1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
|
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE CPP, NoImplicitPrelude, BangPatterns, MagicHash #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.Bits
-- Copyright : (c) The University of Glasgow 2001
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : experimental
-- Portability : portable
--
-- This module defines bitwise operations for signed and unsigned
-- integers. Instances of the class 'Bits' for the 'Int' and
-- 'Integer' types are available from this module, and instances for
-- explicitly sized integral types are available from the
-- "Data.Int" and "Data.Word" modules.
--
-----------------------------------------------------------------------------
module Data.Bits (
Bits(
(.&.), (.|.), xor,
complement,
shift,
rotate,
zeroBits,
bit,
setBit,
clearBit,
complementBit,
testBit,
bitSizeMaybe,
bitSize,
isSigned,
shiftL, shiftR,
unsafeShiftL, unsafeShiftR,
rotateL, rotateR,
popCount
),
FiniteBits(
finiteBitSize,
countLeadingZeros,
countTrailingZeros
),
bitDefault,
testBitDefault,
popCountDefault,
toIntegralSized
) where
-- Defines the @Bits@ class containing bit-based operations.
-- See library document for details on the semantics of the
-- individual operations.
#include "MachDeps.h"
import Data.Maybe
import GHC.Num
import GHC.Base
import GHC.Real
infixl 8 `shift`, `rotate`, `shiftL`, `shiftR`, `rotateL`, `rotateR`
infixl 7 .&.
infixl 6 `xor`
infixl 5 .|.
{-# DEPRECATED bitSize "Use 'bitSizeMaybe' or 'finiteBitSize' instead" #-} -- deprecated in 7.8
-- | The 'Bits' class defines bitwise operations over integral types.
--
-- * Bits are numbered from 0 with bit 0 being the least
-- significant bit.
class Eq a => Bits a where
{-# MINIMAL (.&.), (.|.), xor, complement,
(shift | (shiftL, shiftR)),
(rotate | (rotateL, rotateR)),
bitSize, bitSizeMaybe, isSigned, testBit, bit, popCount #-}
-- | Bitwise \"and\"
(.&.) :: a -> a -> a
-- | Bitwise \"or\"
(.|.) :: a -> a -> a
-- | Bitwise \"xor\"
xor :: a -> a -> a
{-| Reverse all the bits in the argument -}
complement :: a -> a
{-| @'shift' x i@ shifts @x@ left by @i@ bits if @i@ is positive,
or right by @-i@ bits otherwise.
Right shifts perform sign extension on signed number types;
i.e. they fill the top bits with 1 if the @x@ is negative
and with 0 otherwise.
An instance can define either this unified 'shift' or 'shiftL' and
'shiftR', depending on which is more convenient for the type in
question. -}
shift :: a -> Int -> a
x `shift` i | i<0 = x `shiftR` (-i)
| i>0 = x `shiftL` i
| otherwise = x
{-| @'rotate' x i@ rotates @x@ left by @i@ bits if @i@ is positive,
or right by @-i@ bits otherwise.
For unbounded types like 'Integer', 'rotate' is equivalent to 'shift'.
An instance can define either this unified 'rotate' or 'rotateL' and
'rotateR', depending on which is more convenient for the type in
question. -}
rotate :: a -> Int -> a
x `rotate` i | i<0 = x `rotateR` (-i)
| i>0 = x `rotateL` i
| otherwise = x
{-
-- Rotation can be implemented in terms of two shifts, but care is
-- needed for negative values. This suggested implementation assumes
-- 2's-complement arithmetic. It is commented out because it would
-- require an extra context (Ord a) on the signature of 'rotate'.
x `rotate` i | i<0 && isSigned x && x<0
= let left = i+bitSize x in
((x `shift` i) .&. complement ((-1) `shift` left))
.|. (x `shift` left)
| i<0 = (x `shift` i) .|. (x `shift` (i+bitSize x))
| i==0 = x
| i>0 = (x `shift` i) .|. (x `shift` (i-bitSize x))
-}
-- | 'zeroBits' is the value with all bits unset.
--
-- The following laws ought to hold (for all valid bit indices @/n/@):
--
-- * @'clearBit' 'zeroBits' /n/ == 'zeroBits'@
-- * @'setBit' 'zeroBits' /n/ == 'bit' /n/@
-- * @'testBit' 'zeroBits' /n/ == False@
-- * @'popCount' 'zeroBits' == 0@
--
-- This method uses @'clearBit' ('bit' 0) 0@ as its default
-- implementation (which ought to be equivalent to 'zeroBits' for
-- types which possess a 0th bit).
--
-- @since 4.7.0.0
zeroBits :: a
zeroBits = clearBit (bit 0) 0
-- | @bit /i/@ is a value with the @/i/@th bit set and all other bits clear.
--
-- Can be implemented using `bitDefault' if @a@ is also an
-- instance of 'Num'.
--
-- See also 'zeroBits'.
bit :: Int -> a
-- | @x \`setBit\` i@ is the same as @x .|. bit i@
setBit :: a -> Int -> a
-- | @x \`clearBit\` i@ is the same as @x .&. complement (bit i)@
clearBit :: a -> Int -> a
-- | @x \`complementBit\` i@ is the same as @x \`xor\` bit i@
complementBit :: a -> Int -> a
{-| @x \`testBit\` i@ is the same as @x .&. bit n /= 0@
In other words it returns True if the bit at offset @n
is set.
Can be implemented using `testBitDefault' if @a@ is also an
instance of 'Num'.
-}
testBit :: a -> Int -> Bool
{-| Return the number of bits in the type of the argument. The actual
value of the argument is ignored. Returns Nothing
for types that do not have a fixed bitsize, like 'Integer'.
@since 4.7.0.0
-}
bitSizeMaybe :: a -> Maybe Int
{-| Return the number of bits in the type of the argument. The actual
value of the argument is ignored. The function 'bitSize' is
undefined for types that do not have a fixed bitsize, like 'Integer'.
Default implementation based upon 'bitSizeMaybe' provided since
4.12.0.0.
-}
bitSize :: a -> Int
bitSize b = fromMaybe (error "bitSize is undefined") (bitSizeMaybe b)
{-| Return 'True' if the argument is a signed type. The actual
value of the argument is ignored -}
isSigned :: a -> Bool
{-# INLINE setBit #-}
{-# INLINE clearBit #-}
{-# INLINE complementBit #-}
x `setBit` i = x .|. bit i
x `clearBit` i = x .&. complement (bit i)
x `complementBit` i = x `xor` bit i
{-| Shift the argument left by the specified number of bits
(which must be non-negative). Some instances may throw an
'Control.Exception.Overflow' exception if given a negative input.
An instance can define either this and 'shiftR' or the unified
'shift', depending on which is more convenient for the type in
question. -}
shiftL :: a -> Int -> a
{-# INLINE shiftL #-}
x `shiftL` i = x `shift` i
{-| Shift the argument left by the specified number of bits. The
result is undefined for negative shift amounts and shift amounts
greater or equal to the 'bitSize'.
Defaults to 'shiftL' unless defined explicitly by an instance.
@since 4.5.0.0 -}
unsafeShiftL :: a -> Int -> a
{-# INLINE unsafeShiftL #-}
x `unsafeShiftL` i = x `shiftL` i
{-| Shift the first argument right by the specified number of bits. The
result is undefined for negative shift amounts and shift amounts
greater or equal to the 'bitSize'. Some instances may throw an
'Control.Exception.Overflow' exception if given a negative input.
Right shifts perform sign extension on signed number types;
i.e. they fill the top bits with 1 if the @x@ is negative
and with 0 otherwise.
An instance can define either this and 'shiftL' or the unified
'shift', depending on which is more convenient for the type in
question. -}
shiftR :: a -> Int -> a
{-# INLINE shiftR #-}
x `shiftR` i = x `shift` (-i)
{-| Shift the first argument right by the specified number of bits, which
must be non-negative and smaller than the number of bits in the type.
Right shifts perform sign extension on signed number types;
i.e. they fill the top bits with 1 if the @x@ is negative
and with 0 otherwise.
Defaults to 'shiftR' unless defined explicitly by an instance.
@since 4.5.0.0 -}
unsafeShiftR :: a -> Int -> a
{-# INLINE unsafeShiftR #-}
x `unsafeShiftR` i = x `shiftR` i
{-| Rotate the argument left by the specified number of bits
(which must be non-negative).
An instance can define either this and 'rotateR' or the unified
'rotate', depending on which is more convenient for the type in
question. -}
rotateL :: a -> Int -> a
{-# INLINE rotateL #-}
x `rotateL` i = x `rotate` i
{-| Rotate the argument right by the specified number of bits
(which must be non-negative).
An instance can define either this and 'rotateL' or the unified
'rotate', depending on which is more convenient for the type in
question. -}
rotateR :: a -> Int -> a
{-# INLINE rotateR #-}
x `rotateR` i = x `rotate` (-i)
{-| Return the number of set bits in the argument. This number is
known as the population count or the Hamming weight.
Can be implemented using `popCountDefault' if @a@ is also an
instance of 'Num'.
@since 4.5.0.0 -}
popCount :: a -> Int
-- |The 'FiniteBits' class denotes types with a finite, fixed number of bits.
--
-- @since 4.7.0.0
class Bits b => FiniteBits b where
-- | Return the number of bits in the type of the argument.
-- The actual value of the argument is ignored. Moreover, 'finiteBitSize'
-- is total, in contrast to the deprecated 'bitSize' function it replaces.
--
-- @
-- 'finiteBitSize' = 'bitSize'
-- 'bitSizeMaybe' = 'Just' . 'finiteBitSize'
-- @
--
-- @since 4.7.0.0
finiteBitSize :: b -> Int
-- | Count number of zero bits preceding the most significant set bit.
--
-- @
-- 'countLeadingZeros' ('zeroBits' :: a) = finiteBitSize ('zeroBits' :: a)
-- @
--
-- 'countLeadingZeros' can be used to compute log base 2 via
--
-- @
-- logBase2 x = 'finiteBitSize' x - 1 - 'countLeadingZeros' x
-- @
--
-- Note: The default implementation for this method is intentionally
-- naive. However, the instances provided for the primitive
-- integral types are implemented using CPU specific machine
-- instructions.
--
-- @since 4.8.0.0
countLeadingZeros :: b -> Int
countLeadingZeros x = (w-1) - go (w-1)
where
go i | i < 0 = i -- no bit set
| testBit x i = i
| otherwise = go (i-1)
w = finiteBitSize x
-- | Count number of zero bits following the least significant set bit.
--
-- @
-- 'countTrailingZeros' ('zeroBits' :: a) = finiteBitSize ('zeroBits' :: a)
-- 'countTrailingZeros' . 'negate' = 'countTrailingZeros'
-- @
--
-- The related
-- <http://en.wikipedia.org/wiki/Find_first_set find-first-set operation>
-- can be expressed in terms of 'countTrailingZeros' as follows
--
-- @
-- findFirstSet x = 1 + 'countTrailingZeros' x
-- @
--
-- Note: The default implementation for this method is intentionally
-- naive. However, the instances provided for the primitive
-- integral types are implemented using CPU specific machine
-- instructions.
--
-- @since 4.8.0.0
countTrailingZeros :: b -> Int
countTrailingZeros x = go 0
where
go i | i >= w = i
| testBit x i = i
| otherwise = go (i+1)
w = finiteBitSize x
-- The defaults below are written with lambdas so that e.g.
-- bit = bitDefault
-- is fully applied, so inlining will happen
-- | Default implementation for 'bit'.
--
-- Note that: @bitDefault i = 1 `shiftL` i@
--
-- @since 4.6.0.0
bitDefault :: (Bits a, Num a) => Int -> a
bitDefault = \i -> 1 `shiftL` i
{-# INLINE bitDefault #-}
-- | Default implementation for 'testBit'.
--
-- Note that: @testBitDefault x i = (x .&. bit i) /= 0@
--
-- @since 4.6.0.0
testBitDefault :: (Bits a, Num a) => a -> Int -> Bool
testBitDefault = \x i -> (x .&. bit i) /= 0
{-# INLINE testBitDefault #-}
-- | Default implementation for 'popCount'.
--
-- This implementation is intentionally naive. Instances are expected to provide
-- an optimized implementation for their size.
--
-- @since 4.6.0.0
popCountDefault :: (Bits a, Num a) => a -> Int
popCountDefault = go 0
where
go !c 0 = c
go c w = go (c+1) (w .&. (w - 1)) -- clear the least significant
{-# INLINABLE popCountDefault #-}
-- | Interpret 'Bool' as 1-bit bit-field
--
-- @since 4.7.0.0
instance Bits Bool where
(.&.) = (&&)
(.|.) = (||)
xor = (/=)
complement = not
shift x 0 = x
shift _ _ = False
rotate x _ = x
bit 0 = True
bit _ = False
testBit x 0 = x
testBit _ _ = False
bitSizeMaybe _ = Just 1
bitSize _ = 1
isSigned _ = False
popCount False = 0
popCount True = 1
-- | @since 4.7.0.0
instance FiniteBits Bool where
finiteBitSize _ = 1
countTrailingZeros x = if x then 0 else 1
countLeadingZeros x = if x then 0 else 1
-- | @since 2.01
instance Bits Int where
{-# INLINE shift #-}
{-# INLINE bit #-}
{-# INLINE testBit #-}
-- We want popCnt# to be inlined in user code so that `ghc -msse4.2`
-- can compile it down to a popcnt instruction without an extra function call
{-# INLINE popCount #-}
zeroBits = 0
bit = bitDefault
testBit = testBitDefault
(I# x#) .&. (I# y#) = I# (x# `andI#` y#)
(I# x#) .|. (I# y#) = I# (x# `orI#` y#)
(I# x#) `xor` (I# y#) = I# (x# `xorI#` y#)
complement (I# x#) = I# (notI# x#)
(I# x#) `shift` (I# i#)
| isTrue# (i# >=# 0#) = I# (x# `iShiftL#` i#)
| otherwise = I# (x# `iShiftRA#` negateInt# i#)
(I# x#) `shiftL` (I# i#)
| isTrue# (i# >=# 0#) = I# (x# `iShiftL#` i#)
| otherwise = overflowError
(I# x#) `unsafeShiftL` (I# i#) = I# (x# `uncheckedIShiftL#` i#)
(I# x#) `shiftR` (I# i#)
| isTrue# (i# >=# 0#) = I# (x# `iShiftRA#` i#)
| otherwise = overflowError
(I# x#) `unsafeShiftR` (I# i#) = I# (x# `uncheckedIShiftRA#` i#)
{-# INLINE rotate #-} -- See Note [Constant folding for rotate]
(I# x#) `rotate` (I# i#) =
I# ((x# `uncheckedIShiftL#` i'#) `orI#` (x# `uncheckedIShiftRL#` (wsib -# i'#)))
where
!i'# = i# `andI#` (wsib -# 1#)
!wsib = WORD_SIZE_IN_BITS# {- work around preprocessor problem (??) -}
bitSizeMaybe i = Just (finiteBitSize i)
bitSize i = finiteBitSize i
popCount (I# x#) = I# (word2Int# (popCnt# (int2Word# x#)))
isSigned _ = True
-- | @since 4.6.0.0
instance FiniteBits Int where
finiteBitSize _ = WORD_SIZE_IN_BITS
countLeadingZeros (I# x#) = I# (word2Int# (clz# (int2Word# x#)))
{-# INLINE countLeadingZeros #-}
countTrailingZeros (I# x#) = I# (word2Int# (ctz# (int2Word# x#)))
{-# INLINE countTrailingZeros #-}
-- | @since 2.01
instance Bits Word where
{-# INLINE shift #-}
{-# INLINE bit #-}
{-# INLINE testBit #-}
{-# INLINE popCount #-}
(W# x#) .&. (W# y#) = W# (x# `and#` y#)
(W# x#) .|. (W# y#) = W# (x# `or#` y#)
(W# x#) `xor` (W# y#) = W# (x# `xor#` y#)
complement (W# x#) = W# (not# x#)
(W# x#) `shift` (I# i#)
| isTrue# (i# >=# 0#) = W# (x# `shiftL#` i#)
| otherwise = W# (x# `shiftRL#` negateInt# i#)
(W# x#) `shiftL` (I# i#)
| isTrue# (i# >=# 0#) = W# (x# `shiftL#` i#)
| otherwise = overflowError
(W# x#) `unsafeShiftL` (I# i#) = W# (x# `uncheckedShiftL#` i#)
(W# x#) `shiftR` (I# i#)
| isTrue# (i# >=# 0#) = W# (x# `shiftRL#` i#)
| otherwise = overflowError
(W# x#) `unsafeShiftR` (I# i#) = W# (x# `uncheckedShiftRL#` i#)
(W# x#) `rotate` (I# i#)
| isTrue# (i'# ==# 0#) = W# x#
| otherwise = W# ((x# `uncheckedShiftL#` i'#) `or#` (x# `uncheckedShiftRL#` (wsib -# i'#)))
where
!i'# = i# `andI#` (wsib -# 1#)
!wsib = WORD_SIZE_IN_BITS# {- work around preprocessor problem (??) -}
bitSizeMaybe i = Just (finiteBitSize i)
bitSize i = finiteBitSize i
isSigned _ = False
popCount (W# x#) = I# (word2Int# (popCnt# x#))
bit = bitDefault
testBit = testBitDefault
-- | @since 4.6.0.0
instance FiniteBits Word where
finiteBitSize _ = WORD_SIZE_IN_BITS
countLeadingZeros (W# x#) = I# (word2Int# (clz# x#))
{-# INLINE countLeadingZeros #-}
countTrailingZeros (W# x#) = I# (word2Int# (ctz# x#))
{-# INLINE countTrailingZeros #-}
-- | @since 2.01
instance Bits Integer where
(.&.) = integerAnd
(.|.) = integerOr
xor = integerXor
complement = integerComplement
shiftR x i = integerShiftR x (fromIntegral i)
shiftL x i = integerShiftL x (fromIntegral i)
shift x i | i >= 0 = integerShiftL x (fromIntegral i)
| otherwise = integerShiftR x (fromIntegral (negate i))
testBit x i = integerTestBit x (fromIntegral i)
zeroBits = integerZero
bit (I# i) = integerBit# (int2Word# i)
popCount x = I# (integerPopCount# x)
rotate x i = shift x i -- since an Integer never wraps around
bitSizeMaybe _ = Nothing
bitSize _ = errorWithoutStackTrace "Data.Bits.bitSize(Integer)"
isSigned _ = True
-- | @since 4.8.0
instance Bits Natural where
(.&.) = naturalAnd
(.|.) = naturalOr
xor = naturalXor
complement _ = errorWithoutStackTrace
"Bits.complement: Natural complement undefined"
shiftR x i = naturalShiftR x (fromIntegral i)
shiftL x i = naturalShiftL x (fromIntegral i)
shift x i
| i >= 0 = naturalShiftL x (fromIntegral i)
| otherwise = naturalShiftR x (fromIntegral (negate i))
testBit x i = naturalTestBit x (fromIntegral i)
zeroBits = naturalZero
clearBit x i = x `xor` (bit i .&. x)
bit (I# i) = naturalBit# (int2Word# i)
popCount x = I# (word2Int# (naturalPopCount# x))
rotate x i = shift x i -- since an Natural never wraps around
bitSizeMaybe _ = Nothing
bitSize _ = errorWithoutStackTrace "Data.Bits.bitSize(Natural)"
isSigned _ = False
-----------------------------------------------------------------------------
-- | Attempt to convert an 'Integral' type @a@ to an 'Integral' type @b@ using
-- the size of the types as measured by 'Bits' methods.
--
-- A simpler version of this function is:
--
-- > toIntegral :: (Integral a, Integral b) => a -> Maybe b
-- > toIntegral x
-- > | toInteger x == y = Just (fromInteger y)
-- > | otherwise = Nothing
-- > where
-- > y = toInteger x
--
-- This version requires going through 'Integer', which can be inefficient.
-- However, @toIntegralSized@ is optimized to allow GHC to statically determine
-- the relative type sizes (as measured by 'bitSizeMaybe' and 'isSigned') and
-- avoid going through 'Integer' for many types. (The implementation uses
-- 'fromIntegral', which is itself optimized with rules for @base@ types but may
-- go through 'Integer' for some type pairs.)
--
-- @since 4.8.0.0
toIntegralSized :: (Integral a, Integral b, Bits a, Bits b) => a -> Maybe b
toIntegralSized x -- See Note [toIntegralSized optimization]
| maybe True (<= x) yMinBound
, maybe True (x <=) yMaxBound = Just y
| otherwise = Nothing
where
y = fromIntegral x
xWidth = bitSizeMaybe x
yWidth = bitSizeMaybe y
yMinBound
| isBitSubType x y = Nothing
| isSigned x, not (isSigned y) = Just 0
| isSigned x, isSigned y
, Just yW <- yWidth = Just (negate $ bit (yW-1)) -- Assumes sub-type
| otherwise = Nothing
yMaxBound
| isBitSubType x y = Nothing
| isSigned x, not (isSigned y)
, Just xW <- xWidth, Just yW <- yWidth
, xW <= yW+1 = Nothing -- Max bound beyond a's domain
| Just yW <- yWidth = if isSigned y
then Just (bit (yW-1)-1)
else Just (bit yW-1)
| otherwise = Nothing
{-# INLINABLE toIntegralSized #-}
-- | 'True' if the size of @a@ is @<=@ the size of @b@, where size is measured
-- by 'bitSizeMaybe' and 'isSigned'.
isBitSubType :: (Bits a, Bits b) => a -> b -> Bool
isBitSubType x y
-- Reflexive
| xWidth == yWidth, xSigned == ySigned = True
-- Every integer is a subset of 'Integer'
| ySigned, Nothing == yWidth = True
| not xSigned, not ySigned, Nothing == yWidth = True
-- Sub-type relations between fixed-with types
| xSigned == ySigned, Just xW <- xWidth, Just yW <- yWidth = xW <= yW
| not xSigned, ySigned, Just xW <- xWidth, Just yW <- yWidth = xW < yW
| otherwise = False
where
xWidth = bitSizeMaybe x
xSigned = isSigned x
yWidth = bitSizeMaybe y
ySigned = isSigned y
{-# INLINE isBitSubType #-}
{- Note [Constant folding for rotate]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The INLINE on the Int instance of rotate enables it to be constant
folded. For example:
sumU . mapU (`rotate` 3) . replicateU 10000000 $ (7 :: Int)
goes to:
Main.$wfold =
\ (ww_sO7 :: Int#) (ww1_sOb :: Int#) ->
case ww1_sOb of wild_XM {
__DEFAULT -> Main.$wfold (+# ww_sO7 56) (+# wild_XM 1);
10000000 -> ww_sO7
whereas before it was left as a call to $wrotate.
All other Bits instances seem to inline well enough on their
own to enable constant folding; for example 'shift':
sumU . mapU (`shift` 3) . replicateU 10000000 $ (7 :: Int)
goes to:
Main.$wfold =
\ (ww_sOb :: Int#) (ww1_sOf :: Int#) ->
case ww1_sOf of wild_XM {
__DEFAULT -> Main.$wfold (+# ww_sOb 56) (+# wild_XM 1);
10000000 -> ww_sOb
}
-}
-- Note [toIntegralSized optimization]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- The code in 'toIntegralSized' relies on GHC optimizing away statically
-- decidable branches.
--
-- If both integral types are statically known, GHC will be able optimize the
-- code significantly (for @-O1@ and better).
--
-- For instance (as of GHC 7.8.1) the following definitions:
--
-- > w16_to_i32 = toIntegralSized :: Word16 -> Maybe Int32
-- >
-- > i16_to_w16 = toIntegralSized :: Int16 -> Maybe Word16
--
-- are translated into the following (simplified) /GHC Core/ language:
--
-- > w16_to_i32 = \x -> Just (case x of _ { W16# x# -> I32# (word2Int# x#) })
-- >
-- > i16_to_w16 = \x -> case eta of _
-- > { I16# b1 -> case tagToEnum# (<=# 0 b1) of _
-- > { False -> Nothing
-- > ; True -> Just (W16# (narrow16Word# (int2Word# b1)))
-- > }
-- > }
|