1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE NoImplicitPrelude #-}
-----------------------------------------------------------------------------
-- |
-- Module : Control.Monad
-- Copyright : (c) The University of Glasgow 2001
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : provisional
-- Portability : portable
--
-- The 'Functor', 'Monad' and 'MonadPlus' classes,
-- with some useful operations on monads.
module Control.Monad
(
-- * Functor and monad classes
Functor(fmap)
, Monad((>>=), (>>), return, fail)
, MonadPlus(mzero, mplus)
-- * Functions
-- ** Naming conventions
-- $naming
-- ** Basic @Monad@ functions
, mapM
, mapM_
, forM
, forM_
, sequence
, sequence_
, (=<<)
, (>=>)
, (<=<)
, forever
, void
-- ** Generalisations of list functions
, join
, msum
, mfilter
, filterM
, mapAndUnzipM
, zipWithM
, zipWithM_
, foldM
, foldM_
, replicateM
, replicateM_
-- ** Conditional execution of monadic expressions
, guard
, when
, unless
-- ** Monadic lifting operators
, liftM
, liftM2
, liftM3
, liftM4
, liftM5
, ap
-- ** Strict monadic functions
, (<$!>)
) where
import Data.Foldable ( Foldable, sequence_, sequenceA_, msum, mapM_, foldlM, forM_ )
import Data.Functor ( void, (<$>) )
import Data.Traversable ( forM, mapM, traverse, sequence, sequenceA )
import GHC.Base hiding ( mapM, sequence )
import GHC.List ( zipWith, unzip )
import GHC.Num ( (-) )
-- -----------------------------------------------------------------------------
-- Functions mandated by the Prelude
-- | Conditional failure of 'Alternative' computations. Defined by
--
-- @
-- guard True = 'pure' ()
-- guard False = 'empty'
-- @
--
-- ==== __Examples__
--
-- Common uses of 'guard' include conditionally signaling an error in
-- an error monad and conditionally rejecting the current choice in an
-- 'Alternative'-based parser.
--
-- As an example of signaling an error in the error monad 'Maybe',
-- consider a safe division function @safeDiv x y@ that returns
-- 'Nothing' when the denominator @y@ is zero and @'Just' (x \`div\`
-- y)@ otherwise. For example:
--
-- @
-- >>> safeDiv 4 0
-- Nothing
-- >>> safeDiv 4 2
-- Just 2
-- @
--
-- A definition of @safeDiv@ using guards, but not 'guard':
--
-- @
-- safeDiv :: Int -> Int -> Maybe Int
-- safeDiv x y | y /= 0 = Just (x \`div\` y)
-- | otherwise = Nothing
-- @
--
-- A definition of @safeDiv@ using 'guard' and 'Monad' @do@-notation:
--
-- @
-- safeDiv :: Int -> Int -> Maybe Int
-- safeDiv x y = do
-- guard (y /= 0)
-- return (x \`div\` y)
-- @
guard :: (Alternative f) => Bool -> f ()
guard True = pure ()
guard False = empty
-- | This generalizes the list-based 'Data.List.filter' function.
{-# INLINE filterM #-}
filterM :: (Applicative m) => (a -> m Bool) -> [a] -> m [a]
filterM p = foldr (\ x -> liftA2 (\ flg -> if flg then (x:) else id) (p x)) (pure [])
infixr 1 <=<, >=>
-- | Left-to-right composition of Kleisli arrows.
(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> (a -> m c)
f >=> g = \x -> f x >>= g
-- | Right-to-left composition of Kleisli arrows. @('>=>')@, with the arguments
-- flipped.
--
-- Note how this operator resembles function composition @('.')@:
--
-- > (.) :: (b -> c) -> (a -> b) -> a -> c
-- > (<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c
(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> (a -> m c)
(<=<) = flip (>=>)
-- | Repeat an action indefinitely.
--
-- ==== __Examples__
--
-- A common use of 'forever' is to process input from network sockets,
-- 'System.IO.Handle's, and channels
-- (e.g. 'Control.Concurrent.MVar.MVar' and
-- 'Control.Concurrent.Chan.Chan').
--
-- For example, here is how we might implement an [echo
-- server](https://en.wikipedia.org/wiki/Echo_Protocol), using
-- 'forever' both to listen for client connections on a network socket
-- and to echo client input on client connection handles:
--
-- @
-- echoServer :: Socket -> IO ()
-- echoServer socket = 'forever' $ do
-- client <- accept socket
-- 'Control.Concurrent.forkFinally' (echo client) (\\_ -> hClose client)
-- where
-- echo :: Handle -> IO ()
-- echo client = 'forever' $
-- hGetLine client >>= hPutStrLn client
-- @
forever :: (Applicative f) => f a -> f b
{-# INLINE forever #-}
forever a = let a' = a *> a' in a'
-- Use explicit sharing here, as it prevents a space leak regardless of
-- optimizations.
-- -----------------------------------------------------------------------------
-- Other monad functions
-- | The 'mapAndUnzipM' function maps its first argument over a list, returning
-- the result as a pair of lists. This function is mainly used with complicated
-- data structures or a state monad.
mapAndUnzipM :: (Applicative m) => (a -> m (b,c)) -> [a] -> m ([b], [c])
{-# INLINE mapAndUnzipM #-}
-- Inline so that fusion with 'unzip' and 'traverse' has a chance to fire.
-- See Note [Inline @unzipN@ functions] in GHC/OldList.hs.
mapAndUnzipM f xs = unzip <$> traverse f xs
-- | The 'zipWithM' function generalizes 'zipWith' to arbitrary applicative functors.
zipWithM :: (Applicative m) => (a -> b -> m c) -> [a] -> [b] -> m [c]
{-# INLINE zipWithM #-}
-- Inline so that fusion with zipWith and sequenceA have a chance to fire
-- See Note [Fusion for zipN/zipWithN] in List.hs]
zipWithM f xs ys = sequenceA (zipWith f xs ys)
-- | 'zipWithM_' is the extension of 'zipWithM' which ignores the final result.
zipWithM_ :: (Applicative m) => (a -> b -> m c) -> [a] -> [b] -> m ()
{-# INLINE zipWithM_ #-}
-- Inline so that fusion with zipWith and sequenceA have a chance to fire
-- See Note [Fusion for zipN/zipWithN] in List.hs]
zipWithM_ f xs ys = sequenceA_ (zipWith f xs ys)
{- | The 'foldM' function is analogous to 'Data.Foldable.foldl', except that its result is
encapsulated in a monad. Note that 'foldM' works from left-to-right over
the list arguments. This could be an issue where @('>>')@ and the `folded
function' are not commutative.
> foldM f a1 [x1, x2, ..., xm]
>
> ==
>
> do
> a2 <- f a1 x1
> a3 <- f a2 x2
> ...
> f am xm
If right-to-left evaluation is required, the input list should be reversed.
Note: 'foldM' is the same as 'foldlM'
-}
foldM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b
{-# INLINABLE foldM #-}
{-# SPECIALISE foldM :: (a -> b -> IO a) -> a -> [b] -> IO a #-}
{-# SPECIALISE foldM :: (a -> b -> Maybe a) -> a -> [b] -> Maybe a #-}
foldM = foldlM
-- | Like 'foldM', but discards the result.
foldM_ :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m ()
{-# INLINABLE foldM_ #-}
{-# SPECIALISE foldM_ :: (a -> b -> IO a) -> a -> [b] -> IO () #-}
{-# SPECIALISE foldM_ :: (a -> b -> Maybe a) -> a -> [b] -> Maybe () #-}
foldM_ f a xs = foldlM f a xs >> return ()
{-
Note [Worker/wrapper transform on replicateM/replicateM_]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The implementations of replicateM and replicateM_ both leverage the
worker/wrapper transform. The simpler implementation of replicateM_, as an
example, would be:
replicateM_ 0 _ = pure ()
replicateM_ n f = f *> replicateM_ (n - 1) f
However, the self-recursive nature of this implementation inhibits inlining,
which means we never get to specialise to the action (`f` in the code above).
By contrast, the implementation below with a local loop makes it possible to
inline the entire definition (as happens for foldr, for example) thereby
specialising for the particular action.
For further information, see this Trac comment, which includes side-by-side
Core: https://ghc.haskell.org/trac/ghc/ticket/11795#comment:6
-}
-- | @'replicateM' n act@ performs the action @n@ times,
-- gathering the results.
replicateM :: (Applicative m) => Int -> m a -> m [a]
{-# INLINABLE replicateM #-}
{-# SPECIALISE replicateM :: Int -> IO a -> IO [a] #-}
{-# SPECIALISE replicateM :: Int -> Maybe a -> Maybe [a] #-}
replicateM cnt0 f =
loop cnt0
where
loop cnt
| cnt <= 0 = pure []
| otherwise = liftA2 (:) f (loop (cnt - 1))
-- | Like 'replicateM', but discards the result.
replicateM_ :: (Applicative m) => Int -> m a -> m ()
{-# INLINABLE replicateM_ #-}
{-# SPECIALISE replicateM_ :: Int -> IO a -> IO () #-}
{-# SPECIALISE replicateM_ :: Int -> Maybe a -> Maybe () #-}
replicateM_ cnt0 f =
loop cnt0
where
loop cnt
| cnt <= 0 = pure ()
| otherwise = f *> loop (cnt - 1)
-- | The reverse of 'when'.
unless :: (Applicative f) => Bool -> f () -> f ()
{-# INLINABLE unless #-}
{-# SPECIALISE unless :: Bool -> IO () -> IO () #-}
{-# SPECIALISE unless :: Bool -> Maybe () -> Maybe () #-}
unless p s = if p then pure () else s
infixl 4 <$!>
-- | Strict version of 'Data.Functor.<$>'.
--
-- @since 4.8.0.0
(<$!>) :: Monad m => (a -> b) -> m a -> m b
{-# INLINE (<$!>) #-}
f <$!> m = do
x <- m
let z = f x
z `seq` return z
-- -----------------------------------------------------------------------------
-- Other MonadPlus functions
-- | Direct 'MonadPlus' equivalent of 'Data.List.filter'.
--
-- ==== __Examples__
--
-- The 'Data.List.filter' function is just 'mfilter' specialized to
-- the list monad:
--
-- @
-- 'Data.List.filter' = ( 'mfilter' :: (a -> Bool) -> [a] -> [a] )
-- @
--
-- An example using 'mfilter' with the 'Maybe' monad:
--
-- @
-- >>> mfilter odd (Just 1)
-- Just 1
-- >>> mfilter odd (Just 2)
-- Nothing
-- @
mfilter :: (MonadPlus m) => (a -> Bool) -> m a -> m a
{-# INLINABLE mfilter #-}
mfilter p ma = do
a <- ma
if p a then return a else mzero
{- $naming
The functions in this library use the following naming conventions:
* A postfix \'@M@\' always stands for a function in the Kleisli category:
The monad type constructor @m@ is added to function results
(modulo currying) and nowhere else. So, for example,
> filter :: (a -> Bool) -> [a] -> [a]
> filterM :: (Monad m) => (a -> m Bool) -> [a] -> m [a]
* A postfix \'@_@\' changes the result type from @(m a)@ to @(m ())@.
Thus, for example:
> sequence :: Monad m => [m a] -> m [a]
> sequence_ :: Monad m => [m a] -> m ()
* A prefix \'@m@\' generalizes an existing function to a monadic form.
Thus, for example:
> filter :: (a -> Bool) -> [a] -> [a]
> mfilter :: MonadPlus m => (a -> Bool) -> m a -> m a
-}
|