1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
|
{-# OPTIONS -fno-implicit-prelude #-}
-----------------------------------------------------------------------------
-- |
-- Module : Control.Monad
-- Copyright : (c) The University of Glasgow 2001
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : provisional
-- Portability : portable
--
-- The 'Functor', 'Monad' and 'MonadPlus' classes,
-- with some useful operations on monads.
module Control.Monad
(
-- * Functor and monad classes
Functor(fmap)
, Monad((>>=), (>>), return, fail)
, MonadPlus ( -- class context: Monad
mzero -- :: (MonadPlus m) => m a
, mplus -- :: (MonadPlus m) => m a -> m a -> m a
)
-- * Functions
-- ** Naming conventions
-- $naming
-- ** Basic functions from the "Prelude"
, mapM -- :: (Monad m) => (a -> m b) -> [a] -> m [b]
, mapM_ -- :: (Monad m) => (a -> m b) -> [a] -> m ()
, sequence -- :: (Monad m) => [m a] -> m [a]
, sequence_ -- :: (Monad m) => [m a] -> m ()
, (=<<) -- :: (Monad m) => (a -> m b) -> m a -> m b
-- ** Generalisations of list functions
, join -- :: (Monad m) => m (m a) -> m a
, msum -- :: (MonadPlus m) => [m a] -> m a
, filterM -- :: (Monad m) => (a -> m Bool) -> [a] -> m [a]
, mapAndUnzipM -- :: (Monad m) => (a -> m (b,c)) -> [a] -> m ([b], [c])
, zipWithM -- :: (Monad m) => (a -> b -> m c) -> [a] -> [b] -> m [c]
, zipWithM_ -- :: (Monad m) => (a -> b -> m c) -> [a] -> [b] -> m ()
, foldM -- :: (Monad m) => (a -> b -> m a) -> a -> [b] -> m a
, foldM_ -- :: (Monad m) => (a -> b -> m a) -> a -> [b] -> m ()
, replicateM -- :: (Monad m) => Int -> m a -> m [a]
, replicateM_ -- :: (Monad m) => Int -> m a -> m ()
-- ** Conditional execution of monadic expressions
, guard -- :: (MonadPlus m) => Bool -> m ()
, when -- :: (Monad m) => Bool -> m () -> m ()
, unless -- :: (Monad m) => Bool -> m () -> m ()
-- ** Monadic lifting operators
-- $lifting
, liftM -- :: (Monad m) => (a -> b) -> (m a -> m b)
, liftM2 -- :: (Monad m) => (a -> b -> c) -> (m a -> m b -> m c)
, liftM3 -- :: ...
, liftM4 -- :: ...
, liftM5 -- :: ...
, ap -- :: (Monad m) => m (a -> b) -> m a -> m b
) where
import Data.Maybe
#ifdef __GLASGOW_HASKELL__
import GHC.List
import GHC.Base
#endif
#ifdef __GLASGOW_HASKELL__
infixr 1 =<<
-- -----------------------------------------------------------------------------
-- Prelude monad functions
{-# SPECIALISE (=<<) :: (a -> [b]) -> [a] -> [b] #-}
(=<<) :: Monad m => (a -> m b) -> m a -> m b
f =<< x = x >>= f
sequence :: Monad m => [m a] -> m [a]
{-# INLINE sequence #-}
sequence ms = foldr k (return []) ms
where
k m m' = do { x <- m; xs <- m'; return (x:xs) }
sequence_ :: Monad m => [m a] -> m ()
{-# INLINE sequence_ #-}
sequence_ ms = foldr (>>) (return ()) ms
mapM :: Monad m => (a -> m b) -> [a] -> m [b]
{-# INLINE mapM #-}
mapM f as = sequence (map f as)
mapM_ :: Monad m => (a -> m b) -> [a] -> m ()
{-# INLINE mapM_ #-}
mapM_ f as = sequence_ (map f as)
#endif /* __GLASGOW_HASKELL__ */
-- -----------------------------------------------------------------------------
-- |The MonadPlus class definition
class Monad m => MonadPlus m where
mzero :: m a
mplus :: m a -> m a -> m a
instance MonadPlus [] where
mzero = []
mplus = (++)
instance MonadPlus Maybe where
mzero = Nothing
Nothing `mplus` ys = ys
xs `mplus` _ys = xs
-- -----------------------------------------------------------------------------
-- Functions mandated by the Prelude
guard :: (MonadPlus m) => Bool -> m ()
guard True = return ()
guard False = mzero
-- This subsumes the list-based filter function.
filterM :: (Monad m) => (a -> m Bool) -> [a] -> m [a]
filterM _ [] = return []
filterM p (x:xs) = do
flg <- p x
ys <- filterM p xs
return (if flg then x:ys else ys)
-- This subsumes the list-based concat function.
msum :: MonadPlus m => [m a] -> m a
{-# INLINE msum #-}
msum = foldr mplus mzero
-- -----------------------------------------------------------------------------
-- Other monad functions
-- | The 'join' function is the conventional monad join operator. It is used to
-- remove one level of monadic structure, projecting its bound argument into the
-- outer level.
join :: (Monad m) => m (m a) -> m a
join x = x >>= id
-- | The 'mapAndUnzipM' function maps its first argument over a list, returning
-- the result as a pair of lists. This function is mainly used with complicated
-- data structures or a state-transforming monad.
mapAndUnzipM :: (Monad m) => (a -> m (b,c)) -> [a] -> m ([b], [c])
mapAndUnzipM f xs = sequence (map f xs) >>= return . unzip
-- | The 'zipWithM' function generalises 'zipWith' to arbitrary monads.
zipWithM :: (Monad m) => (a -> b -> m c) -> [a] -> [b] -> m [c]
zipWithM f xs ys = sequence (zipWith f xs ys)
-- | 'zipWithM_' is the extension of 'zipWithM' which ignores the final result.
zipWithM_ :: (Monad m) => (a -> b -> m c) -> [a] -> [b] -> m ()
zipWithM_ f xs ys = sequence_ (zipWith f xs ys)
{- | The 'foldM' function is analogous to 'foldl', except that its result is
encapsulated in a monad. Note that 'foldM' works from left-to-right over
the list arguments. This could be an issue where '(>>)' and the `folded
function' are not commutative.
> foldM f a1 [x1, x2, ..., xm ]
==
> do
> a2 <- f a1 x1
> a3 <- f a2 x2
> ...
> f am xm
If right-to-left evaluation is required, the input list should be reversed.
-}
foldM :: (Monad m) => (a -> b -> m a) -> a -> [b] -> m a
foldM _ a [] = return a
foldM f a (x:xs) = f a x >>= \fax -> foldM f fax xs
foldM_ :: (Monad m) => (a -> b -> m a) -> a -> [b] -> m ()
foldM_ f a xs = foldM f a xs >> return ()
replicateM :: (Monad m) => Int -> m a -> m [a]
replicateM n x = sequence (replicate n x)
replicateM_ :: (Monad m) => Int -> m a -> m ()
replicateM_ n x = sequence_ (replicate n x)
{- | Conditional execution of monadic expressions. For example,
> when debug (putStr "Debugging\n")
will output the string @Debugging\\n@ if the Boolean value @debug@ is 'True',
and otherwise do nothing.
-}
when :: (Monad m) => Bool -> m () -> m ()
when p s = if p then s else return ()
-- | The reverse of 'when'.
unless :: (Monad m) => Bool -> m () -> m ()
unless p s = if p then return () else s
{- $lifting
The monadic lifting operators promote a function to a monad.
The function arguments are scanned left to right. For example,
> liftM2 (+) [0,1] [0,2] = [0,2,1,3]
> liftM2 (+) (Just 1) Nothing = Nothing
-}
liftM :: (Monad m) => (a1 -> r) -> m a1 -> m r
liftM2 :: (Monad m) => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r
liftM3 :: (Monad m) => (a1 -> a2 -> a3 -> r) -> m a1 -> m a2 -> m a3 -> m r
liftM4 :: (Monad m) => (a1 -> a2 -> a3 -> a4 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m r
liftM5 :: (Monad m) => (a1 -> a2 -> a3 -> a4 -> a5 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m a5 -> m r
liftM f m1 = do { x1 <- m1; return (f x1) }
liftM2 f m1 m2 = do { x1 <- m1; x2 <- m2; return (f x1 x2) }
liftM3 f m1 m2 m3 = do { x1 <- m1; x2 <- m2; x3 <- m3; return (f x1 x2 x3) }
liftM4 f m1 m2 m3 m4 = do { x1 <- m1; x2 <- m2; x3 <- m3; x4 <- m4; return (f x1 x2 x3 x4) }
liftM5 f m1 m2 m3 m4 m5 = do { x1 <- m1; x2 <- m2; x3 <- m3; x4 <- m4; x5 <- m5; return (f x1 x2 x3 x4 x5) }
{- | In many situations, the 'liftM' operations can be replaced by uses of
'ap', which promotes function application.
> return f `ap` x1 `ap` ... `ap` xn
is equivalent to
> liftMn f x1 x2 ... xn
-}
ap :: (Monad m) => m (a -> b) -> m a -> m b
ap = liftM2 id
{- $naming
The functions in this library use the following naming conventions:
* A postfix \`M\' always stands for a function in the Kleisli category:
@m@ is added to function results (modulo currying) and nowhere else.
So, for example,
> filter :: (a -> Bool) -> [a] -> [a]
> filterM :: (Monad m) => (a -> m Bool) -> [a] -> m [a]
* A postfix \`_\' changes the result type from @(m a)@ to @(m ())@.
Thus (in the "Prelude"):
> sequence :: Monad m => [m a] -> m [a]
> sequence_ :: Monad m => [m a] -> m ()
* A prefix \`m\' generalises an existing function to a monadic form.
Thus, for example:
> sum :: Num a => [a] -> a
> msum :: MonadPlus m => [m a] -> m a
-}
|