1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
|
/* ----------------------------------------------------------------------------
*
* (c) The GHC Team, 2005-2011
*
* Macros for multi-CPU support
*
* Do not #include this file directly: #include "Rts.h" instead.
*
* To understand the structure of the RTS headers, see the wiki:
* http://ghc.haskell.org/trac/ghc/wiki/Commentary/SourceTree/Includes
*
* -------------------------------------------------------------------------- */
#ifndef SMP_H
#define SMP_H
#if arm_HOST_ARCH && defined(arm_HOST_ARCH_PRE_ARMv6)
void arm_atomic_spin_lock(void);
void arm_atomic_spin_unlock(void);
#endif
#if defined(THREADED_RTS)
/* ----------------------------------------------------------------------------
Atomic operations
------------------------------------------------------------------------- */
#if !IN_STG_CODE || IN_STGCRUN
// We only want the barriers, e.g. write_barrier(), declared in .hc
// files. Defining the other inline functions here causes type
// mismatch errors from gcc, because the generated C code is assuming
// that there are no prototypes in scope.
/*
* The atomic exchange operation: xchg(p,w) exchanges the value
* pointed to by p with the value w, returning the old value.
*
* Used for locking closures during updates (see lockClosure()
* in includes/rts/storage/SMPClosureOps.h) and the MVar primops.
*/
EXTERN_INLINE StgWord xchg(StgPtr p, StgWord w);
/*
* Compare-and-swap. Atomically does this:
*
* cas(p,o,n) {
* r = *p;
* if (r == o) { *p = n };
* return r;
* }
*/
EXTERN_INLINE StgWord cas(StgVolatilePtr p, StgWord o, StgWord n);
/*
* Atomic addition by the provided quantity
*
* atomic_inc(p, n) {
* return ((*p) += n);
* }
*/
EXTERN_INLINE StgWord atomic_inc(StgVolatilePtr p, StgWord n);
/*
* Atomic decrement
*
* atomic_dec(p) {
* return --(*p);
* }
*/
EXTERN_INLINE StgWord atomic_dec(StgVolatilePtr p);
/*
* Busy-wait nop: this is a hint to the CPU that we are currently in a
* busy-wait loop waiting for another CPU to change something. On a
* hypertreaded CPU it should yield to another thread, for example.
*/
EXTERN_INLINE void busy_wait_nop(void);
#endif // !IN_STG_CODE
/*
* Various kinds of memory barrier.
* write_barrier: prevents future stores occurring before prededing stores.
* store_load_barrier: prevents future loads occurring before preceding stores.
* load_load_barrier: prevents future loads occurring before earlier stores.
*
* Reference for these: "The JSR-133 Cookbook for Compiler Writers"
* http://gee.cs.oswego.edu/dl/jmm/cookbook.html
*
* To check whether you got these right, try the test in
* testsuite/tests/rts/testwsdeque.c
* This tests the work-stealing deque implementation, which relies on
* properly working store_load and load_load memory barriers.
*/
EXTERN_INLINE void write_barrier(void);
EXTERN_INLINE void store_load_barrier(void);
EXTERN_INLINE void load_load_barrier(void);
/* ----------------------------------------------------------------------------
Implementations
------------------------------------------------------------------------- */
#if !IN_STG_CODE || IN_STGCRUN
/*
* Exchange the value pointed to by p with w and return the former. This
* function is used to acquire a lock. An acquire memory barrier is sufficient
* for a lock operation because corresponding unlock operation issues a
* store-store barrier (write_barrier()) immediately before releasing the lock.
*/
EXTERN_INLINE StgWord
xchg(StgPtr p, StgWord w)
{
// When porting GHC to a new platform check that
// __sync_lock_test_and_set() actually stores w in *p.
// Use test rts/atomicxchg to verify that the correct value is stored.
// From the gcc manual:
// (https://gcc.gnu.org/onlinedocs/gcc-4.4.3/gcc/Atomic-Builtins.html)
// This built-in function, as described by Intel, is not
// a traditional test-and-set operation, but rather an atomic
// exchange operation.
// [...]
// Many targets have only minimal support for such locks,
// and do not support a full exchange operation. In this case,
// a target may support reduced functionality here by which the
// only valid value to store is the immediate constant 1. The
// exact value actually stored in *ptr is implementation defined.
return __sync_lock_test_and_set(p, w);
}
/*
* CMPXCHG - the single-word atomic compare-and-exchange instruction. Used
* in the STM implementation.
*/
EXTERN_INLINE StgWord
cas(StgVolatilePtr p, StgWord o, StgWord n)
{
return __sync_val_compare_and_swap(p, o, n);
}
// RRN: Generalized to arbitrary increments to enable fetch-and-add in
// Haskell code (fetchAddIntArray#).
// PT: add-and-fetch, returns new value
EXTERN_INLINE StgWord
atomic_inc(StgVolatilePtr p, StgWord incr)
{
return __sync_add_and_fetch(p, incr);
}
EXTERN_INLINE StgWord
atomic_dec(StgVolatilePtr p)
{
return __sync_sub_and_fetch(p, (StgWord) 1);
}
/*
* Some architectures have a way to tell the CPU that we're in a
* busy-wait loop, and the processor should look for something else to
* do (such as run another hardware thread).
*/
EXTERN_INLINE void
busy_wait_nop(void)
{
#if defined(i386_HOST_ARCH) || defined(x86_64_HOST_ARCH)
// On Intel, the busy-wait-nop instruction is called "pause",
// which is actually represented as a nop with the rep prefix.
// On processors before the P4 this behaves as a nop; on P4 and
// later it might do something clever like yield to another
// hyperthread. In any case, Intel recommends putting one
// of these in a spin lock loop.
__asm__ __volatile__ ("rep; nop");
#else
// nothing
#endif
}
#endif // !IN_STG_CODE
/*
* We need to tell both the compiler AND the CPU about the barriers.
* It's no good preventing the CPU from reordering the operations if
* the compiler has already done so - hence the "memory" restriction
* on each of the barriers below.
*/
EXTERN_INLINE void
write_barrier(void) {
#if defined(NOSMP)
return;
#elif i386_HOST_ARCH || x86_64_HOST_ARCH
__asm__ __volatile__ ("" : : : "memory");
#elif powerpc_HOST_ARCH || powerpc64_HOST_ARCH || powerpc64le_HOST_ARCH
__asm__ __volatile__ ("lwsync" : : : "memory");
#elif sparc_HOST_ARCH
/* Sparc in TSO mode does not require store/store barriers. */
__asm__ __volatile__ ("" : : : "memory");
#elif (arm_HOST_ARCH) || aarch64_HOST_ARCH
__asm__ __volatile__ ("dmb st" : : : "memory");
#else
#error memory barriers unimplemented on this architecture
#endif
}
EXTERN_INLINE void
store_load_barrier(void) {
#if defined(NOSMP)
return;
#elif i386_HOST_ARCH
__asm__ __volatile__ ("lock; addl $0,0(%%esp)" : : : "memory");
#elif x86_64_HOST_ARCH
__asm__ __volatile__ ("lock; addq $0,0(%%rsp)" : : : "memory");
#elif powerpc_HOST_ARCH || powerpc64_HOST_ARCH || powerpc64le_HOST_ARCH
__asm__ __volatile__ ("sync" : : : "memory");
#elif sparc_HOST_ARCH
__asm__ __volatile__ ("membar #StoreLoad" : : : "memory");
#elif arm_HOST_ARCH
__asm__ __volatile__ ("dmb" : : : "memory");
#elif aarch64_HOST_ARCH
__asm__ __volatile__ ("dmb sy" : : : "memory");
#else
#error memory barriers unimplemented on this architecture
#endif
}
EXTERN_INLINE void
load_load_barrier(void) {
#if defined(NOSMP)
return;
#elif i386_HOST_ARCH
__asm__ __volatile__ ("" : : : "memory");
#elif x86_64_HOST_ARCH
__asm__ __volatile__ ("" : : : "memory");
#elif powerpc_HOST_ARCH || powerpc64_HOST_ARCH || powerpc64le_HOST_ARCH
__asm__ __volatile__ ("lwsync" : : : "memory");
#elif sparc_HOST_ARCH
/* Sparc in TSO mode does not require load/load barriers. */
__asm__ __volatile__ ("" : : : "memory");
#elif arm_HOST_ARCH
__asm__ __volatile__ ("dmb" : : : "memory");
#elif aarch64_HOST_ARCH
__asm__ __volatile__ ("dmb sy" : : : "memory");
#else
#error memory barriers unimplemented on this architecture
#endif
}
// Load a pointer from a memory location that might be being modified
// concurrently. This prevents the compiler from optimising away
// multiple loads of the memory location, as it might otherwise do in
// a busy wait loop for example.
#define VOLATILE_LOAD(p) (*((StgVolatilePtr)(p)))
/* ---------------------------------------------------------------------- */
#else /* !THREADED_RTS */
EXTERN_INLINE void write_barrier(void);
EXTERN_INLINE void store_load_barrier(void);
EXTERN_INLINE void load_load_barrier(void);
EXTERN_INLINE void write_barrier () {} /* nothing */
EXTERN_INLINE void store_load_barrier() {} /* nothing */
EXTERN_INLINE void load_load_barrier () {} /* nothing */
#if !IN_STG_CODE || IN_STGCRUN
INLINE_HEADER StgWord
xchg(StgPtr p, StgWord w)
{
StgWord old = *p;
*p = w;
return old;
}
EXTERN_INLINE StgWord cas(StgVolatilePtr p, StgWord o, StgWord n);
EXTERN_INLINE StgWord
cas(StgVolatilePtr p, StgWord o, StgWord n)
{
StgWord result;
result = *p;
if (result == o) {
*p = n;
}
return result;
}
EXTERN_INLINE StgWord atomic_inc(StgVolatilePtr p, StgWord incr);
EXTERN_INLINE StgWord
atomic_inc(StgVolatilePtr p, StgWord incr)
{
return ((*p) += incr);
}
INLINE_HEADER StgWord
atomic_dec(StgVolatilePtr p)
{
return --(*p);
}
#endif
#define VOLATILE_LOAD(p) ((StgWord)*((StgWord*)(p)))
#endif /* !THREADED_RTS */
#endif /* SMP_H */
|