summaryrefslogtreecommitdiff
path: root/libraries/base/Data/Bifunctor.hs
blob: 04de5ad7f293844652e427e56ee574a38512505c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
{-# LANGUAGE Safe #-}
{-# LANGUAGE CPP #-}

-----------------------------------------------------------------------------
-- |
-- Module      :  Data.Bifunctor
-- Copyright   :  (C) 2008-2014 Edward Kmett,
-- License     :  BSD-style (see the file LICENSE)
--
-- Maintainer  :  libraries@haskell.org
-- Stability   :  provisional
-- Portability :  portable
--
-- @since 4.8.0.0
----------------------------------------------------------------------------
module Data.Bifunctor
  ( Bifunctor(..)
  ) where

import Control.Applicative  ( Const(..) )
import GHC.Generics ( K1(..) )

-- | A bifunctor is a type constructor that takes
-- two type arguments and is a functor in /both/ arguments. That
-- is, unlike with 'Functor', a type constructor such as 'Either'
-- does not need to be partially applied for a 'Bifunctor'
-- instance, and the methods in this class permit mapping
-- functions over the 'Left' value or the 'Right' value,
-- or both at the same time.
--
-- Formally, the class 'Bifunctor' represents a bifunctor
-- from @Hask@ -> @Hask@.
--
-- Intuitively it is a bifunctor where both the first and second
-- arguments are covariant.
--
-- You can define a 'Bifunctor' by either defining 'bimap' or by
-- defining both 'first' and 'second'.
--
-- If you supply 'bimap', you should ensure that:
--
-- @'bimap' 'id' 'id' ≡ 'id'@
--
-- If you supply 'first' and 'second', ensure:
--
-- @
-- 'first' 'id' ≡ 'id'
-- 'second' 'id' ≡ 'id'
-- @
--
-- If you supply both, you should also ensure:
--
-- @'bimap' f g ≡ 'first' f '.' 'second' g@
--
-- These ensure by parametricity:
--
-- @
-- 'bimap'  (f '.' g) (h '.' i) ≡ 'bimap' f h '.' 'bimap' g i
-- 'first'  (f '.' g) ≡ 'first'  f '.' 'first'  g
-- 'second' (f '.' g) ≡ 'second' f '.' 'second' g
-- @
--
-- @since 4.8.0.0
class Bifunctor p where
    {-# MINIMAL bimap | first, second #-}

    -- | Map over both arguments at the same time.
    --
    -- @'bimap' f g ≡ 'first' f '.' 'second' g@
    --
    -- ==== __Examples__
    -- >>> bimap toUpper (+1) ('j', 3)
    -- ('J',4)
    --
    -- >>> bimap toUpper (+1) (Left 'j')
    -- Left 'J'
    --
    -- >>> bimap toUpper (+1) (Right 3)
    -- Right 4
    bimap :: (a -> b) -> (c -> d) -> p a c -> p b d
    bimap f g = first f . second g


    -- | Map covariantly over the first argument.
    --
    -- @'first' f ≡ 'bimap' f 'id'@
    --
    -- ==== __Examples__
    -- >>> first toUpper ('j', 3)
    -- ('J',3)
    --
    -- >>> first toUpper (Left 'j')
    -- Left 'J'
    first :: (a -> b) -> p a c -> p b c
    first f = bimap f id


    -- | Map covariantly over the second argument.
    --
    -- @'second' ≡ 'bimap' 'id'@
    --
    -- ==== __Examples__
    -- >>> second (+1) ('j', 3)
    -- ('j',4)
    --
    -- >>> second (+1) (Right 3)
    -- Right 4
    second :: (b -> c) -> p a b -> p a c
    second = bimap id



-- | @since 4.8.0.0
instance Bifunctor (,) where
    bimap f g ~(a, b) = (f a, g b)

-- | @since 4.8.0.0
instance Bifunctor ((,,) x1) where
    bimap f g ~(x1, a, b) = (x1, f a, g b)

-- | @since 4.8.0.0
instance Bifunctor ((,,,) x1 x2) where
    bimap f g ~(x1, x2, a, b) = (x1, x2, f a, g b)

-- | @since 4.8.0.0
instance Bifunctor ((,,,,) x1 x2 x3) where
    bimap f g ~(x1, x2, x3, a, b) = (x1, x2, x3, f a, g b)

-- | @since 4.8.0.0
instance Bifunctor ((,,,,,) x1 x2 x3 x4) where
    bimap f g ~(x1, x2, x3, x4, a, b) = (x1, x2, x3, x4, f a, g b)

-- | @since 4.8.0.0
instance Bifunctor ((,,,,,,) x1 x2 x3 x4 x5) where
    bimap f g ~(x1, x2, x3, x4, x5, a, b) = (x1, x2, x3, x4, x5, f a, g b)


-- | @since 4.8.0.0
instance Bifunctor Either where
    bimap f _ (Left a) = Left (f a)
    bimap _ g (Right b) = Right (g b)

-- | @since 4.8.0.0
instance Bifunctor Const where
    bimap f _ (Const a) = Const (f a)

-- | @since 4.9.0.0
instance Bifunctor (K1 i) where
    bimap f _ (K1 c) = K1 (f c)