summaryrefslogtreecommitdiff
path: root/libraries/base/Control/Monad.hs
blob: 75b9d0b6dd3c2b85c311b6614467a3d062b3d780 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
{-# LANGUAGE CPP, NoImplicitPrelude #-}

-----------------------------------------------------------------------------
-- |
-- Module      :  Control.Monad
-- Copyright   :  (c) The University of Glasgow 2001
-- License     :  BSD-style (see the file libraries/base/LICENSE)
-- 
-- Maintainer  :  libraries@haskell.org
-- Stability   :  provisional
-- Portability :  portable
--
-- The 'Functor', 'Monad' and 'MonadPlus' classes,
-- with some useful operations on monads.

module Control.Monad
    (
    -- * Functor and monad classes

      Functor(fmap)
    , Monad((>>=), (>>), return, fail)

    , MonadPlus (   -- class context: Monad
          mzero     -- :: (MonadPlus m) => m a
        , mplus     -- :: (MonadPlus m) => m a -> m a -> m a
        )
    -- * Functions

    -- ** Naming conventions
    -- $naming

    -- ** Basic @Monad@ functions

    , mapM          -- :: (Monad m) => (a -> m b) -> [a] -> m [b]
    , mapM_         -- :: (Monad m) => (a -> m b) -> [a] -> m ()
    , forM          -- :: (Monad m) => [a] -> (a -> m b) -> m [b]
    , forM_         -- :: (Monad m) => [a] -> (a -> m b) -> m ()
    , sequence      -- :: (Monad m) => [m a] -> m [a]
    , sequence_     -- :: (Monad m) => [m a] -> m ()
    , (=<<)         -- :: (Monad m) => (a -> m b) -> m a -> m b
    , (>=>)         -- :: (Monad m) => (a -> m b) -> (b -> m c) -> (a -> m c)
    , (<=<)         -- :: (Monad m) => (b -> m c) -> (a -> m b) -> (a -> m c)
    , forever       -- :: (Monad m) => m a -> m b
    , void

    -- ** Generalisations of list functions

    , join          -- :: (Monad m) => m (m a) -> m a
    , msum          -- :: (MonadPlus m) => [m a] -> m a
    , mfilter       -- :: (MonadPlus m) => (a -> Bool) -> m a -> m a
    , filterM       -- :: (Monad m) => (a -> m Bool) -> [a] -> m [a]
    , mapAndUnzipM  -- :: (Monad m) => (a -> m (b,c)) -> [a] -> m ([b], [c])
    , zipWithM      -- :: (Monad m) => (a -> b -> m c) -> [a] -> [b] -> m [c]
    , zipWithM_     -- :: (Monad m) => (a -> b -> m c) -> [a] -> [b] -> m ()
    , foldM         -- :: (Monad m) => (a -> b -> m a) -> a -> [b] -> m a 
    , foldM_        -- :: (Monad m) => (a -> b -> m a) -> a -> [b] -> m ()
    , replicateM    -- :: (Monad m) => Int -> m a -> m [a]
    , replicateM_   -- :: (Monad m) => Int -> m a -> m ()

    -- ** Conditional execution of monadic expressions

    , guard         -- :: (MonadPlus m) => Bool -> m ()
    , when          -- :: (Monad m) => Bool -> m () -> m ()
    , unless        -- :: (Monad m) => Bool -> m () -> m ()

    -- ** Monadic lifting operators

    , liftM         -- :: (Monad m) => (a -> b) -> (m a -> m b)
    , liftM2        -- :: (Monad m) => (a -> b -> c) -> (m a -> m b -> m c)
    , liftM3        -- :: ...
    , liftM4        -- :: ...
    , liftM5        -- :: ...

    , ap            -- :: (Monad m) => m (a -> b) -> m a -> m b

    ) where

import Data.Maybe

#ifdef __GLASGOW_HASKELL__
import GHC.List
import GHC.Base
#endif

#ifdef __GLASGOW_HASKELL__
infixr 1 =<<

-- -----------------------------------------------------------------------------
-- Prelude monad functions

-- | Same as '>>=', but with the arguments interchanged.
{-# SPECIALISE (=<<) :: (a -> [b]) -> [a] -> [b] #-}
(=<<)           :: Monad m => (a -> m b) -> m a -> m b
f =<< x         = x >>= f

-- | Evaluate each action in the sequence from left to right,
-- and collect the results.
sequence       :: Monad m => [m a] -> m [a] 
{-# INLINE sequence #-}
sequence ms = foldr k (return []) ms
            where
              k m m' = do { x <- m; xs <- m'; return (x:xs) }

-- | Evaluate each action in the sequence from left to right,
-- and ignore the results.
sequence_        :: Monad m => [m a] -> m () 
{-# INLINE sequence_ #-}
sequence_ ms     =  foldr (>>) (return ()) ms

-- | @'mapM' f@ is equivalent to @'sequence' . 'map' f@.
mapM            :: Monad m => (a -> m b) -> [a] -> m [b]
{-# INLINE mapM #-}
mapM f as       =  sequence (map f as)

-- | @'mapM_' f@ is equivalent to @'sequence_' . 'map' f@.
mapM_           :: Monad m => (a -> m b) -> [a] -> m ()
{-# INLINE mapM_ #-}
mapM_ f as      =  sequence_ (map f as)

#endif  /* __GLASGOW_HASKELL__ */

-- -----------------------------------------------------------------------------
-- The MonadPlus class definition

-- | Monads that also support choice and failure.
class Monad m => MonadPlus m where
   -- | the identity of 'mplus'.  It should also satisfy the equations
   --
   -- > mzero >>= f  =  mzero
   -- > v >> mzero   =  mzero
   --
   mzero :: m a 
   -- | an associative operation
   mplus :: m a -> m a -> m a

instance MonadPlus [] where
   mzero = []
   mplus = (++)

instance MonadPlus Maybe where
   mzero = Nothing

   Nothing `mplus` ys  = ys
   xs      `mplus` _ys = xs

-- -----------------------------------------------------------------------------
-- Functions mandated by the Prelude

-- | @'guard' b@ is @'return' ()@ if @b@ is 'True',
-- and 'mzero' if @b@ is 'False'.
guard           :: (MonadPlus m) => Bool -> m ()
guard True      =  return ()
guard False     =  mzero

-- | This generalizes the list-based 'filter' function.

filterM          :: (Monad m) => (a -> m Bool) -> [a] -> m [a]
filterM _ []     =  return []
filterM p (x:xs) =  do
   flg <- p x
   ys  <- filterM p xs
   return (if flg then x:ys else ys)

-- | 'forM' is 'mapM' with its arguments flipped
forM            :: Monad m => [a] -> (a -> m b) -> m [b]
{-# INLINE forM #-}
forM            = flip mapM

-- | 'forM_' is 'mapM_' with its arguments flipped
forM_           :: Monad m => [a] -> (a -> m b) -> m ()
{-# INLINE forM_ #-}
forM_           = flip mapM_

-- | This generalizes the list-based 'concat' function.

msum        :: MonadPlus m => [m a] -> m a
{-# INLINE msum #-}
msum        =  foldr mplus mzero

infixr 1 <=<, >=>

-- | Left-to-right Kleisli composition of monads.
(>=>)       :: Monad m => (a -> m b) -> (b -> m c) -> (a -> m c)
f >=> g     = \x -> f x >>= g

-- | Right-to-left Kleisli composition of monads. @('>=>')@, with the arguments flipped
(<=<)       :: Monad m => (b -> m c) -> (a -> m b) -> (a -> m c)
(<=<)       = flip (>=>)

-- | @'forever' act@ repeats the action infinitely.
forever     :: (Monad m) => m a -> m b
{-# INLINABLE forever #-}  -- See Note [Make forever INLINABLE]
forever a   = a >> forever a

{- Note [Make forever INLINABLE]

If you say   x = forever a
you'll get   x = a >> a >> a >> a >> ... etc ...
and that can make a massive space leak (see Trac #5205)

In some monads, where (>>) is expensive, this might be the right
thing, but not in the IO monad.  We want to specialise 'forever' for
the IO monad, so that eta expansion happens and there's no space leak.
To achieve this we must make forever INLINABLE, so that it'll get
specialised at call sites.

Still delicate, though, because it depends on optimisation.  But there
really is a space/time tradeoff here, and only optimisation reveals
the "right" answer.
-}

-- | @'void' value@ discards or ignores the result of evaluation, such as the return value of an 'IO' action.
void :: Functor f => f a -> f ()
void = fmap (const ())

-- -----------------------------------------------------------------------------
-- Other monad functions

-- | The 'join' function is the conventional monad join operator. It is used to
-- remove one level of monadic structure, projecting its bound argument into the
-- outer level.
join              :: (Monad m) => m (m a) -> m a
join x            =  x >>= id

-- | The 'mapAndUnzipM' function maps its first argument over a list, returning
-- the result as a pair of lists. This function is mainly used with complicated
-- data structures or a state-transforming monad.
mapAndUnzipM      :: (Monad m) => (a -> m (b,c)) -> [a] -> m ([b], [c])
mapAndUnzipM f xs =  sequence (map f xs) >>= return . unzip

-- | The 'zipWithM' function generalizes 'zipWith' to arbitrary monads.
zipWithM          :: (Monad m) => (a -> b -> m c) -> [a] -> [b] -> m [c]
zipWithM f xs ys  =  sequence (zipWith f xs ys)

-- | 'zipWithM_' is the extension of 'zipWithM' which ignores the final result.
zipWithM_         :: (Monad m) => (a -> b -> m c) -> [a] -> [b] -> m ()
zipWithM_ f xs ys =  sequence_ (zipWith f xs ys)

{- | The 'foldM' function is analogous to 'foldl', except that its result is
encapsulated in a monad. Note that 'foldM' works from left-to-right over
the list arguments. This could be an issue where @('>>')@ and the `folded
function' are not commutative.


>       foldM f a1 [x1, x2, ..., xm]

==  

>       do
>         a2 <- f a1 x1
>         a3 <- f a2 x2
>         ...
>         f am xm

If right-to-left evaluation is required, the input list should be reversed.
-}

foldM             :: (Monad m) => (a -> b -> m a) -> a -> [b] -> m a
foldM _ a []      =  return a
foldM f a (x:xs)  =  f a x >>= \fax -> foldM f fax xs

-- | Like 'foldM', but discards the result.
foldM_            :: (Monad m) => (a -> b -> m a) -> a -> [b] -> m ()
foldM_ f a xs     = foldM f a xs >> return ()

-- | @'replicateM' n act@ performs the action @n@ times,
-- gathering the results.
replicateM        :: (Monad m) => Int -> m a -> m [a]
replicateM n x    = sequence (replicate n x)

-- | Like 'replicateM', but discards the result.
replicateM_       :: (Monad m) => Int -> m a -> m ()
replicateM_ n x   = sequence_ (replicate n x)

{- | Conditional execution of monadic expressions. For example, 

>       when debug (putStr "Debugging\n")

will output the string @Debugging\\n@ if the Boolean value @debug@ is 'True',
and otherwise do nothing.
-}

when              :: (Monad m) => Bool -> m () -> m ()
when p s          =  if p then s else return ()

-- | The reverse of 'when'.

unless            :: (Monad m) => Bool -> m () -> m ()
unless p s        =  if p then return () else s

-- | Promote a function to a monad.
liftM   :: (Monad m) => (a1 -> r) -> m a1 -> m r
liftM f m1              = do { x1 <- m1; return (f x1) }

-- | Promote a function to a monad, scanning the monadic arguments from
-- left to right.  For example,
--
-- >    liftM2 (+) [0,1] [0,2] = [0,2,1,3]
-- >    liftM2 (+) (Just 1) Nothing = Nothing
--
liftM2  :: (Monad m) => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r
liftM2 f m1 m2          = do { x1 <- m1; x2 <- m2; return (f x1 x2) }

-- | Promote a function to a monad, scanning the monadic arguments from
-- left to right (cf. 'liftM2').
liftM3  :: (Monad m) => (a1 -> a2 -> a3 -> r) -> m a1 -> m a2 -> m a3 -> m r
liftM3 f m1 m2 m3       = do { x1 <- m1; x2 <- m2; x3 <- m3; return (f x1 x2 x3) }

-- | Promote a function to a monad, scanning the monadic arguments from
-- left to right (cf. 'liftM2').
liftM4  :: (Monad m) => (a1 -> a2 -> a3 -> a4 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m r
liftM4 f m1 m2 m3 m4    = do { x1 <- m1; x2 <- m2; x3 <- m3; x4 <- m4; return (f x1 x2 x3 x4) }

-- | Promote a function to a monad, scanning the monadic arguments from
-- left to right (cf. 'liftM2').
liftM5  :: (Monad m) => (a1 -> a2 -> a3 -> a4 -> a5 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m a5 -> m r
liftM5 f m1 m2 m3 m4 m5 = do { x1 <- m1; x2 <- m2; x3 <- m3; x4 <- m4; x5 <- m5; return (f x1 x2 x3 x4 x5) }

{- | In many situations, the 'liftM' operations can be replaced by uses of
'ap', which promotes function application. 

>       return f `ap` x1 `ap` ... `ap` xn

is equivalent to 

>       liftMn f x1 x2 ... xn

-}

ap                :: (Monad m) => m (a -> b) -> m a -> m b
ap                =  liftM2 id


-- -----------------------------------------------------------------------------
-- Other MonadPlus functions

-- | Direct 'MonadPlus' equivalent of 'filter'
-- @'filter'@ = @(mfilter:: (a -> Bool) -> [a] -> [a]@
-- applicable to any 'MonadPlus', for example
-- @mfilter odd (Just 1) == Just 1@
-- @mfilter odd (Just 2) == Nothing@

mfilter :: (MonadPlus m) => (a -> Bool) -> m a -> m a
mfilter p ma = do
  a <- ma
  if p a then return a else mzero

{- $naming

The functions in this library use the following naming conventions: 

* A postfix \'@M@\' always stands for a function in the Kleisli category:
  The monad type constructor @m@ is added to function results
  (modulo currying) and nowhere else.  So, for example, 

>  filter  ::              (a ->   Bool) -> [a] ->   [a]
>  filterM :: (Monad m) => (a -> m Bool) -> [a] -> m [a]

* A postfix \'@_@\' changes the result type from @(m a)@ to @(m ())@.
  Thus, for example: 

>  sequence  :: Monad m => [m a] -> m [a] 
>  sequence_ :: Monad m => [m a] -> m () 

* A prefix \'@m@\' generalizes an existing function to a monadic form.
  Thus, for example: 

>  sum  :: Num a       => [a]   -> a
>  msum :: MonadPlus m => [m a] -> m a

-}