1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
|
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE CPP
, MagicHash
, UnboxedTuples
, ScopedTypeVariables
, RankNTypes
#-}
{-# OPTIONS_GHC -Wno-deprecations #-}
-- kludge for the Control.Concurrent.QSem, Control.Concurrent.QSemN
-- and Control.Concurrent.SampleVar imports.
-----------------------------------------------------------------------------
-- |
-- Module : Control.Concurrent
-- Copyright : (c) The University of Glasgow 2001
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : experimental
-- Portability : non-portable (concurrency)
--
-- A common interface to a collection of useful concurrency
-- abstractions.
--
-----------------------------------------------------------------------------
module Control.Concurrent (
-- * Concurrent Haskell
-- $conc_intro
-- * Basic concurrency operations
ThreadId,
myThreadId,
forkIO,
forkFinally,
forkIOWithUnmask,
killThread,
throwTo,
-- ** Threads with affinity
forkOn,
forkOnWithUnmask,
getNumCapabilities,
setNumCapabilities,
threadCapability,
-- * Scheduling
-- $conc_scheduling
yield,
-- ** Blocking
-- $blocking
-- ** Waiting
threadDelay,
threadWaitRead,
threadWaitWrite,
threadWaitReadSTM,
threadWaitWriteSTM,
-- * Communication abstractions
module Control.Concurrent.MVar,
module Control.Concurrent.Chan,
module Control.Concurrent.QSem,
module Control.Concurrent.QSemN,
-- * Bound Threads
-- $boundthreads
rtsSupportsBoundThreads,
forkOS,
forkOSWithUnmask,
isCurrentThreadBound,
runInBoundThread,
runInUnboundThread,
-- * Weak references to ThreadIds
mkWeakThreadId,
-- * GHC's implementation of concurrency
-- |This section describes features specific to GHC's
-- implementation of Concurrent Haskell.
-- ** Haskell threads and Operating System threads
-- $osthreads
-- ** Terminating the program
-- $termination
-- ** Pre-emption
-- $preemption
-- ** Deadlock
-- $deadlock
) where
import Control.Exception.Base as Exception
import GHC.Conc hiding (threadWaitRead, threadWaitWrite,
threadWaitReadSTM, threadWaitWriteSTM)
import GHC.IO ( unsafeUnmask, catchException )
import GHC.IORef ( newIORef, readIORef, writeIORef )
import GHC.Base
import System.Posix.Types ( Fd )
import Foreign.StablePtr
import Foreign.C.Types
#ifdef mingw32_HOST_OS
import Foreign.C
import System.IO
import Data.Functor ( void )
#else
import qualified GHC.Conc
#endif
import Control.Concurrent.MVar
import Control.Concurrent.Chan
import Control.Concurrent.QSem
import Control.Concurrent.QSemN
{- $conc_intro
The concurrency extension for Haskell is described in the paper
/Concurrent Haskell/
<http://www.haskell.org/ghc/docs/papers/concurrent-haskell.ps.gz>.
Concurrency is \"lightweight\", which means that both thread creation
and context switching overheads are extremely low. Scheduling of
Haskell threads is done internally in the Haskell runtime system, and
doesn't make use of any operating system-supplied thread packages.
However, if you want to interact with a foreign library that expects your
program to use the operating system-supplied thread package, you can do so
by using 'forkOS' instead of 'forkIO'.
Haskell threads can communicate via 'MVar's, a kind of synchronised
mutable variable (see "Control.Concurrent.MVar"). Several common
concurrency abstractions can be built from 'MVar's, and these are
provided by the "Control.Concurrent" library.
In GHC, threads may also communicate via exceptions.
-}
{- $conc_scheduling
Scheduling may be either pre-emptive or co-operative,
depending on the implementation of Concurrent Haskell (see below
for information related to specific compilers). In a co-operative
system, context switches only occur when you use one of the
primitives defined in this module. This means that programs such
as:
> main = forkIO (write 'a') >> write 'b'
> where write c = putChar c >> write c
will print either @aaaaaaaaaaaaaa...@ or @bbbbbbbbbbbb...@,
instead of some random interleaving of @a@s and @b@s. In
practice, cooperative multitasking is sufficient for writing
simple graphical user interfaces.
-}
{- $blocking
Different Haskell implementations have different characteristics with
regard to which operations block /all/ threads.
Using GHC without the @-threaded@ option, all foreign calls will block
all other Haskell threads in the system, although I\/O operations will
not. With the @-threaded@ option, only foreign calls with the @unsafe@
attribute will block all other threads.
-}
-- | Fork a thread and call the supplied function when the thread is about
-- to terminate, with an exception or a returned value. The function is
-- called with asynchronous exceptions masked.
--
-- > forkFinally action and_then =
-- > mask $ \restore ->
-- > forkIO $ try (restore action) >>= and_then
--
-- This function is useful for informing the parent when a child
-- terminates, for example.
--
-- @since 4.6.0.0
forkFinally :: IO a -> (Either SomeException a -> IO ()) -> IO ThreadId
forkFinally action and_then =
mask $ \restore ->
forkIO $ try (restore action) >>= and_then
-- ---------------------------------------------------------------------------
-- Bound Threads
{- $boundthreads
#boundthreads#
Support for multiple operating system threads and bound threads as described
below is currently only available in the GHC runtime system if you use the
/-threaded/ option when linking.
Other Haskell systems do not currently support multiple operating system threads.
A bound thread is a haskell thread that is /bound/ to an operating system
thread. While the bound thread is still scheduled by the Haskell run-time
system, the operating system thread takes care of all the foreign calls made
by the bound thread.
To a foreign library, the bound thread will look exactly like an ordinary
operating system thread created using OS functions like @pthread_create@
or @CreateThread@.
Bound threads can be created using the 'forkOS' function below. All foreign
exported functions are run in a bound thread (bound to the OS thread that
called the function). Also, the @main@ action of every Haskell program is
run in a bound thread.
Why do we need this? Because if a foreign library is called from a thread
created using 'forkIO', it won't have access to any /thread-local state/ -
state variables that have specific values for each OS thread
(see POSIX's @pthread_key_create@ or Win32's @TlsAlloc@). Therefore, some
libraries (OpenGL, for example) will not work from a thread created using
'forkIO'. They work fine in threads created using 'forkOS' or when called
from @main@ or from a @foreign export@.
In terms of performance, 'forkOS' (aka bound) threads are much more
expensive than 'forkIO' (aka unbound) threads, because a 'forkOS'
thread is tied to a particular OS thread, whereas a 'forkIO' thread
can be run by any OS thread. Context-switching between a 'forkOS'
thread and a 'forkIO' thread is many times more expensive than between
two 'forkIO' threads.
Note in particular that the main program thread (the thread running
@Main.main@) is always a bound thread, so for good concurrency
performance you should ensure that the main thread is not doing
repeated communication with other threads in the system. Typically
this means forking subthreads to do the work using 'forkIO', and
waiting for the results in the main thread.
-}
-- | 'True' if bound threads are supported.
-- If @rtsSupportsBoundThreads@ is 'False', 'isCurrentThreadBound'
-- will always return 'False' and both 'forkOS' and 'runInBoundThread' will
-- fail.
foreign import ccall unsafe rtsSupportsBoundThreads :: Bool
{- |
Like 'forkIO', this sparks off a new thread to run the 'IO'
computation passed as the first argument, and returns the 'ThreadId'
of the newly created thread.
However, 'forkOS' creates a /bound/ thread, which is necessary if you
need to call foreign (non-Haskell) libraries that make use of
thread-local state, such as OpenGL (see "Control.Concurrent#boundthreads").
Using 'forkOS' instead of 'forkIO' makes no difference at all to the
scheduling behaviour of the Haskell runtime system. It is a common
misconception that you need to use 'forkOS' instead of 'forkIO' to
avoid blocking all the Haskell threads when making a foreign call;
this isn't the case. To allow foreign calls to be made without
blocking all the Haskell threads (with GHC), it is only necessary to
use the @-threaded@ option when linking your program, and to make sure
the foreign import is not marked @unsafe@.
-}
forkOS :: IO () -> IO ThreadId
foreign export ccall forkOS_entry
:: StablePtr (IO ()) -> IO ()
foreign import ccall "forkOS_entry" forkOS_entry_reimported
:: StablePtr (IO ()) -> IO ()
forkOS_entry :: StablePtr (IO ()) -> IO ()
forkOS_entry stableAction = do
action <- deRefStablePtr stableAction
action
foreign import ccall forkOS_createThread
:: StablePtr (IO ()) -> IO CInt
failNonThreaded :: IO a
failNonThreaded = fail $ "RTS doesn't support multiple OS threads "
++"(use ghc -threaded when linking)"
forkOS action0
| rtsSupportsBoundThreads = do
mv <- newEmptyMVar
b <- Exception.getMaskingState
let
-- async exceptions are masked in the child if they are masked
-- in the parent, as for forkIO (see #1048). forkOS_createThread
-- creates a thread with exceptions masked by default.
action1 = case b of
Unmasked -> unsafeUnmask action0
MaskedInterruptible -> action0
MaskedUninterruptible -> uninterruptibleMask_ action0
action_plus = catch action1 childHandler
entry <- newStablePtr (myThreadId >>= putMVar mv >> action_plus)
err <- forkOS_createThread entry
when (err /= 0) $ fail "Cannot create OS thread."
tid <- takeMVar mv
freeStablePtr entry
return tid
| otherwise = failNonThreaded
-- | Like 'forkIOWithUnmask', but the child thread is a bound thread,
-- as with 'forkOS'.
forkOSWithUnmask :: ((forall a . IO a -> IO a) -> IO ()) -> IO ThreadId
forkOSWithUnmask io = forkOS (io unsafeUnmask)
-- | Returns 'True' if the calling thread is /bound/, that is, if it is
-- safe to use foreign libraries that rely on thread-local state from the
-- calling thread.
isCurrentThreadBound :: IO Bool
isCurrentThreadBound = IO $ \ s# ->
case isCurrentThreadBound# s# of
(# s2#, flg #) -> (# s2#, isTrue# (flg /=# 0#) #)
{- |
Run the 'IO' computation passed as the first argument. If the calling thread
is not /bound/, a bound thread is created temporarily. @runInBoundThread@
doesn't finish until the 'IO' computation finishes.
You can wrap a series of foreign function calls that rely on thread-local state
with @runInBoundThread@ so that you can use them without knowing whether the
current thread is /bound/.
-}
runInBoundThread :: IO a -> IO a
runInBoundThread action
| rtsSupportsBoundThreads = do
bound <- isCurrentThreadBound
if bound
then action
else do
ref <- newIORef undefined
let action_plus = Exception.try action >>= writeIORef ref
bracket (newStablePtr action_plus)
freeStablePtr
(\cEntry -> forkOS_entry_reimported cEntry >> readIORef ref) >>=
unsafeResult
| otherwise = failNonThreaded
{- |
Run the 'IO' computation passed as the first argument. If the calling thread
is /bound/, an unbound thread is created temporarily using 'forkIO'.
@runInBoundThread@ doesn't finish until the 'IO' computation finishes.
Use this function /only/ in the rare case that you have actually observed a
performance loss due to the use of bound threads. A program that
doesn't need its main thread to be bound and makes /heavy/ use of concurrency
(e.g. a web server), might want to wrap its @main@ action in
@runInUnboundThread@.
Note that exceptions which are thrown to the current thread are thrown in turn
to the thread that is executing the given computation. This ensures there's
always a way of killing the forked thread.
-}
runInUnboundThread :: IO a -> IO a
runInUnboundThread action = do
bound <- isCurrentThreadBound
if bound
then do
mv <- newEmptyMVar
mask $ \restore -> do
tid <- forkIO $ Exception.try (restore action) >>= putMVar mv
let wait = takeMVar mv `catchException` \(e :: SomeException) ->
Exception.throwTo tid e >> wait
wait >>= unsafeResult
else action
unsafeResult :: Either SomeException a -> IO a
unsafeResult = either Exception.throwIO return
-- ---------------------------------------------------------------------------
-- threadWaitRead/threadWaitWrite
-- | Block the current thread until data is available to read on the
-- given file descriptor (GHC only).
--
-- This will throw an 'IOError' if the file descriptor was closed
-- while this thread was blocked. To safely close a file descriptor
-- that has been used with 'threadWaitRead', use
-- 'GHC.Conc.closeFdWith'.
threadWaitRead :: Fd -> IO ()
threadWaitRead fd
#ifdef mingw32_HOST_OS
-- we have no IO manager implementing threadWaitRead on Windows.
-- fdReady does the right thing, but we have to call it in a
-- separate thread, otherwise threadWaitRead won't be interruptible,
-- and this only works with -threaded.
| threaded = withThread (waitFd fd 0)
| otherwise = case fd of
0 -> do _ <- hWaitForInput stdin (-1)
return ()
-- hWaitForInput does work properly, but we can only
-- do this for stdin since we know its FD.
_ -> errorWithoutStackTrace "threadWaitRead requires -threaded on Windows, or use System.IO.hWaitForInput"
#else
= GHC.Conc.threadWaitRead fd
#endif
-- | Block the current thread until data can be written to the
-- given file descriptor (GHC only).
--
-- This will throw an 'IOError' if the file descriptor was closed
-- while this thread was blocked. To safely close a file descriptor
-- that has been used with 'threadWaitWrite', use
-- 'GHC.Conc.closeFdWith'.
threadWaitWrite :: Fd -> IO ()
threadWaitWrite fd
#ifdef mingw32_HOST_OS
| threaded = withThread (waitFd fd 1)
| otherwise = errorWithoutStackTrace "threadWaitWrite requires -threaded on Windows"
#else
= GHC.Conc.threadWaitWrite fd
#endif
-- | Returns an STM action that can be used to wait for data
-- to read from a file descriptor. The second returned value
-- is an IO action that can be used to deregister interest
-- in the file descriptor.
--
-- @since 4.7.0.0
threadWaitReadSTM :: Fd -> IO (STM (), IO ())
threadWaitReadSTM fd
#ifdef mingw32_HOST_OS
| threaded = do v <- newTVarIO Nothing
mask_ $ void $ forkIO $ do result <- try (waitFd fd 0)
atomically (writeTVar v $ Just result)
let waitAction = do result <- readTVar v
case result of
Nothing -> retry
Just (Right ()) -> return ()
Just (Left e) -> throwSTM (e :: IOException)
let killAction = return ()
return (waitAction, killAction)
| otherwise = errorWithoutStackTrace "threadWaitReadSTM requires -threaded on Windows"
#else
= GHC.Conc.threadWaitReadSTM fd
#endif
-- | Returns an STM action that can be used to wait until data
-- can be written to a file descriptor. The second returned value
-- is an IO action that can be used to deregister interest
-- in the file descriptor.
--
-- @since 4.7.0.0
threadWaitWriteSTM :: Fd -> IO (STM (), IO ())
threadWaitWriteSTM fd
#ifdef mingw32_HOST_OS
| threaded = do v <- newTVarIO Nothing
mask_ $ void $ forkIO $ do result <- try (waitFd fd 1)
atomically (writeTVar v $ Just result)
let waitAction = do result <- readTVar v
case result of
Nothing -> retry
Just (Right ()) -> return ()
Just (Left e) -> throwSTM (e :: IOException)
let killAction = return ()
return (waitAction, killAction)
| otherwise = errorWithoutStackTrace "threadWaitWriteSTM requires -threaded on Windows"
#else
= GHC.Conc.threadWaitWriteSTM fd
#endif
#ifdef mingw32_HOST_OS
foreign import ccall unsafe "rtsSupportsBoundThreads" threaded :: Bool
withThread :: IO a -> IO a
withThread io = do
m <- newEmptyMVar
_ <- mask_ $ forkIO $ try io >>= putMVar m
x <- takeMVar m
case x of
Right a -> return a
Left e -> throwIO (e :: IOException)
waitFd :: Fd -> CInt -> IO ()
waitFd fd write = do
throwErrnoIfMinus1_ "fdReady" $
fdReady (fromIntegral fd) write iNFINITE 0
iNFINITE :: CInt
iNFINITE = 0xFFFFFFFF -- urgh
foreign import ccall safe "fdReady"
fdReady :: CInt -> CInt -> CInt -> CInt -> IO CInt
#endif
-- ---------------------------------------------------------------------------
-- More docs
{- $osthreads
#osthreads# In GHC, threads created by 'forkIO' are lightweight threads, and
are managed entirely by the GHC runtime. Typically Haskell
threads are an order of magnitude or two more efficient (in
terms of both time and space) than operating system threads.
The downside of having lightweight threads is that only one can
run at a time, so if one thread blocks in a foreign call, for
example, the other threads cannot continue. The GHC runtime
works around this by making use of full OS threads where
necessary. When the program is built with the @-threaded@
option (to link against the multithreaded version of the
runtime), a thread making a @safe@ foreign call will not block
the other threads in the system; another OS thread will take
over running Haskell threads until the original call returns.
The runtime maintains a pool of these /worker/ threads so that
multiple Haskell threads can be involved in external calls
simultaneously.
The "System.IO" library manages multiplexing in its own way. On
Windows systems it uses @safe@ foreign calls to ensure that
threads doing I\/O operations don't block the whole runtime,
whereas on Unix systems all the currently blocked I\/O requests
are managed by a single thread (the /IO manager thread/) using
a mechanism such as @epoll@ or @kqueue@, depending on what is
provided by the host operating system.
The runtime will run a Haskell thread using any of the available
worker OS threads. If you need control over which particular OS
thread is used to run a given Haskell thread, perhaps because
you need to call a foreign library that uses OS-thread-local
state, then you need bound threads (see "Control.Concurrent#boundthreads").
If you don't use the @-threaded@ option, then the runtime does
not make use of multiple OS threads. Foreign calls will block
all other running Haskell threads until the call returns. The
"System.IO" library still does multiplexing, so there can be multiple
threads doing I\/O, and this is handled internally by the runtime using
@select@.
-}
{- $termination
In a standalone GHC program, only the main thread is
required to terminate in order for the process to terminate.
Thus all other forked threads will simply terminate at the same
time as the main thread (the terminology for this kind of
behaviour is \"daemonic threads\").
If you want the program to wait for child threads to
finish before exiting, you need to program this yourself. A
simple mechanism is to have each child thread write to an
'MVar' when it completes, and have the main
thread wait on all the 'MVar's before
exiting:
> myForkIO :: IO () -> IO (MVar ())
> myForkIO io = do
> mvar <- newEmptyMVar
> forkFinally io (\_ -> putMVar mvar ())
> return mvar
Note that we use 'forkFinally' to make sure that the
'MVar' is written to even if the thread dies or
is killed for some reason.
A better method is to keep a global list of all child
threads which we should wait for at the end of the program:
> children :: MVar [MVar ()]
> children = unsafePerformIO (newMVar [])
>
> waitForChildren :: IO ()
> waitForChildren = do
> cs <- takeMVar children
> case cs of
> [] -> return ()
> m:ms -> do
> putMVar children ms
> takeMVar m
> waitForChildren
>
> forkChild :: IO () -> IO ThreadId
> forkChild io = do
> mvar <- newEmptyMVar
> childs <- takeMVar children
> putMVar children (mvar:childs)
> forkFinally io (\_ -> putMVar mvar ())
>
> main =
> later waitForChildren $
> ...
The main thread principle also applies to calls to Haskell from
outside, using @foreign export@. When the @foreign export@ed
function is invoked, it starts a new main thread, and it returns
when this main thread terminates. If the call causes new
threads to be forked, they may remain in the system after the
@foreign export@ed function has returned.
-}
{- $preemption
GHC implements pre-emptive multitasking: the execution of
threads are interleaved in a random fashion. More specifically,
a thread may be pre-empted whenever it allocates some memory,
which unfortunately means that tight loops which do no
allocation tend to lock out other threads (this only seems to
happen with pathological benchmark-style code, however).
The rescheduling timer runs on a 20ms granularity by
default, but this may be altered using the
@-i\<n\>@ RTS option. After a rescheduling
\"tick\" the running thread is pre-empted as soon as
possible.
One final note: the
@aaaa@ @bbbb@ example may not
work too well on GHC (see Scheduling, above), due
to the locking on a 'System.IO.Handle'. Only one thread
may hold the lock on a 'System.IO.Handle' at any one
time, so if a reschedule happens while a thread is holding the
lock, the other thread won't be able to run. The upshot is that
the switch from @aaaa@ to
@bbbbb@ happens infrequently. It can be
improved by lowering the reschedule tick period. We also have a
patch that causes a reschedule whenever a thread waiting on a
lock is woken up, but haven't found it to be useful for anything
other than this example :-)
-}
{- $deadlock
GHC attempts to detect when threads are deadlocked using the garbage
collector. A thread that is not reachable (cannot be found by
following pointers from live objects) must be deadlocked, and in this
case the thread is sent an exception. The exception is either
'BlockedIndefinitelyOnMVar', 'BlockedIndefinitelyOnSTM',
'NonTermination', or 'Deadlock', depending on the way in which the
thread is deadlocked.
Note that this feature is intended for debugging, and should not be
relied on for the correct operation of your program. There is no
guarantee that the garbage collector will be accurate enough to detect
your deadlock, and no guarantee that the garbage collector will run in
a timely enough manner. Basically, the same caveats as for finalizers
apply to deadlock detection.
There is a subtle interaction between deadlock detection and
finalizers (as created by 'Foreign.Concurrent.newForeignPtr' or the
functions in "System.Mem.Weak"): if a thread is blocked waiting for a
finalizer to run, then the thread will be considered deadlocked and
sent an exception. So preferably don't do this, but if you have no
alternative then it is possible to prevent the thread from being
considered deadlocked by making a 'StablePtr' pointing to it. Don't
forget to release the 'StablePtr' later with 'freeStablePtr'.
-}
|