1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
|
/* ----------------------------------------------------------------------------
*
* (c) The GHC Team, 1998-2004
*
* Closures
*
* -------------------------------------------------------------------------- */
#pragma once
/*
* The Layout of a closure header depends on which kind of system we're
* compiling for: profiling, parallel, ticky, etc.
*/
/* -----------------------------------------------------------------------------
The profiling header
-------------------------------------------------------------------------- */
typedef struct {
CostCentreStack *ccs;
union {
struct _RetainerSet *rs; /* Retainer Set */
StgWord ldvw; /* Lag/Drag/Void Word */
} hp;
} StgProfHeader;
/* -----------------------------------------------------------------------------
The SMP header
A thunk has a padding word to take the updated value. This is so
that the update doesn't overwrite the payload, so we can avoid
needing to lock the thunk during entry and update.
Note: this doesn't apply to THUNK_STATICs, which have no payload.
Note: we leave this padding word in all ways, rather than just SMP,
so that we don't have to recompile all our libraries for SMP.
-------------------------------------------------------------------------- */
typedef struct {
StgWord pad;
} StgSMPThunkHeader;
/* -----------------------------------------------------------------------------
The full fixed-size closure header
The size of the fixed header is the sum of the optional parts plus a single
word for the entry code pointer.
-------------------------------------------------------------------------- */
typedef struct {
const StgInfoTable* info;
#ifdef PROFILING
StgProfHeader prof;
#endif
} StgHeader;
typedef struct {
const StgInfoTable* info;
#ifdef PROFILING
StgProfHeader prof;
#endif
StgSMPThunkHeader smp;
} StgThunkHeader;
#define THUNK_EXTRA_HEADER_W (sizeofW(StgThunkHeader)-sizeofW(StgHeader))
/* -----------------------------------------------------------------------------
Closure Types
For any given closure type (defined in InfoTables.h), there is a
corresponding structure defined below. The name of the structure
is obtained by concatenating the closure type with '_closure'
-------------------------------------------------------------------------- */
/* All closures follow the generic format */
typedef struct StgClosure_ {
StgHeader header;
struct StgClosure_ *payload[];
} *StgClosurePtr; // StgClosure defined in rts/Types.h
typedef struct {
StgThunkHeader header;
struct StgClosure_ *payload[];
} StgThunk;
typedef struct {
StgThunkHeader header;
StgClosure *selectee;
} StgSelector;
typedef struct {
StgHeader header;
StgHalfWord arity; /* zero if it is an AP */
StgHalfWord n_args;
StgClosure *fun; /* really points to a fun */
StgClosure *payload[];
} StgPAP;
typedef struct {
StgThunkHeader header;
StgHalfWord arity; /* zero if it is an AP */
StgHalfWord n_args;
StgClosure *fun; /* really points to a fun */
StgClosure *payload[];
} StgAP;
typedef struct {
StgThunkHeader header;
StgWord size; /* number of words in payload */
StgClosure *fun;
StgClosure *payload[]; /* contains a chunk of *stack* */
} StgAP_STACK;
typedef struct {
StgHeader header;
StgClosure *indirectee;
} StgInd;
typedef struct {
StgHeader header;
StgClosure *indirectee;
StgClosure *static_link;
const StgInfoTable *saved_info;
} StgIndStatic;
typedef struct StgBlockingQueue_ {
StgHeader header;
struct StgBlockingQueue_ *link; // here so it looks like an IND
StgClosure *bh; // the BLACKHOLE
StgTSO *owner;
struct MessageBlackHole_ *queue;
} StgBlockingQueue;
typedef struct {
StgHeader header;
StgWord bytes;
StgWord payload[];
} StgArrBytes;
typedef struct {
StgHeader header;
StgWord ptrs;
StgWord size; // ptrs plus card table
StgClosure *payload[];
// see also: StgMutArrPtrs macros in ClosureMacros.h
} StgMutArrPtrs;
typedef struct {
StgHeader header;
StgWord ptrs;
StgClosure *payload[];
} StgSmallMutArrPtrs;
typedef struct {
StgHeader header;
StgClosure *var;
} StgMutVar;
typedef struct _StgUpdateFrame {
StgHeader header;
StgClosure *updatee;
} StgUpdateFrame;
typedef struct {
StgHeader header;
StgWord exceptions_blocked;
StgClosure *handler;
} StgCatchFrame;
typedef struct {
const StgInfoTable* info;
struct StgStack_ *next_chunk;
} StgUnderflowFrame;
typedef struct {
StgHeader header;
} StgStopFrame;
typedef struct {
StgHeader header;
StgWord data;
} StgIntCharlikeClosure;
/* statically allocated */
typedef struct {
StgHeader header;
} StgRetry;
typedef struct _StgStableName {
StgHeader header;
StgWord sn;
} StgStableName;
typedef struct _StgWeak { /* Weak v */
StgHeader header;
StgClosure *cfinalizers;
StgClosure *key;
StgClosure *value; /* v */
StgClosure *finalizer;
struct _StgWeak *link;
} StgWeak;
typedef struct _StgCFinalizerList {
StgHeader header;
StgClosure *link;
void (*fptr)(void);
void *ptr;
void *eptr;
StgWord flag; /* has environment (0 or 1) */
} StgCFinalizerList;
/* Byte code objects. These are fixed size objects with pointers to
* four arrays, designed so that a BCO can be easily "re-linked" to
* other BCOs, to facilitate GHC's intelligent recompilation. The
* array of instructions is static and not re-generated when the BCO
* is re-linked, but the other 3 arrays will be regenerated.
*
* A BCO represents either a function or a stack frame. In each case,
* it needs a bitmap to describe to the garbage collector the
* pointerhood of its arguments/free variables respectively, and in
* the case of a function it also needs an arity. These are stored
* directly in the BCO, rather than in the instrs array, for two
* reasons:
* (a) speed: we need to get at the bitmap info quickly when
* the GC is examining APs and PAPs that point to this BCO
* (b) a subtle interaction with the compacting GC. In compacting
* GC, the info that describes the size/layout of a closure
* cannot be in an object more than one level of indirection
* away from the current object, because of the order in
* which pointers are updated to point to their new locations.
*/
typedef struct {
StgHeader header;
StgArrBytes *instrs; /* a pointer to an ArrWords */
StgArrBytes *literals; /* a pointer to an ArrWords */
StgMutArrPtrs *ptrs; /* a pointer to a MutArrPtrs */
StgHalfWord arity; /* arity of this BCO */
StgHalfWord size; /* size of this BCO (in words) */
StgWord bitmap[]; /* an StgLargeBitmap */
} StgBCO;
#define BCO_BITMAP(bco) ((StgLargeBitmap *)((StgBCO *)(bco))->bitmap)
#define BCO_BITMAP_SIZE(bco) (BCO_BITMAP(bco)->size)
#define BCO_BITMAP_BITS(bco) (BCO_BITMAP(bco)->bitmap)
#define BCO_BITMAP_SIZEW(bco) ((BCO_BITMAP_SIZE(bco) + BITS_IN(StgWord) - 1) \
/ BITS_IN(StgWord))
/* A function return stack frame: used when saving the state for a
* garbage collection at a function entry point. The function
* arguments are on the stack, and we also save the function (its
* info table describes the pointerhood of the arguments).
*
* The stack frame size is also cached in the frame for convenience.
*/
typedef struct {
const StgInfoTable* info;
StgWord size;
StgClosure * fun;
StgClosure * payload[];
} StgRetFun;
/* Concurrent communication objects */
typedef struct StgMVarTSOQueue_ {
StgHeader header;
struct StgMVarTSOQueue_ *link;
struct StgTSO_ *tso;
} StgMVarTSOQueue;
typedef struct {
StgHeader header;
struct StgMVarTSOQueue_ *head;
struct StgMVarTSOQueue_ *tail;
StgClosure* value;
} StgMVar;
/* STM data structures
*
* StgTVar defines the only type that can be updated through the STM
* interface.
*
* Note that various optimisations may be possible in order to use less
* space for these data structures at the cost of more complexity in the
* implementation:
*
* - In StgTVar, current_value and first_watch_queue_entry could be held in
* the same field: if any thread is waiting then its expected_value for
* the tvar is the current value.
*
* - In StgTRecHeader, it might be worthwhile having separate chunks
* of read-only and read-write locations. This would save a
* new_value field in the read-only locations.
*
* - In StgAtomicallyFrame, we could combine the waiting bit into
* the header (maybe a different info tbl for a waiting transaction).
* This means we can specialise the code for the atomically frame
* (it immediately switches on frame->waiting anyway).
*/
typedef struct StgTRecHeader_ StgTRecHeader;
typedef struct StgTVarWatchQueue_ {
StgHeader header;
StgClosure *closure; // StgTSO or StgAtomicInvariant
struct StgTVarWatchQueue_ *next_queue_entry;
struct StgTVarWatchQueue_ *prev_queue_entry;
} StgTVarWatchQueue;
typedef struct {
StgHeader header;
StgClosure *volatile current_value;
StgTVarWatchQueue *volatile first_watch_queue_entry;
StgInt volatile num_updates;
} StgTVar;
typedef struct {
StgHeader header;
StgClosure *code;
StgTRecHeader *last_execution;
StgWord lock;
} StgAtomicInvariant;
/* new_value == expected_value for read-only accesses */
/* new_value is a StgTVarWatchQueue entry when trec in state TREC_WAITING */
typedef struct {
StgTVar *tvar;
StgClosure *expected_value;
StgClosure *new_value;
#if defined(THREADED_RTS)
StgInt num_updates;
#endif
} TRecEntry;
#define TREC_CHUNK_NUM_ENTRIES 16
typedef struct StgTRecChunk_ {
StgHeader header;
struct StgTRecChunk_ *prev_chunk;
StgWord next_entry_idx;
TRecEntry entries[TREC_CHUNK_NUM_ENTRIES];
} StgTRecChunk;
typedef enum {
TREC_ACTIVE, /* Transaction in progress, outcome undecided */
TREC_CONDEMNED, /* Transaction in progress, inconsistent / out of date reads */
TREC_COMMITTED, /* Transaction has committed, now updating tvars */
TREC_ABORTED, /* Transaction has aborted, now reverting tvars */
TREC_WAITING, /* Transaction currently waiting */
} TRecState;
typedef struct StgInvariantCheckQueue_ {
StgHeader header;
StgAtomicInvariant *invariant;
StgTRecHeader *my_execution;
struct StgInvariantCheckQueue_ *next_queue_entry;
} StgInvariantCheckQueue;
struct StgTRecHeader_ {
StgHeader header;
struct StgTRecHeader_ *enclosing_trec;
StgTRecChunk *current_chunk;
StgInvariantCheckQueue *invariants_to_check;
TRecState state;
};
typedef struct {
StgHeader header;
StgClosure *code;
StgTVarWatchQueue *next_invariant_to_check;
StgClosure *result;
} StgAtomicallyFrame;
typedef struct {
StgHeader header;
StgClosure *code;
StgClosure *handler;
} StgCatchSTMFrame;
typedef struct {
StgHeader header;
StgWord running_alt_code;
StgClosure *first_code;
StgClosure *alt_code;
} StgCatchRetryFrame;
/* ----------------------------------------------------------------------------
Messages
------------------------------------------------------------------------- */
typedef struct Message_ {
StgHeader header;
struct Message_ *link;
} Message;
typedef struct MessageWakeup_ {
StgHeader header;
Message *link;
StgTSO *tso;
} MessageWakeup;
typedef struct MessageThrowTo_ {
StgHeader header;
struct MessageThrowTo_ *link;
StgTSO *source;
StgTSO *target;
StgClosure *exception;
} MessageThrowTo;
typedef struct MessageBlackHole_ {
StgHeader header;
struct MessageBlackHole_ *link;
StgTSO *tso;
StgClosure *bh;
} MessageBlackHole;
/* ----------------------------------------------------------------------------
Compact Regions
------------------------------------------------------------------------- */
//
// A compact region is a list of blocks. Each block starts with an
// StgCompactNFDataBlock structure, and the list is chained through the next
// field of these structs. (the link field of the bdescr is used to chain
// together multiple compact region on the compact_objects field of a
// generation).
//
// See Note [Compact Normal Forms] for details
//
typedef struct StgCompactNFDataBlock_ {
struct StgCompactNFDataBlock_ *self;
// the address of this block this is copied over to the
// receiving end when serializing a compact, so the receiving
// end can allocate the block at best as it can, and then
// verify if pointer adjustment is needed or not by comparing
// self with the actual address; the same data is sent over as
// SerializedCompact metadata, but having it here simplifies
// the fixup implementation.
struct StgCompactNFData_ *owner;
// the closure who owns this block (used in objectGetCompact)
struct StgCompactNFDataBlock_ *next;
// chain of blocks used for serialization and freeing
} StgCompactNFDataBlock;
//
// This is the Compact# primitive object.
//
typedef struct StgCompactNFData_ {
StgHeader header;
// for sanity and other checks in practice, nothing should ever
// need the compact info pointer (we don't even need fwding
// pointers because it's a large object)
StgWord totalW;
// Total number of words in all blocks in the compact
StgWord autoBlockW;
// size of automatically appended blocks
StgPtr hp, hpLim;
// the beginning and end of the free area in the nursery block. This is
// just a convenience so that we can avoid multiple indirections through
// the nursery pointer below during compaction.
StgCompactNFDataBlock *nursery;
// where to (try to) allocate from when appending
StgCompactNFDataBlock *last;
// the last block of the chain (to know where to append new
// blocks for resize)
struct hashtable *hash;
// the hash table for the current compaction, or NULL if
// there's no (sharing-preserved) compaction in progress.
StgClosure *result;
// Used temporarily to store the result of compaction. Doesn't need to be
// a GC root.
} StgCompactNFData;
|