTR((StgWord)(UNTAG_CLOSURE((StgClosure *)(p)))->header.info);
}
/* -----------------------------------------------------------------------------
Macros for calculating the size of a closure
-------------------------------------------------------------------------- */
INLINE_HEADER StgOffset PAP_sizeW ( nat n_args )
{ return sizeofW(StgPAP) + n_args; }
INLINE_HEADER StgOffset AP_sizeW ( nat n_args )
{ return sizeofW(StgAP) + n_args; }
INLINE_HEADER StgOffset AP_STACK_sizeW ( nat size )
{ return sizeofW(StgAP_STACK) + size; }
INLINE_HEADER StgOffset CONSTR_sizeW( nat p, nat np )
{ return sizeofW(StgHeader) + p + np; }
INLINE_HEADER StgOffset THUNK_SELECTOR_sizeW ( void )
{ return sizeofW(StgSelector); }
INLINE_HEADER StgOffset BLACKHOLE_sizeW ( void )
{ return sizeofW(StgHeader)+MIN_PAYLOAD_SIZE; }
/* --------------------------------------------------------------------------
Sizes of closures
------------------------------------------------------------------------*/
INLINE_HEADER StgOffset sizeW_fromITBL( const StgInfoTable* itbl )
{ return sizeofW(StgClosure)
+ sizeofW(StgPtr) * itbl->layout.payload.ptrs
+ sizeofW(StgWord) * itbl->layout.payload.nptrs; }
INLINE_HEADER StgOffset thunk_sizeW_fromITBL( const StgInfoTable* itbl )
{ return sizeofW(StgThunk)
+ sizeofW(StgPtr) * itbl->layout.payload.ptrs
+ sizeofW(StgWord) * itbl->layout.payload.nptrs; }
INLINE_HEADER StgOffset ap_stack_sizeW( StgAP_STACK* x )
{ return AP_STACK_sizeW(x->size); }
INLINE_HEADER StgOffset ap_sizeW( StgAP* x )
{ return AP_sizeW(x->n_args); }
INLINE_HEADER StgOffset pap_sizeW( StgPAP* x )
{ return PAP_sizeW(x->n_args); }
INLINE_HEADER StgOffset arr_words_sizeW( StgArrWords* x )
{ return sizeofW(StgArrWords) + x->words; }
INLINE_HEADER StgOffset mut_arr_ptrs_sizeW( StgMutArrPtrs* x )
{ return sizeofW(StgMutArrPtrs) + x->ptrs; }
INLINE_HEADER StgWord tso_sizeW ( StgTSO *tso )
{ return TSO_STRUCT_SIZEW + tso->stack_size; }
INLINE_HEADER StgWord bco_sizeW ( StgBCO *bco )
{ return bco->size; }
INLINE_HEADER nat
closure_sizeW_ (StgClosure *p, StgInfoTable *info)
{
switch (info->type) {
case THUNK_0_1:
case THUNK_1_0:
return sizeofW(StgThunk) + 1;
case FUN_0_1:
case CONSTR_0_1:
case FUN_1_0:
case CONSTR_1_0:
return sizeofW(StgHeader) + 1;
case THUNK_0_2:
case THUNK_1_1:
case THUNK_2_0:
return sizeofW(StgThunk) + 2;
case FUN_0_2:
case CONSTR_0_2:
case FUN_1_1:
case CONSTR_1_1:
case FUN_2_0:
case CONSTR_2_0:
return sizeofW(StgHeader) + 2;
case THUNK:
return thunk_sizeW_fromITBL(info);
case THUNK_SELECTOR:
return THUNK_SELECTOR_sizeW();
case AP_STACK:
return ap_stack_sizeW((StgAP_STACK *)p);
case AP:
return ap_sizeW((StgAP *)p);
case PAP:
return pap_sizeW((StgPAP *)p);
case IND:
case IND_PERM:
case IND_OLDGEN:
case IND_OLDGEN_PERM:
return sizeofW(StgInd);
case ARR_WORDS:
return arr_words_sizeW((StgArrWords *)p);
case MUT_ARR_PTRS_CLEAN:
case MUT_ARR_PTRS_DIRTY:
case MUT_ARR_PTRS_FROZEN:
case MUT_ARR_PTRS_FROZEN0:
return mut_arr_ptrs_sizeW((StgMutArrPtrs*)p);
case TSO:
return tso_sizeW((StgTSO *)p);
case BCO:
return bco_sizeW((StgBCO *)p);
case TVAR_WATCH_QUEUE:
return sizeofW(StgTVarWatchQueue);
case TVAR:
return sizeofW(StgTVar);
case TREC_CHUNK:
return sizeofW(StgTRecChunk);
case TREC_HEADER:
return sizeofW(StgTRecHeader);
case ATOMIC_INVARIANT:
return sizeofW(StgAtomicInvariant);
case INVARIANT_CHECK_QUEUE:
return sizeofW(StgInvariantCheckQueue);
default:
return sizeW_fromITBL(info);
}
}
// The definitive way to find the size, in words, of a heap-allocated closure
INLINE_HEADER nat
closure_sizeW (StgClosure *p)
{
return closure_sizeW_(p, get_itbl(p));
}
/* -----------------------------------------------------------------------------
Sizes of stack frames
-------------------------------------------------------------------------- */
INLINE_HEADER StgWord stack_frame_sizeW( StgClosure *frame )
{
StgRetInfoTable *info;
info = get_ret_itbl(frame);
switch (info->i.type) {
case RET_DYN:
{
StgRetDyn *dyn = (StgRetDyn *)frame;
return sizeofW(StgRetDyn) + RET_DYN_BITMAP_SIZE +
RET_DYN_NONPTR_REGS_SIZE +
RET_DYN_PTRS(dyn->liveness) + RET_DYN_NONPTRS(dyn->liveness);
}
case RET_FUN:
return sizeofW(StgRetFun) + ((StgRetFun *)frame)->size;
case RET_BIG:
return 1 + GET_LARGE_BITMAP(&info->i)->size;
case RET_BCO:
return 2 + BCO_BITMAP_SIZE((StgBCO *)((P_)frame)[1]);
default:
return 1 + BITMAP_SIZE(info->i.layout.bitmap);
}
}
#endif /* RTS_STORAGE_CLOSUREMACROS_H */
|