1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
|
{-# LANGUAGE CPP, NoImplicitPrelude #-}
-----------------------------------------------------------------------------
-- |
-- Module : Control.Concurrent.MVar
-- Copyright : (c) The University of Glasgow 2001
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : experimental
-- Portability : non-portable (concurrency)
--
-- An @'MVar' t@ is mutable location that is either empty or contains a
-- value of type @t@. It has two fundamental operations: 'putMVar'
-- which fills an 'MVar' if it is empty and blocks otherwise, and
-- 'takeMVar' which empties an 'MVar' if it is full and blocks
-- otherwise. They can be used in multiple different ways:
--
-- 1. As synchronized mutable variables,
-- 2. As channels, with 'takeMVar' and 'putMVar' as receive and send, and
-- 3. As a binary semaphore @'MVar' ()@, with 'takeMVar' and 'putMVar' as
-- wait and signal.
--
-- They were introduced in the paper "Concurrent Haskell" by Simon
-- Peyton Jones, Andrew Gordon and Sigbjorn Finne, though some details
-- of their implementation have since then changed (in particular, a
-- put on a full MVar used to error, but now merely blocks.)
--
-- * Applicability
--
-- 'MVar's offer more flexibility than 'IORef's, but less flexibility
-- than 'STM'. They are appropriate for building synchronization
-- primitives and performing simple interthread communication; however
-- they are very simple and susceptible to race conditions, deadlocks or
-- uncaught exceptions. Do not use them if you need perform larger
-- atomic operations such as reading from multiple variables: use 'STM'
-- instead.
--
-- In particular, the "bigger" functions in this module ('readMVar',
-- 'swapMVar', 'withMVar', 'modifyMVar_' and 'modifyMVar') are simply
-- the composition of a 'takeMVar' followed by a 'putMVar' with
-- exception safety.
-- These only have atomicity guarantees if all other threads
-- perform a 'takeMVar' before a 'putMVar' as well; otherwise, they may
-- block.
--
-- * Fairness
--
-- No thread can be blocked indefinitely on an 'MVar' unless another
-- thread holds that 'MVar' indefinitely. One usual implementation of
-- this fairness guarantee is that threads blocked on an 'MVar' are
-- served in a first-in-first-out fashion, but this is not guaranteed
-- in the semantics.
--
-- * Gotchas
--
-- Like many other Haskell data structures, 'MVar's are lazy. This
-- means that if you place an expensive unevaluated thunk inside an
-- 'MVar', it will be evaluated by the thread that consumes it, not the
-- thread that produced it. Be sure to 'evaluate' values to be placed
-- in an 'MVar' to the appropriate normal form, or utilize a strict
-- MVar provided by the strict-concurrency package.
--
-- * Ordering
--
-- 'MVar' operations are always observed to take place in the order
-- they are written in the program, regardless of the memory model of
-- the underlying machine. This is in contrast to 'IORef' operations
-- which may appear out-of-order to another thread in some cases.
--
-- * Example
--
-- Consider the following concurrent data structure, a skip channel.
-- This is a channel for an intermittent source of high bandwidth
-- information (for example, mouse movement events.) Writing to the
-- channel never blocks, and reading from the channel only returns the
-- most recent value, or blocks if there are no new values. Multiple
-- readers are supported with a @dupSkipChan@ operation.
--
-- A skip channel is a pair of 'MVar's. The first 'MVar' contains the
-- current value, and a list of semaphores that need to be notified
-- when it changes. The second 'MVar' is a semaphore for this particular
-- reader: it is full if there is a value in the channel that this
-- reader has not read yet, and empty otherwise.
--
-- @
-- data SkipChan a = SkipChan (MVar (a, [MVar ()])) (MVar ())
--
-- newSkipChan :: IO (SkipChan a)
-- newSkipChan = do
-- sem <- newEmptyMVar
-- main <- newMVar (undefined, [sem])
-- return (SkipChan main sem)
--
-- putSkipChan :: SkipChan a -> a -> IO ()
-- putSkipChan (SkipChan main _) v = do
-- (_, sems) <- takeMVar main
-- putMVar main (v, [])
-- mapM_ (\sem -> putMVar sem ()) sems
--
-- getSkipChan :: SkipChan a -> IO a
-- getSkipChan (SkipChan main sem) = do
-- takeMVar sem
-- (v, sems) <- takeMVar main
-- putMVar main (v, sem:sems)
-- return v
--
-- dupSkipChan :: SkipChan a -> IO (SkipChan a)
-- dupSkipChan (SkipChan main _) = do
-- sem <- newEmptyMVar
-- (v, sems) <- takeMVar main
-- putMVar main (v, sem:sems)
-- return (SkipChan main sem)
-- @
--
-- This example was adapted from the original Concurrent Haskell paper.
-- For more examples of 'MVar's being used to build higher-level
-- synchronization primitives, see 'Control.Concurrent.Chan' and
-- 'Control.Concurrent.QSem'.
--
-----------------------------------------------------------------------------
module Control.Concurrent.MVar
(
-- * @MVar@s
MVar -- abstract
, newEmptyMVar -- :: IO (MVar a)
, newMVar -- :: a -> IO (MVar a)
, takeMVar -- :: MVar a -> IO a
, putMVar -- :: MVar a -> a -> IO ()
, readMVar -- :: MVar a -> IO a
, swapMVar -- :: MVar a -> a -> IO a
, tryTakeMVar -- :: MVar a -> IO (Maybe a)
, tryPutMVar -- :: MVar a -> a -> IO Bool
, isEmptyMVar -- :: MVar a -> IO Bool
, withMVar -- :: MVar a -> (a -> IO b) -> IO b
, modifyMVar_ -- :: MVar a -> (a -> IO a) -> IO ()
, modifyMVar -- :: MVar a -> (a -> IO (a,b)) -> IO b
#ifndef __HUGS__
, addMVarFinalizer -- :: MVar a -> IO () -> IO ()
#endif
) where
#ifdef __HUGS__
import Hugs.ConcBase ( MVar, newEmptyMVar, newMVar, takeMVar, putMVar,
tryTakeMVar, tryPutMVar, isEmptyMVar,
)
#endif
#ifdef __GLASGOW_HASKELL__
import GHC.MVar ( MVar, newEmptyMVar, newMVar, takeMVar, putMVar,
tryTakeMVar, tryPutMVar, isEmptyMVar, addMVarFinalizer
)
#endif
#ifdef __GLASGOW_HASKELL__
import GHC.Base
#else
import Prelude
#endif
import Control.Exception.Base
{-|
This is a combination of 'takeMVar' and 'putMVar'; ie. it takes the value
from the 'MVar', puts it back, and also returns it. This function
is atomic only if there are no other producers (i.e. threads calling
'putMVar') for this 'MVar'.
-}
readMVar :: MVar a -> IO a
readMVar m =
mask_ $ do
a <- takeMVar m
putMVar m a
return a
{-|
Take a value from an 'MVar', put a new value into the 'MVar' and
return the value taken. This function is atomic only if there are
no other producers for this 'MVar'.
-}
swapMVar :: MVar a -> a -> IO a
swapMVar mvar new =
mask_ $ do
old <- takeMVar mvar
putMVar mvar new
return old
{-|
'withMVar' is an exception-safe wrapper for operating on the contents
of an 'MVar'. This operation is exception-safe: it will replace the
original contents of the 'MVar' if an exception is raised (see
"Control.Exception"). However, it is only atomic if there are no
other producers for this 'MVar'.
-}
{-# INLINE withMVar #-}
-- inlining has been reported to have dramatic effects; see
-- http://www.haskell.org//pipermail/haskell/2006-May/017907.html
withMVar :: MVar a -> (a -> IO b) -> IO b
withMVar m io =
mask $ \restore -> do
a <- takeMVar m
b <- restore (io a) `onException` putMVar m a
putMVar m a
return b
{-|
An exception-safe wrapper for modifying the contents of an 'MVar'.
Like 'withMVar', 'modifyMVar' will replace the original contents of
the 'MVar' if an exception is raised during the operation. This
function is only atomic if there are no other producers for this
'MVar'.
-}
{-# INLINE modifyMVar_ #-}
modifyMVar_ :: MVar a -> (a -> IO a) -> IO ()
modifyMVar_ m io =
mask $ \restore -> do
a <- takeMVar m
a' <- restore (io a) `onException` putMVar m a
putMVar m a'
{-|
A slight variation on 'modifyMVar_' that allows a value to be
returned (@b@) in addition to the modified value of the 'MVar'.
-}
{-# INLINE modifyMVar #-}
modifyMVar :: MVar a -> (a -> IO (a,b)) -> IO b
modifyMVar m io =
mask $ \restore -> do
a <- takeMVar m
(a',b) <- restore (io a) `onException` putMVar m a
putMVar m a'
return b
|