1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
|
/* -----------------------------------------------------------------------------
*
* (c) The GHC Team, 1998-2012
*
* Registers in the STG machine.
*
* Do not #include this file directly: #include "Rts.h" instead.
*
* To understand the structure of the RTS headers, see the wiki:
* https://gitlab.haskell.org/ghc/ghc/wikis/commentary/source-tree/includes
*
* ---------------------------------------------------------------------------*/
#pragma once
/*
* The STG machine has a collection of "registers", each one of which
* may or may not correspond to an actual machine register when
* running code.
*
* The register set is backed by a table in memory (struct
* StgRegTable). If a particular STG register is not mapped to a
* machine register, then the appropriate slot in this table is used
* instead.
*
* This table is itself pointed to by another register, BaseReg. If
* BaseReg is not in a machine register, then the register table is
* used from an absolute location (MainCapability).
*
*/
typedef struct {
StgWord stgEagerBlackholeInfo;
StgFunPtr stgGCEnter1;
StgFunPtr stgGCFun;
} StgFunTable;
/*
* Vanilla registers are given this union type, which is purely so
* that we can cast the vanilla reg to a variety of types with the
* minimum of syntax. eg. R1.w instead of (StgWord)R1.
*/
typedef union {
StgWord w;
StgAddr a;
StgChar c;
StgFloat f;
StgInt i;
StgPtr p;
} StgUnion;
/*
* This is the table that holds shadow-locations for all the STG
* registers. The shadow locations are used when:
*
* 1) the particular register isn't mapped to a real machine
* register, probably because there's a shortage of real registers.
* 2) caller-saves registers are saved across a CCall
*/
typedef struct {
StgUnion rR1;
StgUnion rR2;
StgUnion rR3;
StgUnion rR4;
StgUnion rR5;
StgUnion rR6;
StgUnion rR7;
StgUnion rR8;
StgUnion rR9; /* used occasionally by heap/stack checks */
StgUnion rR10; /* used occasionally by heap/stack checks */
StgFloat rF1;
StgFloat rF2;
StgFloat rF3;
StgFloat rF4;
StgFloat rF5;
StgFloat rF6;
StgDouble rD1;
StgDouble rD2;
StgDouble rD3;
StgDouble rD4;
StgDouble rD5;
StgDouble rD6;
StgWord128 rXMM1;
StgWord128 rXMM2;
StgWord128 rXMM3;
StgWord128 rXMM4;
StgWord128 rXMM5;
StgWord128 rXMM6;
StgWord256 rYMM1;
StgWord256 rYMM2;
StgWord256 rYMM3;
StgWord256 rYMM4;
StgWord256 rYMM5;
StgWord256 rYMM6;
StgWord512 rZMM1;
StgWord512 rZMM2;
StgWord512 rZMM3;
StgWord512 rZMM4;
StgWord512 rZMM5;
StgWord512 rZMM6;
StgWord64 rL1;
StgPtr rSp;
StgPtr rSpLim;
StgPtr rHp;
StgPtr rHpLim;
struct CostCentreStack_ * rCCCS; /* current cost-centre-stack */
struct StgTSO_ * rCurrentTSO;
struct nursery_ * rNursery;
struct bdescr_ * rCurrentNursery; /* Hp/HpLim point into this block */
struct bdescr_ * rCurrentAlloc; /* for allocation using allocate() */
StgWord rHpAlloc; /* number of *bytes* being allocated in heap */
StgWord rRet; /* holds the return code of the thread */
} StgRegTable;
#if IN_STG_CODE
/*
* Registers Hp and HpLim are global across the entire system, and are
* copied into the RegTable or registers before executing a thread.
*
* Registers Sp and SpLim are saved in the TSO for the thread, but are
* copied into the RegTable or registers before executing a thread.
*
* All other registers are "general purpose", and are used for passing
* arguments to functions, and returning values. The code generator
* knows how many of these are in real registers, and avoids
* generating code that uses non-real registers. General purpose
* registers are never saved when returning to the scheduler, instead
* we save whatever is live at the time on the stack, and restore it
* later. This should reduce the context switch time, amongst other
* things.
*
* For argument passing, the stack will be used in preference to
* pseudo-registers if the architecture has too few general purpose
* registers.
*
* Some special RTS functions like newArray and the Integer primitives
* expect their arguments to be in registers R1-Rn, so we use these
* (pseudo-)registers in those cases.
*/
/* -----------------------------------------------------------------------------
* Emit the GCC-specific register declarations for each machine
* register being used. If any STG register isn't mapped to a machine
* register, then map it to an offset from BaseReg.
*
* First, the general purpose registers. The idea is, if a particular
* general-purpose STG register can't be mapped to a real machine
* register, it won't be used at all. Instead, we'll use the stack.
*/
/* define NO_REGS to omit register declarations - used in RTS C code
* that needs all the STG definitions but not the global register
* settings.
*/
#define GLOBAL_REG_DECL(type,name,reg) register type name REG(reg);
#if defined(REG_R1) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgUnion,R1,REG_R1)
#else
# define R1 (BaseReg->rR1)
#endif
#if defined(REG_R2) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgUnion,R2,REG_R2)
#else
# define R2 (BaseReg->rR2)
#endif
#if defined(REG_R3) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgUnion,R3,REG_R3)
#else
# define R3 (BaseReg->rR3)
#endif
#if defined(REG_R4) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgUnion,R4,REG_R4)
#else
# define R4 (BaseReg->rR4)
#endif
#if defined(REG_R5) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgUnion,R5,REG_R5)
#else
# define R5 (BaseReg->rR5)
#endif
#if defined(REG_R6) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgUnion,R6,REG_R6)
#else
# define R6 (BaseReg->rR6)
#endif
#if defined(REG_R7) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgUnion,R7,REG_R7)
#else
# define R7 (BaseReg->rR7)
#endif
#if defined(REG_R8) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgUnion,R8,REG_R8)
#else
# define R8 (BaseReg->rR8)
#endif
#if defined(REG_R9) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgUnion,R9,REG_R9)
#else
# define R9 (BaseReg->rR9)
#endif
#if defined(REG_R10) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgUnion,R10,REG_R10)
#else
# define R10 (BaseReg->rR10)
#endif
#if defined(REG_F1) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgFloat,F1,REG_F1)
#else
#define F1 (BaseReg->rF1)
#endif
#if defined(REG_F2) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgFloat,F2,REG_F2)
#else
#define F2 (BaseReg->rF2)
#endif
#if defined(REG_F3) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgFloat,F3,REG_F3)
#else
#define F3 (BaseReg->rF3)
#endif
#if defined(REG_F4) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgFloat,F4,REG_F4)
#else
#define F4 (BaseReg->rF4)
#endif
#if defined(REG_F5) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgFloat,F5,REG_F5)
#else
#define F5 (BaseReg->rF5)
#endif
#if defined(REG_F6) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgFloat,F6,REG_F6)
#else
#define F6 (BaseReg->rF6)
#endif
#if defined(REG_D1) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgDouble,D1,REG_D1)
#else
#define D1 (BaseReg->rD1)
#endif
#if defined(REG_D2) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgDouble,D2,REG_D2)
#else
#define D2 (BaseReg->rD2)
#endif
#if defined(REG_D3) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgDouble,D3,REG_D3)
#else
#define D3 (BaseReg->rD3)
#endif
#if defined(REG_D4) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgDouble,D4,REG_D4)
#else
#define D4 (BaseReg->rD4)
#endif
#if defined(REG_D5) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgDouble,D5,REG_D5)
#else
#define D5 (BaseReg->rD5)
#endif
#if defined(REG_D6) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgDouble,D6,REG_D6)
#else
#define D6 (BaseReg->rD6)
#endif
#if defined(REG_XMM1) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgWord128,XMM1,REG_XMM1)
#else
#define XMM1 (BaseReg->rXMM1)
#endif
#if defined(REG_XMM2) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgWord128,XMM2,REG_XMM2)
#else
#define XMM2 (BaseReg->rXMM2)
#endif
#if defined(REG_XMM3) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgWord128,XMM3,REG_XMM3)
#else
#define XMM3 (BaseReg->rXMM3)
#endif
#if defined(REG_XMM4) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgWord128,XMM4,REG_XMM4)
#else
#define XMM4 (BaseReg->rXMM4)
#endif
#if defined(REG_XMM5) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgWord128,XMM5,REG_XMM5)
#else
#define XMM5 (BaseReg->rXMM5)
#endif
#if defined(REG_XMM6) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgWord128,XMM6,REG_XMM6)
#else
#define XMM6 (BaseReg->rXMM6)
#endif
#if defined(REG_YMM1) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgWord256,YMM1,REG_YMM1)
#else
#define YMM1 (BaseReg->rYMM1)
#endif
#if defined(REG_YMM2) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgWord256,YMM2,REG_YMM2)
#else
#define YMM2 (BaseReg->rYMM2)
#endif
#if defined(REG_YMM3) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgWord256,YMM3,REG_YMM3)
#else
#define YMM3 (BaseReg->rYMM3)
#endif
#if defined(REG_YMM4) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgWord256,YMM4,REG_YMM4)
#else
#define YMM4 (BaseReg->rYMM4)
#endif
#if defined(REG_YMM5) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgWord256,YMM5,REG_YMM5)
#else
#define YMM5 (BaseReg->rYMM5)
#endif
#if defined(REG_YMM6) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgWord256,YMM6,REG_YMM6)
#else
#define YMM6 (BaseReg->rYMM6)
#endif
#if defined(REG_ZMM1) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgWord512,ZMM1,REG_ZMM1)
#else
#define ZMM1 (BaseReg->rZMM1)
#endif
#if defined(REG_ZMM2) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgWord512,ZMM2,REG_ZMM2)
#else
#define ZMM2 (BaseReg->rZMM2)
#endif
#if defined(REG_ZMM3) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgWord512,ZMM3,REG_ZMM3)
#else
#define ZMM3 (BaseReg->rZMM3)
#endif
#if defined(REG_ZMM4) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgWord512,ZMM4,REG_ZMM4)
#else
#define ZMM4 (BaseReg->rZMM4)
#endif
#if defined(REG_ZMM5) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgWord512,ZMM5,REG_ZMM5)
#else
#define ZMM5 (BaseReg->rZMM5)
#endif
#if defined(REG_ZMM6) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgWord512,ZMM6,REG_ZMM6)
#else
#define ZMM6 (BaseReg->rZMM6)
#endif
#if defined(REG_L1) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgWord64,L1,REG_L1)
#else
#define L1 (BaseReg->rL1)
#endif
/*
* If BaseReg isn't mapped to a machine register, just use the global
* address of the current register table (CurrentRegTable in
* concurrent Haskell, MainRegTable otherwise).
*/
/* A capability is a combination of a FunTable and a RegTable. In STG
* code, BaseReg normally points to the RegTable portion of this
* structure, so that we can index both forwards and backwards to take
* advantage of shorter instruction forms on some archs (eg. x86).
* This is a cut-down version of the Capability structure; the full
* version is defined in Capability.h.
*/
struct PartCapability_ {
StgFunTable f;
StgRegTable r;
};
/* No such thing as a MainCapability under THREADED_RTS - each thread must have
* its own Capability.
*/
#if IN_STG_CODE && !(defined(THREADED_RTS) && !defined(NOSMP))
extern W_ MainCapability[];
#endif
/*
* Assigning to BaseReg (the ASSIGN_BaseReg macro): this happens on
* return from a "safe" foreign call, when the thread might be running
* on a new Capability. Obviously if BaseReg is not a register, then
* we are restricted to a single Capability (this invariant is enforced
* in Capability.c:initCapabilities), and assigning to BaseReg can be omitted.
*/
#if defined(REG_Base) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(StgRegTable *,BaseReg,REG_Base)
#define ASSIGN_BaseReg(e) (BaseReg = (e))
#else
#if defined(THREADED_RTS) && !defined(NOSMP)
#error BaseReg must be in a register for THREADED_RTS
#endif
#define BaseReg (&((struct PartCapability_ *)MainCapability)->r)
#define ASSIGN_BaseReg(e) (e)
#endif
#if defined(REG_Sp) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(P_,Sp,REG_Sp)
#else
#define Sp (BaseReg->rSp)
#endif
#if defined(REG_SpLim) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(P_,SpLim,REG_SpLim)
#else
#define SpLim (BaseReg->rSpLim)
#endif
#if defined(REG_Hp) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(P_,Hp,REG_Hp)
#else
#define Hp (BaseReg->rHp)
#endif
#if defined(REG_HpLim) && !defined(NO_GLOBAL_REG_DECLS)
#error HpLim cannot be in a register
#else
#define HpLim (BaseReg->rHpLim)
#endif
#if defined(REG_CCCS) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(struct CostCentreStack_ *,CCCS,REG_CCCS)
#else
#define CCCS (BaseReg->rCCCS)
#endif
#if defined(REG_CurrentTSO) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(struct _StgTSO *,CurrentTSO,REG_CurrentTSO)
#else
#define CurrentTSO (BaseReg->rCurrentTSO)
#endif
#if defined(REG_CurrentNursery) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(bdescr *,CurrentNursery,REG_CurrentNursery)
#else
#define CurrentNursery (BaseReg->rCurrentNursery)
#endif
#if defined(REG_HpAlloc) && !defined(NO_GLOBAL_REG_DECLS)
GLOBAL_REG_DECL(bdescr *,HpAlloc,REG_HpAlloc)
#else
#define HpAlloc (BaseReg->rHpAlloc)
#endif
/* -----------------------------------------------------------------------------
Get absolute function pointers from the register table, to save
code space. On x86,
jmp *-12(%ebx)
is shorter than
jmp absolute_address
as long as the offset is within the range of a signed byte
(-128..+127). So we pick some common absolute_addresses and put
them in the register table. As a bonus, linking time should also
be reduced.
Other possible candidates in order of importance:
stg_upd_frame_info
stg_CAF_BLACKHOLE_info
stg_IND_STATIC_info
anything else probably isn't worth the effort.
-------------------------------------------------------------------------- */
#define FunReg ((StgFunTable *)((void *)BaseReg - STG_FIELD_OFFSET(struct PartCapability_, r)))
#define stg_EAGER_BLACKHOLE_info (FunReg->stgEagerBlackholeInfo)
#define stg_gc_enter_1 (FunReg->stgGCEnter1)
#define stg_gc_fun (FunReg->stgGCFun)
#endif /* IN_STG_CODE */
|