1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
|
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE CPP #-}
#ifdef __GLASGOW_HASKELL__
{-# LANGUAGE DeriveDataTypeable, StandaloneDeriving #-}
#endif
-----------------------------------------------------------------------------
-- |
-- Module : Control.Concurrent.Chan
-- Copyright : (c) The University of Glasgow 2001
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : experimental
-- Portability : non-portable (concurrency)
--
-- Unbounded channels.
--
-----------------------------------------------------------------------------
module Control.Concurrent.Chan
(
-- * The 'Chan' type
Chan, -- abstract
-- * Operations
newChan, -- :: IO (Chan a)
writeChan, -- :: Chan a -> a -> IO ()
readChan, -- :: Chan a -> IO a
dupChan, -- :: Chan a -> IO (Chan a)
unGetChan, -- :: Chan a -> a -> IO ()
isEmptyChan, -- :: Chan a -> IO Bool
-- * Stream interface
getChanContents, -- :: Chan a -> IO [a]
writeList2Chan, -- :: Chan a -> [a] -> IO ()
) where
import Prelude
import System.IO.Unsafe ( unsafeInterleaveIO )
import Control.Concurrent.MVar
import Data.Typeable
#include "Typeable.h"
-- A channel is represented by two @MVar@s keeping track of the two ends
-- of the channel contents,i.e., the read- and write ends. Empty @MVar@s
-- are used to handle consumers trying to read from an empty channel.
-- |'Chan' is an abstract type representing an unbounded FIFO channel.
data Chan a
= Chan (MVar (Stream a))
(MVar (Stream a))
deriving Eq
INSTANCE_TYPEABLE1(Chan,chanTc,"Chan")
type Stream a = MVar (ChItem a)
data ChItem a = ChItem a (Stream a)
-- See the Concurrent Haskell paper for a diagram explaining the
-- how the different channel operations proceed.
-- @newChan@ sets up the read and write end of a channel by initialising
-- these two @MVar@s with an empty @MVar@.
-- |Build and returns a new instance of 'Chan'.
newChan :: IO (Chan a)
newChan = do
hole <- newEmptyMVar
readVar <- newMVar hole
writeVar <- newMVar hole
return (Chan readVar writeVar)
-- To put an element on a channel, a new hole at the write end is created.
-- What was previously the empty @MVar@ at the back of the channel is then
-- filled in with a new stream element holding the entered value and the
-- new hole.
-- |Write a value to a 'Chan'.
writeChan :: Chan a -> a -> IO ()
writeChan (Chan _ writeVar) val = do
new_hole <- newEmptyMVar
modifyMVar_ writeVar $ \old_hole -> do
putMVar old_hole (ChItem val new_hole)
return new_hole
-- |Read the next value from the 'Chan'.
readChan :: Chan a -> IO a
readChan (Chan readVar _) = do
modifyMVar readVar $ \read_end -> do
(ChItem val new_read_end) <- readMVar read_end
-- Use readMVar here, not takeMVar,
-- else dupChan doesn't work
return (new_read_end, val)
-- |Duplicate a 'Chan': the duplicate channel begins empty, but data written to
-- either channel from then on will be available from both. Hence this creates
-- a kind of broadcast channel, where data written by anyone is seen by
-- everyone else.
--
-- (Note that a duplicated channel is not equal to its original.
-- So: @fmap (c /=) $ dupChan c@ returns @True@ for all @c@.)
dupChan :: Chan a -> IO (Chan a)
dupChan (Chan _ writeVar) = do
hole <- readMVar writeVar
newReadVar <- newMVar hole
return (Chan newReadVar writeVar)
-- |Put a data item back onto a channel, where it will be the next item read.
unGetChan :: Chan a -> a -> IO ()
unGetChan (Chan readVar _) val = do
new_read_end <- newEmptyMVar
modifyMVar_ readVar $ \read_end -> do
putMVar new_read_end (ChItem val read_end)
return new_read_end
{-# DEPRECATED unGetChan "if you need this operation, use Control.Concurrent.STM.TChan instead. See http://hackage.haskell.org/trac/ghc/ticket/4154 for details" #-}
-- |Returns 'True' if the supplied 'Chan' is empty.
isEmptyChan :: Chan a -> IO Bool
isEmptyChan (Chan readVar writeVar) = do
withMVar readVar $ \r -> do
w <- readMVar writeVar
let eq = r == w
eq `seq` return eq
{-# DEPRECATED isEmptyChan "if you need this operation, use Control.Concurrent.STM.TChan instead. See http://hackage.haskell.org/trac/ghc/ticket/4154 for details" #-}
-- Operators for interfacing with functional streams.
-- |Return a lazy list representing the contents of the supplied
-- 'Chan', much like 'System.IO.hGetContents'.
getChanContents :: Chan a -> IO [a]
getChanContents ch
= unsafeInterleaveIO (do
x <- readChan ch
xs <- getChanContents ch
return (x:xs)
)
-- |Write an entire list of items to a 'Chan'.
writeList2Chan :: Chan a -> [a] -> IO ()
writeList2Chan ch ls = sequence_ (map (writeChan ch) ls)
|