1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
|
/* -----------------------------------------------------------------------------
*
* (c) The GHC Team, 1998-2004
*
* External Storage Manger Interface
*
* ---------------------------------------------------------------------------*/
#ifndef RTS_STORAGE_GC_H
#define RTS_STORAGE_GC_H
#include <stddef.h>
#include "rts/OSThreads.h"
/* -----------------------------------------------------------------------------
* Generational GC
*
* We support an arbitrary number of generations, with an arbitrary number
* of steps per generation. Notes (in no particular order):
*
* - all generations except the oldest should have the same
* number of steps. Multiple steps gives objects a decent
* chance to age before being promoted, and helps ensure that
* we don't end up with too many thunks being updated in older
* generations.
*
* - the oldest generation has one step. There's no point in aging
* objects in the oldest generation.
*
* - generation 0, step 0 (G0S0) is the allocation area. It is given
* a fixed set of blocks during initialisation, and these blocks
* normally stay in G0S0. In parallel execution, each
* Capability has its own nursery.
*
* - during garbage collection, each step which is an evacuation
* destination (i.e. all steps except G0S0) is allocated a to-space.
* evacuated objects are allocated into the step's to-space until
* GC is finished, when the original step's contents may be freed
* and replaced by the to-space.
*
* - the mutable-list is per-generation (not per-step). G0 doesn't
* have one (since every garbage collection collects at least G0).
*
* - block descriptors contain pointers to both the step and the
* generation that the block belongs to, for convenience.
*
* - static objects are stored in per-generation lists. See GC.c for
* details of how we collect CAFs in the generational scheme.
*
* - large objects are per-step, and are promoted in the same way
* as small objects, except that we may allocate large objects into
* generation 1 initially.
*
* ------------------------------------------------------------------------- */
// A count of blocks needs to store anything up to the size of memory
// divided by the block size. The safest thing is therefore to use a
// type that can store the full range of memory addresses,
// ie. StgWord. Note that we have had some tricky int overflows in a
// couple of cases caused by using ints rather than longs (e.g. #5086)
typedef StgWord memcount;
typedef struct nursery_ {
bdescr * blocks;
memcount n_blocks;
} nursery;
// Nursery invariants:
//
// - cap->r.rNursery points to the nursery for this capability
//
// - cap->r.rCurrentNursery points to the block in the nursery that we are
// currently allocating into. While in Haskell the current heap pointer is
// in Hp, outside Haskell it is stored in cap->r.rCurrentNursery->free.
//
// - the blocks *after* cap->rCurrentNursery in the chain are empty
// (although their bd->free pointers have not been updated to
// reflect that)
//
// - the blocks *before* cap->rCurrentNursery have been used. Except
// for rCurrentAlloc.
//
// - cap->r.rCurrentAlloc is either NULL, or it points to a block in
// the nursery *before* cap->r.rCurrentNursery.
//
// See also Note [allocation accounting] to understand how total
// memory allocation is tracked.
typedef struct generation_ {
nat no; // generation number
bdescr * blocks; // blocks in this gen
memcount n_blocks; // number of blocks
memcount n_words; // number of used words
bdescr * large_objects; // large objects (doubly linked)
memcount n_large_blocks; // no. of blocks used by large objs
memcount n_large_words; // no. of words used by large objs
memcount n_new_large_words; // words of new large objects
// (for doYouWantToGC())
memcount max_blocks; // max blocks
StgTSO * threads; // threads in this gen
// linked via global_link
StgWeak * weak_ptr_list; // weak pointers in this gen
struct generation_ *to; // destination gen for live objects
// stats information
nat collections;
nat par_collections;
nat failed_promotions;
// ------------------------------------
// Fields below are used during GC only
#if defined(THREADED_RTS)
char pad[128]; // make sure the following is
// on a separate cache line.
SpinLock sync; // lock for large_objects
// and scavenged_large_objects
#endif
int mark; // mark (not copy)? (old gen only)
int compact; // compact (not sweep)? (old gen only)
// During GC, if we are collecting this gen, blocks and n_blocks
// are copied into the following two fields. After GC, these blocks
// are freed.
bdescr * old_blocks; // bdescr of first from-space block
memcount n_old_blocks; // number of blocks in from-space
memcount live_estimate; // for sweeping: estimate of live data
bdescr * scavenged_large_objects; // live large objs after GC (d-link)
memcount n_scavenged_large_blocks; // size (not count) of above
bdescr * bitmap; // bitmap for compacting collection
StgTSO * old_threads;
StgWeak * old_weak_ptr_list;
} generation;
extern generation * generations;
extern generation * g0;
extern generation * oldest_gen;
/* -----------------------------------------------------------------------------
Generic allocation
StgPtr allocate(Capability *cap, W_ n)
Allocates memory from the nursery in
the current Capability.
StgPtr allocatePinned(Capability *cap, W_ n)
Allocates a chunk of contiguous store
n words long, which is at a fixed
address (won't be moved by GC).
Returns a pointer to the first word.
Always succeeds.
NOTE: the GC can't in general handle
pinned objects, so allocatePinned()
can only be used for ByteArrays at the
moment.
Don't forget to TICK_ALLOC_XXX(...)
after calling allocate or
allocatePinned, for the
benefit of the ticky-ticky profiler.
-------------------------------------------------------------------------- */
StgPtr allocate ( Capability *cap, W_ n );
StgPtr allocatePinned ( Capability *cap, W_ n );
/* memory allocator for executable memory */
typedef void* AdjustorWritable;
typedef void* AdjustorExecutable;
AdjustorWritable allocateExec(W_ len, AdjustorExecutable *exec_addr);
void flushExec(W_ len, AdjustorExecutable exec_addr);
#if defined(ios_HOST_OS)
AdjustorWritable execToWritable(AdjustorExecutable exec);
#endif
void freeExec (AdjustorExecutable p);
// Used by GC checks in external .cmm code:
extern W_ large_alloc_lim;
/* -----------------------------------------------------------------------------
Performing Garbage Collection
-------------------------------------------------------------------------- */
void performGC(void);
void performMajorGC(void);
/* -----------------------------------------------------------------------------
The CAF table - used to let us revert CAFs in GHCi
-------------------------------------------------------------------------- */
StgInd *newCAF (StgRegTable *reg, StgIndStatic *caf);
StgInd *newDynCAF (StgRegTable *reg, StgIndStatic *caf);
void revertCAFs (void);
// Request that all CAFs are retained indefinitely.
void setKeepCAFs (void);
/* -----------------------------------------------------------------------------
Stats
-------------------------------------------------------------------------- */
typedef struct _GCStats {
StgWord64 bytes_allocated;
StgWord64 num_gcs;
StgWord64 num_byte_usage_samples;
StgWord64 max_bytes_used;
StgWord64 cumulative_bytes_used;
StgWord64 bytes_copied;
StgWord64 current_bytes_used;
StgWord64 current_bytes_slop;
StgWord64 max_bytes_slop;
StgWord64 peak_megabytes_allocated;
StgWord64 par_tot_bytes_copied;
StgWord64 par_max_bytes_copied;
StgDouble mutator_cpu_seconds;
StgDouble mutator_wall_seconds;
StgDouble gc_cpu_seconds;
StgDouble gc_wall_seconds;
StgDouble cpu_seconds;
StgDouble wall_seconds;
} GCStats;
void getGCStats (GCStats *s);
rtsBool getGCStatsEnabled (void);
// These don't change over execution, so do them elsewhere
// StgDouble init_cpu_seconds;
// StgDouble init_wall_seconds;
typedef struct _ParGCStats {
StgWord64 tot_copied;
StgWord64 max_copied;
} ParGCStats;
void getParGCStats (ParGCStats *s);
/*
typedef struct _TaskStats {
StgWord64 mut_time;
StgWord64 mut_etime;
StgWord64 gc_time;
StgWord64 gc_etime;
} TaskStats;
// would need to allocate arbitrarily large amount of memory
// because it's a linked list of results
void getTaskStats (TaskStats **s);
// Need to stuff SparkCounters in a public header file...
void getSparkStats (SparkCounters *s);
*/
// Returns the total number of bytes allocated since the start of the program.
HsInt64 getAllocations (void);
/* -----------------------------------------------------------------------------
This is the write barrier for MUT_VARs, a.k.a. IORefs. A
MUT_VAR_CLEAN object is not on the mutable list; a MUT_VAR_DIRTY
is. When written to, a MUT_VAR_CLEAN turns into a MUT_VAR_DIRTY
and is put on the mutable list.
-------------------------------------------------------------------------- */
void dirty_MUT_VAR(StgRegTable *reg, StgClosure *p);
/* set to disable CAF garbage collection in GHCi. */
/* (needed when dynamic libraries are used). */
extern rtsBool keepCAFs;
INLINE_HEADER void initBdescr(bdescr *bd, generation *gen, generation *dest)
{
bd->gen = gen;
bd->gen_no = gen->no;
bd->dest_no = dest->no;
}
#endif /* RTS_STORAGE_GC_H */
|