1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
|
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE CPP, NoImplicitPrelude, BangPatterns, MagicHash #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.Bits
-- Copyright : (c) The University of Glasgow 2001
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : experimental
-- Portability : portable
--
-- This module defines bitwise operations for signed and unsigned
-- integers. Instances of the class 'Bits' for the 'Int' and
-- 'Integer' types are available from this module, and instances for
-- explicitly sized integral types are available from the
-- "Data.Int" and "Data.Word" modules.
--
-----------------------------------------------------------------------------
module Data.Bits (
Bits(
(.&.), (.|.), xor,
complement,
shift,
rotate,
bit,
setBit,
clearBit,
complementBit,
testBit,
bitSizeMaybe,
bitSize,
isSigned,
shiftL, shiftR,
unsafeShiftL, unsafeShiftR,
rotateL, rotateR,
popCount
),
FiniteBits(finiteBitSize),
bitDefault,
testBitDefault,
popCountDefault
) where
-- Defines the @Bits@ class containing bit-based operations.
-- See library document for details on the semantics of the
-- individual operations.
#include "MachDeps.h"
import Data.Maybe
import GHC.Enum
import GHC.Num
import GHC.Base
infixl 8 `shift`, `rotate`, `shiftL`, `shiftR`, `rotateL`, `rotateR`
infixl 7 .&.
infixl 6 `xor`
infixl 5 .|.
{-# DEPRECATED bitSize "Use bitSizeMaybe or finiteBitSize instead" #-} -- deprecated in 7.8
{-|
The 'Bits' class defines bitwise operations over integral types.
* Bits are numbered from 0 with bit 0 being the least
significant bit.
Minimal complete definition: '.&.', '.|.', 'xor', 'complement',
('shift' or ('shiftL' and 'shiftR')), ('rotate' or ('rotateL' and 'rotateR')),
'bitSize', 'isSigned', 'testBit', 'bit', and 'popCount'. The latter three can
be implemented using `testBitDefault', 'bitDefault, and 'popCountDefault', if
@a@ is also an instance of 'Num'.
-}
class Eq a => Bits a where
-- | Bitwise \"and\"
(.&.) :: a -> a -> a
-- | Bitwise \"or\"
(.|.) :: a -> a -> a
-- | Bitwise \"xor\"
xor :: a -> a -> a
{-| Reverse all the bits in the argument -}
complement :: a -> a
{-| @'shift' x i@ shifts @x@ left by @i@ bits if @i@ is positive,
or right by @-i@ bits otherwise.
Right shifts perform sign extension on signed number types;
i.e. they fill the top bits with 1 if the @x@ is negative
and with 0 otherwise.
An instance can define either this unified 'shift' or 'shiftL' and
'shiftR', depending on which is more convenient for the type in
question. -}
shift :: a -> Int -> a
x `shift` i | i<0 = x `shiftR` (-i)
| i>0 = x `shiftL` i
| otherwise = x
{-| @'rotate' x i@ rotates @x@ left by @i@ bits if @i@ is positive,
or right by @-i@ bits otherwise.
For unbounded types like 'Integer', 'rotate' is equivalent to 'shift'.
An instance can define either this unified 'rotate' or 'rotateL' and
'rotateR', depending on which is more convenient for the type in
question. -}
rotate :: a -> Int -> a
x `rotate` i | i<0 = x `rotateR` (-i)
| i>0 = x `rotateL` i
| otherwise = x
{-
-- Rotation can be implemented in terms of two shifts, but care is
-- needed for negative values. This suggested implementation assumes
-- 2's-complement arithmetic. It is commented out because it would
-- require an extra context (Ord a) on the signature of 'rotate'.
x `rotate` i | i<0 && isSigned x && x<0
= let left = i+bitSize x in
((x `shift` i) .&. complement ((-1) `shift` left))
.|. (x `shift` left)
| i<0 = (x `shift` i) .|. (x `shift` (i+bitSize x))
| i==0 = x
| i>0 = (x `shift` i) .|. (x `shift` (i-bitSize x))
-}
-- | @bit i@ is a value with the @i@th bit set and all other bits clear
bit :: Int -> a
-- | @x \`setBit\` i@ is the same as @x .|. bit i@
setBit :: a -> Int -> a
-- | @x \`clearBit\` i@ is the same as @x .&. complement (bit i)@
clearBit :: a -> Int -> a
-- | @x \`complementBit\` i@ is the same as @x \`xor\` bit i@
complementBit :: a -> Int -> a
-- | Return 'True' if the @n@th bit of the argument is 1
testBit :: a -> Int -> Bool
{-| Return the number of bits in the type of the argument. The actual
value of the argument is ignored. Returns Nothing
for types that do not have a fixed bitsize, like 'Integer'.
/Since: 4.7.0.0/
-}
bitSizeMaybe :: a -> Maybe Int
{-| Return the number of bits in the type of the argument. The actual
value of the argument is ignored. The function 'bitSize' is
undefined for types that do not have a fixed bitsize, like 'Integer'.
-}
bitSize :: a -> Int
{-| Return 'True' if the argument is a signed type. The actual
value of the argument is ignored -}
isSigned :: a -> Bool
{-# INLINE setBit #-}
{-# INLINE clearBit #-}
{-# INLINE complementBit #-}
x `setBit` i = x .|. bit i
x `clearBit` i = x .&. complement (bit i)
x `complementBit` i = x `xor` bit i
{-| Shift the argument left by the specified number of bits
(which must be non-negative).
An instance can define either this and 'shiftR' or the unified
'shift', depending on which is more convenient for the type in
question. -}
shiftL :: a -> Int -> a
{-# INLINE shiftL #-}
x `shiftL` i = x `shift` i
{-| Shift the argument left by the specified number of bits. The
result is undefined for negative shift amounts and shift amounts
greater or equal to the 'bitSize'.
Defaults to 'shiftL' unless defined explicitly by an instance. -}
unsafeShiftL :: a -> Int -> a
{-# INLINE unsafeShiftL #-}
x `unsafeShiftL` i = x `shiftL` i
{-| Shift the first argument right by the specified number of bits. The
result is undefined for negative shift amounts and shift amounts
greater or equal to the 'bitSize'.
Right shifts perform sign extension on signed number types;
i.e. they fill the top bits with 1 if the @x@ is negative
and with 0 otherwise.
An instance can define either this and 'shiftL' or the unified
'shift', depending on which is more convenient for the type in
question. -}
shiftR :: a -> Int -> a
{-# INLINE shiftR #-}
x `shiftR` i = x `shift` (-i)
{-| Shift the first argument right by the specified number of bits, which
must be non-negative an smaller than the number of bits in the type.
Right shifts perform sign extension on signed number types;
i.e. they fill the top bits with 1 if the @x@ is negative
and with 0 otherwise.
Defaults to 'shiftR' unless defined explicitly by an instance. -}
unsafeShiftR :: a -> Int -> a
{-# INLINE unsafeShiftR #-}
x `unsafeShiftR` i = x `shiftR` i
{-| Rotate the argument left by the specified number of bits
(which must be non-negative).
An instance can define either this and 'rotateR' or the unified
'rotate', depending on which is more convenient for the type in
question. -}
rotateL :: a -> Int -> a
{-# INLINE rotateL #-}
x `rotateL` i = x `rotate` i
{-| Rotate the argument right by the specified number of bits
(which must be non-negative).
An instance can define either this and 'rotateL' or the unified
'rotate', depending on which is more convenient for the type in
question. -}
rotateR :: a -> Int -> a
{-# INLINE rotateR #-}
x `rotateR` i = x `rotate` (-i)
{-| Return the number of set bits in the argument. This number is
known as the population count or the Hamming weight. -}
popCount :: a -> Int
{-# MINIMAL (.&.), (.|.), xor, complement,
(shift | (shiftL, shiftR)),
(rotate | (rotateL, rotateR)),
bitSize, bitSizeMaybe, isSigned, testBit, bit, popCount #-}
-- |The 'FiniteBits' class denotes types with a finite, fixed number of bits.
--
-- /Since: 4.7.0.0/
class Bits b => FiniteBits b where
-- | Return the number of bits in the type of the argument.
-- The actual value of the argument is ignored. Moreover, 'finiteBitSize'
-- is total, in contrast to the deprecated 'bitSize' function it replaces.
--
-- @
-- 'finiteBitSize' = 'bitSize'
-- 'bitSizeMaybe' = 'Just' . 'finiteBitSize'
-- @
--
-- /Since: 4.7.0.0/
finiteBitSize :: b -> Int
-- The defaults below are written with lambdas so that e.g.
-- bit = bitDefault
-- is fully applied, so inlining will happen
-- | Default implementation for 'bit'.
--
-- Note that: @bitDefault i = 1 `shiftL` i@
bitDefault :: (Bits a, Num a) => Int -> a
bitDefault = \i -> 1 `shiftL` i
{-# INLINE bitDefault #-}
-- | Default implementation for 'testBit'.
--
-- Note that: @testBitDefault x i = (x .&. bit i) /= 0@
testBitDefault :: (Bits a, Num a) => a -> Int -> Bool
testBitDefault = \x i -> (x .&. bit i) /= 0
{-# INLINE testBitDefault #-}
-- | Default implementation for 'popCount'.
--
-- This implementation is intentionally naive. Instances are expected to provide
-- an optimized implementation for their size.
popCountDefault :: (Bits a, Num a) => a -> Int
popCountDefault = go 0
where
go !c 0 = c
go c w = go (c+1) (w .&. (w - 1)) -- clear the least significant
{-# INLINABLE popCountDefault #-}
instance Bits Int where
{-# INLINE shift #-}
{-# INLINE bit #-}
{-# INLINE testBit #-}
bit = bitDefault
testBit = testBitDefault
(I# x#) .&. (I# y#) = I# (word2Int# (int2Word# x# `and#` int2Word# y#))
(I# x#) .|. (I# y#) = I# (word2Int# (int2Word# x# `or#` int2Word# y#))
(I# x#) `xor` (I# y#) = I# (word2Int# (int2Word# x# `xor#` int2Word# y#))
complement (I# x#) = I# (word2Int# (int2Word# x# `xor#` int2Word# (-1#)))
(I# x#) `shift` (I# i#)
| isTrue# (i# >=# 0#) = I# (x# `iShiftL#` i#)
| otherwise = I# (x# `iShiftRA#` negateInt# i#)
(I# x#) `shiftL` (I# i#) = I# (x# `iShiftL#` i#)
(I# x#) `unsafeShiftL` (I# i#) = I# (x# `uncheckedIShiftL#` i#)
(I# x#) `shiftR` (I# i#) = I# (x# `iShiftRA#` i#)
(I# x#) `unsafeShiftR` (I# i#) = I# (x# `uncheckedIShiftRA#` i#)
{-# INLINE rotate #-} -- See Note [Constant folding for rotate]
(I# x#) `rotate` (I# i#) =
I# (word2Int# ((x'# `uncheckedShiftL#` i'#) `or#`
(x'# `uncheckedShiftRL#` (wsib -# i'#))))
where
!x'# = int2Word# x#
!i'# = word2Int# (int2Word# i# `and#` int2Word# (wsib -# 1#))
!wsib = WORD_SIZE_IN_BITS# {- work around preprocessor problem (??) -}
bitSizeMaybe i = Just (finiteBitSize i)
bitSize i = finiteBitSize i
popCount (I# x#) = I# (word2Int# (popCnt# (int2Word# x#)))
isSigned _ = True
instance FiniteBits Int where
finiteBitSize _ = WORD_SIZE_IN_BITS
instance Bits Word where
{-# INLINE shift #-}
{-# INLINE bit #-}
{-# INLINE testBit #-}
(W# x#) .&. (W# y#) = W# (x# `and#` y#)
(W# x#) .|. (W# y#) = W# (x# `or#` y#)
(W# x#) `xor` (W# y#) = W# (x# `xor#` y#)
complement (W# x#) = W# (x# `xor#` mb#)
where !(W# mb#) = maxBound
(W# x#) `shift` (I# i#)
| isTrue# (i# >=# 0#) = W# (x# `shiftL#` i#)
| otherwise = W# (x# `shiftRL#` negateInt# i#)
(W# x#) `shiftL` (I# i#) = W# (x# `shiftL#` i#)
(W# x#) `unsafeShiftL` (I# i#) = W# (x# `uncheckedShiftL#` i#)
(W# x#) `shiftR` (I# i#) = W# (x# `shiftRL#` i#)
(W# x#) `unsafeShiftR` (I# i#) = W# (x# `uncheckedShiftRL#` i#)
(W# x#) `rotate` (I# i#)
| isTrue# (i'# ==# 0#) = W# x#
| otherwise = W# ((x# `uncheckedShiftL#` i'#) `or#` (x# `uncheckedShiftRL#` (wsib -# i'#)))
where
!i'# = word2Int# (int2Word# i# `and#` int2Word# (wsib -# 1#))
!wsib = WORD_SIZE_IN_BITS# {- work around preprocessor problem (??) -}
bitSizeMaybe i = Just (finiteBitSize i)
bitSize i = finiteBitSize i
isSigned _ = False
popCount (W# x#) = I# (word2Int# (popCnt# x#))
bit = bitDefault
testBit = testBitDefault
instance FiniteBits Word where
finiteBitSize _ = WORD_SIZE_IN_BITS
instance Bits Integer where
(.&.) = andInteger
(.|.) = orInteger
xor = xorInteger
complement = complementInteger
shift x i@(I# i#) | i >= 0 = shiftLInteger x i#
| otherwise = shiftRInteger x (negateInt# i#)
testBit x (I# i) = testBitInteger x i
bit = bitDefault
popCount = popCountDefault
rotate x i = shift x i -- since an Integer never wraps around
bitSizeMaybe _ = Nothing
bitSize _ = error "Data.Bits.bitSize(Integer)"
isSigned _ = True
{- Note [Constant folding for rotate]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The INLINE on the Int instance of rotate enables it to be constant
folded. For example:
sumU . mapU (`rotate` 3) . replicateU 10000000 $ (7 :: Int)
goes to:
Main.$wfold =
\ (ww_sO7 :: Int#) (ww1_sOb :: Int#) ->
case ww1_sOb of wild_XM {
__DEFAULT -> Main.$wfold (+# ww_sO7 56) (+# wild_XM 1);
10000000 -> ww_sO7
whereas before it was left as a call to $wrotate.
All other Bits instances seem to inline well enough on their
own to enable constant folding; for example 'shift':
sumU . mapU (`shift` 3) . replicateU 10000000 $ (7 :: Int)
goes to:
Main.$wfold =
\ (ww_sOb :: Int#) (ww1_sOf :: Int#) ->
case ww1_sOf of wild_XM {
__DEFAULT -> Main.$wfold (+# ww_sOb 56) (+# wild_XM 1);
10000000 -> ww_sOb
}
-}
|