1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
|
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE ScopedTypeVariables #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.Bitraversable
-- Copyright : (C) 2011-2016 Edward Kmett
-- License : BSD-style (see the file LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : provisional
-- Portability : portable
--
-- @since 4.10.0.0
----------------------------------------------------------------------------
module Data.Bitraversable
( Bitraversable(..)
, bisequenceA
, bisequence
, bimapM
, bifor
, biforM
, bimapAccumL
, bimapAccumR
, bimapDefault
, bifoldMapDefault
) where
import Control.Applicative
import Data.Bifunctor
import Data.Bifoldable
import Data.Coerce
import Data.Functor.Identity (Identity(..))
import Data.Functor.Utils (StateL(..), StateR(..))
import GHC.Generics (K1(..))
-- | 'Bitraversable' identifies bifunctorial data structures whose elements can
-- be traversed in order, performing 'Applicative' or 'Monad' actions at each
-- element, and collecting a result structure with the same shape.
--
-- As opposed to 'Traversable' data structures, which have one variety of
-- element on which an action can be performed, 'Bitraversable' data structures
-- have two such varieties of elements.
--
-- A definition of 'bitraverse' must satisfy the following laws:
--
-- [Naturality]
-- @'bitraverse' (t . f) (t . g) ≡ t . 'bitraverse' f g@
-- for every applicative transformation @t@
--
-- [Identity]
-- @'bitraverse' 'Identity' 'Identity' ≡ 'Identity'@
--
-- [Composition]
-- @'Data.Functor.Compose.Compose' .
-- 'fmap' ('bitraverse' g1 g2) .
-- 'bitraverse' f1 f2
-- ≡ 'bitraverse' ('Data.Functor.Compose.Compose' . 'fmap' g1 . f1)
-- ('Data.Functor.Compose.Compose' . 'fmap' g2 . f2)@
--
-- where an /applicative transformation/ is a function
--
-- @t :: ('Applicative' f, 'Applicative' g) => f a -> g a@
--
-- preserving the 'Applicative' operations:
--
-- @
-- t ('pure' x) = 'pure' x
-- t (f '<*>' x) = t f '<*>' t x
-- @
--
-- and the identity functor 'Identity' and composition functors
-- 'Data.Functor.Compose.Compose' are from "Data.Functor.Identity" and
-- "Data.Functor.Compose".
--
-- Some simple examples are 'Either' and '(,)':
--
-- > instance Bitraversable Either where
-- > bitraverse f _ (Left x) = Left <$> f x
-- > bitraverse _ g (Right y) = Right <$> g y
-- >
-- > instance Bitraversable (,) where
-- > bitraverse f g (x, y) = (,) <$> f x <*> g y
--
-- 'Bitraversable' relates to its superclasses in the following ways:
--
-- @
-- 'bimap' f g ≡ 'runIdentity' . 'bitraverse' ('Identity' . f) ('Identity' . g)
-- 'bifoldMap' f g = 'getConst' . 'bitraverse' ('Const' . f) ('Const' . g)
-- @
--
-- These are available as 'bimapDefault' and 'bifoldMapDefault' respectively.
--
-- @since 4.10.0.0
class (Bifunctor t, Bifoldable t) => Bitraversable t where
-- | Evaluates the relevant functions at each element in the structure,
-- running the action, and builds a new structure with the same shape, using
-- the results produced from sequencing the actions.
--
-- @'bitraverse' f g ≡ 'bisequenceA' . 'bimap' f g@
--
-- For a version that ignores the results, see 'bitraverse_'.
--
-- @since 4.10.0.0
bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> t a b -> f (t c d)
bitraverse f g = bisequenceA . bimap f g
-- | Alias for 'bisequence'.
--
-- @since 4.10.0.0
bisequenceA :: (Bitraversable t, Applicative f) => t (f a) (f b) -> f (t a b)
bisequenceA = bisequence
-- | Alias for 'bitraverse'.
--
-- @since 4.10.0.0
bimapM :: (Bitraversable t, Applicative f)
=> (a -> f c) -> (b -> f d) -> t a b -> f (t c d)
bimapM = bitraverse
-- | Sequences all the actions in a structure, building a new structure with
-- the same shape using the results of the actions. For a version that ignores
-- the results, see 'bisequence_'.
--
-- @'bisequence' ≡ 'bitraverse' 'id' 'id'@
--
-- @since 4.10.0.0
bisequence :: (Bitraversable t, Applicative f) => t (f a) (f b) -> f (t a b)
bisequence = bitraverse id id
-- | @since 4.10.0.0
instance Bitraversable (,) where
bitraverse f g ~(a, b) = liftA2 (,) (f a) (g b)
-- | @since 4.10.0.0
instance Bitraversable ((,,) x) where
bitraverse f g ~(x, a, b) = liftA2 ((,,) x) (f a) (g b)
-- | @since 4.10.0.0
instance Bitraversable ((,,,) x y) where
bitraverse f g ~(x, y, a, b) = liftA2 ((,,,) x y) (f a) (g b)
-- | @since 4.10.0.0
instance Bitraversable ((,,,,) x y z) where
bitraverse f g ~(x, y, z, a, b) = liftA2 ((,,,,) x y z) (f a) (g b)
-- | @since 4.10.0.0
instance Bitraversable ((,,,,,) x y z w) where
bitraverse f g ~(x, y, z, w, a, b) = liftA2 ((,,,,,) x y z w) (f a) (g b)
-- | @since 4.10.0.0
instance Bitraversable ((,,,,,,) x y z w v) where
bitraverse f g ~(x, y, z, w, v, a, b) =
liftA2 ((,,,,,,) x y z w v) (f a) (g b)
-- | @since 4.10.0.0
instance Bitraversable Either where
bitraverse f _ (Left a) = Left <$> f a
bitraverse _ g (Right b) = Right <$> g b
-- | @since 4.10.0.0
instance Bitraversable Const where
bitraverse f _ (Const a) = Const <$> f a
-- | @since 4.10.0.0
instance Bitraversable (K1 i) where
bitraverse f _ (K1 c) = K1 <$> f c
-- | 'bifor' is 'bitraverse' with the structure as the first argument. For a
-- version that ignores the results, see 'bifor_'.
--
-- @since 4.10.0.0
bifor :: (Bitraversable t, Applicative f)
=> t a b -> (a -> f c) -> (b -> f d) -> f (t c d)
bifor t f g = bitraverse f g t
-- | Alias for 'bifor'.
--
-- @since 4.10.0.0
biforM :: (Bitraversable t, Applicative f)
=> t a b -> (a -> f c) -> (b -> f d) -> f (t c d)
biforM = bifor
-- | The 'bimapAccumL' function behaves like a combination of 'bimap' and
-- 'bifoldl'; it traverses a structure from left to right, threading a state
-- of type @a@ and using the given actions to compute new elements for the
-- structure.
--
-- @since 4.10.0.0
bimapAccumL :: Bitraversable t => (a -> b -> (a, c)) -> (a -> d -> (a, e))
-> a -> t b d -> (a, t c e)
bimapAccumL f g s t
= runStateL (bitraverse (StateL . flip f) (StateL . flip g) t) s
-- | The 'bimapAccumR' function behaves like a combination of 'bimap' and
-- 'bifoldl'; it traverses a structure from right to left, threading a state
-- of type @a@ and using the given actions to compute new elements for the
-- structure.
--
-- @since 4.10.0.0
bimapAccumR :: Bitraversable t => (a -> b -> (a, c)) -> (a -> d -> (a, e))
-> a -> t b d -> (a, t c e)
bimapAccumR f g s t
= runStateR (bitraverse (StateR . flip f) (StateR . flip g) t) s
-- | A default definition of 'bimap' in terms of the 'Bitraversable'
-- operations.
--
-- @'bimapDefault' f g ≡
-- 'runIdentity' . 'bitraverse' ('Identity' . f) ('Identity' . g)@
--
-- @since 4.10.0.0
bimapDefault :: forall t a b c d . Bitraversable t
=> (a -> b) -> (c -> d) -> t a c -> t b d
-- See Note [Function coercion] in Data.Functor.Utils.
bimapDefault = coerce
(bitraverse :: (a -> Identity b)
-> (c -> Identity d) -> t a c -> Identity (t b d))
{-# INLINE bimapDefault #-}
-- | A default definition of 'bifoldMap' in terms of the 'Bitraversable'
-- operations.
--
-- @'bifoldMapDefault' f g ≡
-- 'getConst' . 'bitraverse' ('Const' . f) ('Const' . g)@
--
-- @since 4.10.0.0
bifoldMapDefault :: forall t m a b . (Bitraversable t, Monoid m)
=> (a -> m) -> (b -> m) -> t a b -> m
-- See Note [Function coercion] in Data.Functor.Utils.
bifoldMapDefault = coerce
(bitraverse :: (a -> Const m ())
-> (b -> Const m ()) -> t a b -> Const m (t () ()))
{-# INLINE bifoldMapDefault #-}
|