1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE QuantifiedConstraints #-}
{-# LANGUAGE Safe #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.Bifunctor
-- Copyright : (C) 2008-2014 Edward Kmett,
-- License : BSD-style (see the file LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : provisional
-- Portability : portable
--
-- @since 4.8.0.0
----------------------------------------------------------------------------
module Data.Bifunctor
( Bifunctor(..)
) where
import Control.Applicative ( Const(..) )
import GHC.Generics ( K1(..) )
-- $setup
-- >>> import Prelude
-- >>> import Data.Char (toUpper)
-- | A bifunctor is a type constructor that takes
-- two type arguments and is a functor in /both/ arguments. That
-- is, unlike with 'Functor', a type constructor such as 'Either'
-- does not need to be partially applied for a 'Bifunctor'
-- instance, and the methods in this class permit mapping
-- functions over the 'Left' value or the 'Right' value,
-- or both at the same time.
--
-- Formally, the class 'Bifunctor' represents a bifunctor
-- from @Hask@ -> @Hask@.
--
-- Intuitively it is a bifunctor where both the first and second
-- arguments are covariant.
--
-- You can define a 'Bifunctor' by either defining 'bimap' or by
-- defining both 'first' and 'second'. A partially applied 'Bifunctor'
-- must be a 'Functor' and the 'second' method must agree with 'fmap'.
-- From this it follows that:
--
-- @'second' 'id' = 'id'@
--
-- If you supply 'bimap', you should ensure that:
--
-- @'bimap' 'id' 'id' ≡ 'id'@
--
-- If you supply 'first' and 'second', ensure:
--
-- @
-- 'first' 'id' ≡ 'id'
-- 'second' 'id' ≡ 'id'
-- @
--
-- If you supply both, you should also ensure:
--
-- @'bimap' f g ≡ 'first' f '.' 'second' g@
--
-- These ensure by parametricity:
--
-- @
-- 'bimap' (f '.' g) (h '.' i) ≡ 'bimap' f h '.' 'bimap' g i
-- 'first' (f '.' g) ≡ 'first' f '.' 'first' g
-- 'second' (f '.' g) ≡ 'second' f '.' 'second' g
-- @
--
-- Since 4.18.0.0 'Functor' is a superclass of 'Bifunctor.
--
-- @since 4.8.0.0
class (forall a. Functor (p a)) => Bifunctor p where
{-# MINIMAL bimap | first, second #-}
-- | Map over both arguments at the same time.
--
-- @'bimap' f g ≡ 'first' f '.' 'second' g@
--
-- ==== __Examples__
-- >>> bimap toUpper (+1) ('j', 3)
-- ('J',4)
--
-- >>> bimap toUpper (+1) (Left 'j')
-- Left 'J'
--
-- >>> bimap toUpper (+1) (Right 3)
-- Right 4
bimap :: (a -> b) -> (c -> d) -> p a c -> p b d
bimap f g = first f . second g
-- | Map covariantly over the first argument.
--
-- @'first' f ≡ 'bimap' f 'id'@
--
-- ==== __Examples__
-- >>> first toUpper ('j', 3)
-- ('J',3)
--
-- >>> first toUpper (Left 'j')
-- Left 'J'
first :: (a -> b) -> p a c -> p b c
first f = bimap f id
-- | Map covariantly over the second argument.
--
-- @'second' ≡ 'bimap' 'id'@
--
-- ==== __Examples__
-- >>> second (+1) ('j', 3)
-- ('j',4)
--
-- >>> second (+1) (Right 3)
-- Right 4
second :: (b -> c) -> p a b -> p a c
second = bimap id
-- | Class laws for tuples hold only up to laziness. Both
-- 'first' 'id' and 'second' 'id' are lazier than 'id' (and 'fmap' 'id'):
--
-- >>> first id (undefined :: (Int, Word)) `seq` ()
-- ()
-- >>> second id (undefined :: (Int, Word)) `seq` ()
-- ()
-- >>> id (undefined :: (Int, Word)) `seq` ()
-- *** Exception: Prelude.undefined
--
-- @since 4.8.0.0
instance Bifunctor (,) where
bimap f g ~(a, b) = (f a, g b)
-- | @since 4.8.0.0
instance Bifunctor ((,,) x1) where
bimap f g ~(x1, a, b) = (x1, f a, g b)
-- | @since 4.8.0.0
instance Bifunctor ((,,,) x1 x2) where
bimap f g ~(x1, x2, a, b) = (x1, x2, f a, g b)
-- | @since 4.8.0.0
instance Bifunctor ((,,,,) x1 x2 x3) where
bimap f g ~(x1, x2, x3, a, b) = (x1, x2, x3, f a, g b)
-- | @since 4.8.0.0
instance Bifunctor ((,,,,,) x1 x2 x3 x4) where
bimap f g ~(x1, x2, x3, x4, a, b) = (x1, x2, x3, x4, f a, g b)
-- | @since 4.8.0.0
instance Bifunctor ((,,,,,,) x1 x2 x3 x4 x5) where
bimap f g ~(x1, x2, x3, x4, x5, a, b) = (x1, x2, x3, x4, x5, f a, g b)
-- | @since 4.8.0.0
instance Bifunctor Either where
bimap f _ (Left a) = Left (f a)
bimap _ g (Right b) = Right (g b)
-- | @since 4.8.0.0
instance Bifunctor Const where
bimap f _ (Const a) = Const (f a)
-- | @since 4.9.0.0
instance Bifunctor (K1 i) where
bimap f _ (K1 c) = K1 (f c)
|