1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
|
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE TypeOperators #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.Data
-- Copyright : (c) The University of Glasgow, CWI 2001--2004
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : experimental
-- Portability : non-portable (local universal quantification)
--
-- \"Scrap your boilerplate\" --- Generic programming in Haskell. See
-- <http://www.haskell.org/haskellwiki/Research_papers/Generics#Scrap_your_boilerplate.21>.
-- This module provides the 'Data' class with its primitives for
-- generic programming, along with instances for many datatypes. It
-- corresponds to a merge between the previous "Data.Generics.Basics"
-- and almost all of "Data.Generics.Instances". The instances that are
-- not present in this module were moved to the
-- @Data.Generics.Instances@ module in the @syb@ package.
--
-- For more information, please visit the new
-- SYB wiki: <http://www.cs.uu.nl/wiki/bin/view/GenericProgramming/SYB>.
--
-----------------------------------------------------------------------------
module Data.Data (
-- * Module Data.Typeable re-exported for convenience
module Data.Typeable,
-- * The Data class for processing constructor applications
Data(
gfoldl,
gunfold,
toConstr,
dataTypeOf,
dataCast1, -- mediate types and unary type constructors
dataCast2, -- mediate types and binary type constructors
-- Generic maps defined in terms of gfoldl
gmapT,
gmapQ,
gmapQl,
gmapQr,
gmapQi,
gmapM,
gmapMp,
gmapMo
),
-- * Datatype representations
DataType, -- abstract
-- ** Constructors
mkDataType,
mkIntType,
mkFloatType,
mkCharType,
mkNoRepType,
-- ** Observers
dataTypeName,
DataRep(..),
dataTypeRep,
-- ** Convenience functions
repConstr,
isAlgType,
dataTypeConstrs,
indexConstr,
maxConstrIndex,
isNorepType,
-- * Data constructor representations
Constr, -- abstract
ConIndex, -- alias for Int, start at 1
Fixity(..),
-- ** Constructors
mkConstr,
mkIntegralConstr,
mkRealConstr,
mkCharConstr,
-- ** Observers
constrType,
ConstrRep(..),
constrRep,
constrFields,
constrFixity,
-- ** Convenience function: algebraic data types
constrIndex,
-- ** From strings to constructors and vice versa: all data types
showConstr,
readConstr,
-- * Convenience functions: take type constructors apart
tyconUQname,
tyconModule,
-- * Generic operations defined in terms of 'gunfold'
fromConstr,
fromConstrB,
fromConstrM
) where
------------------------------------------------------------------------------
import Data.Functor.Const
import Data.Either
import Data.Eq
import Data.Maybe
import Data.Monoid
import Data.Ord
import Data.Typeable
import Data.Version( Version(..) )
import GHC.Base hiding (Any, IntRep, FloatRep)
import GHC.List
import GHC.Num
import GHC.Read
import GHC.Show
import Text.Read( reads )
-- Imports for the instances
import Control.Applicative (WrappedArrow(..), WrappedMonad(..), ZipList(..))
-- So we can give them Data instances
import Data.Functor.Identity -- So we can give Data instance for Identity
import Data.Int -- So we can give Data instance for Int8, ...
import Data.Type.Coercion
import Data.Word -- So we can give Data instance for Word8, ...
import GHC.Real -- So we can give Data instance for Ratio
--import GHC.IOBase -- So we can give Data instance for IO, Handle
import GHC.Ptr -- So we can give Data instance for Ptr
import GHC.ForeignPtr -- So we can give Data instance for ForeignPtr
import Foreign.Ptr (IntPtr(..), WordPtr(..))
-- So we can give Data instance for IntPtr and WordPtr
--import GHC.Stable -- So we can give Data instance for StablePtr
--import GHC.ST -- So we can give Data instance for ST
--import GHC.Conc -- So we can give Data instance for MVar & Co.
import GHC.Arr -- So we can give Data instance for Array
import qualified GHC.Generics as Generics (Fixity(..))
import GHC.Generics hiding (Fixity(..))
-- So we can give Data instance for U1, V1, ...
------------------------------------------------------------------------------
--
-- The Data class
--
------------------------------------------------------------------------------
{- |
The 'Data' class comprehends a fundamental primitive 'gfoldl' for
folding over constructor applications, say terms. This primitive can
be instantiated in several ways to map over the immediate subterms
of a term; see the @gmap@ combinators later in this class. Indeed, a
generic programmer does not necessarily need to use the ingenious gfoldl
primitive but rather the intuitive @gmap@ combinators. The 'gfoldl'
primitive is completed by means to query top-level constructors, to
turn constructor representations into proper terms, and to list all
possible datatype constructors. This completion allows us to serve
generic programming scenarios like read, show, equality, term generation.
The combinators 'gmapT', 'gmapQ', 'gmapM', etc are all provided with
default definitions in terms of 'gfoldl', leaving open the opportunity
to provide datatype-specific definitions.
(The inclusion of the @gmap@ combinators as members of class 'Data'
allows the programmer or the compiler to derive specialised, and maybe
more efficient code per datatype. /Note/: 'gfoldl' is more higher-order
than the @gmap@ combinators. This is subject to ongoing benchmarking
experiments. It might turn out that the @gmap@ combinators will be
moved out of the class 'Data'.)
Conceptually, the definition of the @gmap@ combinators in terms of the
primitive 'gfoldl' requires the identification of the 'gfoldl' function
arguments. Technically, we also need to identify the type constructor
@c@ for the construction of the result type from the folded term type.
In the definition of @gmapQ@/x/ combinators, we use phantom type
constructors for the @c@ in the type of 'gfoldl' because the result type
of a query does not involve the (polymorphic) type of the term argument.
In the definition of 'gmapQl' we simply use the plain constant type
constructor because 'gfoldl' is left-associative anyway and so it is
readily suited to fold a left-associative binary operation over the
immediate subterms. In the definition of gmapQr, extra effort is
needed. We use a higher-order accumulation trick to mediate between
left-associative constructor application vs. right-associative binary
operation (e.g., @(:)@). When the query is meant to compute a value
of type @r@, then the result type within generic folding is @r -> r@.
So the result of folding is a function to which we finally pass the
right unit.
With the @-XDeriveDataTypeable@ option, GHC can generate instances of the
'Data' class automatically. For example, given the declaration
> data T a b = C1 a b | C2 deriving (Typeable, Data)
GHC will generate an instance that is equivalent to
> instance (Data a, Data b) => Data (T a b) where
> gfoldl k z (C1 a b) = z C1 `k` a `k` b
> gfoldl k z C2 = z C2
>
> gunfold k z c = case constrIndex c of
> 1 -> k (k (z C1))
> 2 -> z C2
>
> toConstr (C1 _ _) = con_C1
> toConstr C2 = con_C2
>
> dataTypeOf _ = ty_T
>
> con_C1 = mkConstr ty_T "C1" [] Prefix
> con_C2 = mkConstr ty_T "C2" [] Prefix
> ty_T = mkDataType "Module.T" [con_C1, con_C2]
This is suitable for datatypes that are exported transparently.
-}
class Typeable a => Data a where
-- | Left-associative fold operation for constructor applications.
--
-- The type of 'gfoldl' is a headache, but operationally it is a simple
-- generalisation of a list fold.
--
-- The default definition for 'gfoldl' is @'const' 'id'@, which is
-- suitable for abstract datatypes with no substructures.
gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b)
-- ^ defines how nonempty constructor applications are
-- folded. It takes the folded tail of the constructor
-- application and its head, i.e., an immediate subterm,
-- and combines them in some way.
-> (forall g. g -> c g)
-- ^ defines how the empty constructor application is
-- folded, like the neutral \/ start element for list
-- folding.
-> a
-- ^ structure to be folded.
-> c a
-- ^ result, with a type defined in terms of @a@, but
-- variability is achieved by means of type constructor
-- @c@ for the construction of the actual result type.
-- See the 'Data' instances in this file for an illustration of 'gfoldl'.
gfoldl _ z = z
-- | Unfolding constructor applications
gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r)
-> Constr
-> c a
-- | Obtaining the constructor from a given datum.
-- For proper terms, this is meant to be the top-level constructor.
-- Primitive datatypes are here viewed as potentially infinite sets of
-- values (i.e., constructors).
toConstr :: a -> Constr
-- | The outer type constructor of the type
dataTypeOf :: a -> DataType
------------------------------------------------------------------------------
--
-- Mediate types and type constructors
--
------------------------------------------------------------------------------
-- | Mediate types and unary type constructors.
--
-- In 'Data' instances of the form
--
-- @
-- instance (Data a, ...) => Data (T a)
-- @
--
-- 'dataCast1' should be defined as 'gcast1'.
--
-- The default definition is @'const' 'Nothing'@, which is appropriate
-- for instances of other forms.
dataCast1 :: Typeable t
=> (forall d. Data d => c (t d))
-> Maybe (c a)
dataCast1 _ = Nothing
-- | Mediate types and binary type constructors.
--
-- In 'Data' instances of the form
--
-- @
-- instance (Data a, Data b, ...) => Data (T a b)
-- @
--
-- 'dataCast2' should be defined as 'gcast2'.
--
-- The default definition is @'const' 'Nothing'@, which is appropriate
-- for instances of other forms.
dataCast2 :: Typeable t
=> (forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c a)
dataCast2 _ = Nothing
------------------------------------------------------------------------------
--
-- Typical generic maps defined in terms of gfoldl
--
------------------------------------------------------------------------------
-- | A generic transformation that maps over the immediate subterms
--
-- The default definition instantiates the type constructor @c@ in the
-- type of 'gfoldl' to an identity datatype constructor, using the
-- isomorphism pair as injection and projection.
gmapT :: (forall b. Data b => b -> b) -> a -> a
-- Use the Identity datatype constructor
-- to instantiate the type constructor c in the type of gfoldl,
-- and perform injections Identity and projections runIdentity accordingly.
--
gmapT f x0 = runIdentity (gfoldl k Identity x0)
where
k :: Data d => Identity (d->b) -> d -> Identity b
k (Identity c) x = Identity (c (f x))
-- | A generic query with a left-associative binary operator
gmapQl :: forall r r'. (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r
gmapQl o r f = getConst . gfoldl k z
where
k :: Data d => Const r (d->b) -> d -> Const r b
k c x = Const $ (getConst c) `o` f x
z :: g -> Const r g
z _ = Const r
-- | A generic query with a right-associative binary operator
gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r
gmapQr o r0 f x0 = unQr (gfoldl k (const (Qr id)) x0) r0
where
k :: Data d => Qr r (d->b) -> d -> Qr r b
k (Qr c) x = Qr (\r -> c (f x `o` r))
-- | A generic query that processes the immediate subterms and returns a list
-- of results. The list is given in the same order as originally specified
-- in the declaration of the data constructors.
gmapQ :: (forall d. Data d => d -> u) -> a -> [u]
gmapQ f = gmapQr (:) [] f
-- | A generic query that processes one child by index (zero-based)
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> a -> u
gmapQi i f x = case gfoldl k z x of { Qi _ q -> fromJust q }
where
k :: Data d => Qi u (d -> b) -> d -> Qi u b
k (Qi i' q) a = Qi (i'+1) (if i==i' then Just (f a) else q)
z :: g -> Qi q g
z _ = Qi 0 Nothing
-- | A generic monadic transformation that maps over the immediate subterms
--
-- The default definition instantiates the type constructor @c@ in
-- the type of 'gfoldl' to the monad datatype constructor, defining
-- injection and projection using 'return' and '>>='.
gmapM :: forall m. Monad m => (forall d. Data d => d -> m d) -> a -> m a
-- Use immediately the monad datatype constructor
-- to instantiate the type constructor c in the type of gfoldl,
-- so injection and projection is done by return and >>=.
--
gmapM f = gfoldl k return
where
k :: Data d => m (d -> b) -> d -> m b
k c x = do c' <- c
x' <- f x
return (c' x')
-- | Transformation of at least one immediate subterm does not fail
gmapMp :: forall m. MonadPlus m => (forall d. Data d => d -> m d) -> a -> m a
{-
The type constructor that we use here simply keeps track of the fact
if we already succeeded for an immediate subterm; see Mp below. To
this end, we couple the monadic computation with a Boolean.
-}
gmapMp f x = unMp (gfoldl k z x) >>= \(x',b) ->
if b then return x' else mzero
where
z :: g -> Mp m g
z g = Mp (return (g,False))
k :: Data d => Mp m (d -> b) -> d -> Mp m b
k (Mp c) y
= Mp ( c >>= \(h, b) ->
(f y >>= \y' -> return (h y', True))
`mplus` return (h y, b)
)
-- | Transformation of one immediate subterm with success
gmapMo :: forall m. MonadPlus m => (forall d. Data d => d -> m d) -> a -> m a
{-
We use the same pairing trick as for gmapMp,
i.e., we use an extra Bool component to keep track of the
fact whether an immediate subterm was processed successfully.
However, we cut of mapping over subterms once a first subterm
was transformed successfully.
-}
gmapMo f x = unMp (gfoldl k z x) >>= \(x',b) ->
if b then return x' else mzero
where
z :: g -> Mp m g
z g = Mp (return (g,False))
k :: Data d => Mp m (d -> b) -> d -> Mp m b
k (Mp c) y
= Mp ( c >>= \(h,b) -> if b
then return (h y, b)
else (f y >>= \y' -> return (h y',True))
`mplus` return (h y, b)
)
-- | Type constructor for adding counters to queries
data Qi q a = Qi Int (Maybe q)
-- | The type constructor used in definition of gmapQr
newtype Qr r a = Qr { unQr :: r -> r }
-- | The type constructor used in definition of gmapMp
newtype Mp m x = Mp { unMp :: m (x, Bool) }
------------------------------------------------------------------------------
--
-- Generic unfolding
--
------------------------------------------------------------------------------
-- | Build a term skeleton
fromConstr :: Data a => Constr -> a
fromConstr = fromConstrB (errorWithoutStackTrace "Data.Data.fromConstr")
-- | Build a term and use a generic function for subterms
fromConstrB :: Data a
=> (forall d. Data d => d)
-> Constr
-> a
fromConstrB f = runIdentity . gunfold k z
where
k :: forall b r. Data b => Identity (b -> r) -> Identity r
k c = Identity (runIdentity c f)
z :: forall r. r -> Identity r
z = Identity
-- | Monadic variation on 'fromConstrB'
fromConstrM :: forall m a. (Monad m, Data a)
=> (forall d. Data d => m d)
-> Constr
-> m a
fromConstrM f = gunfold k z
where
k :: forall b r. Data b => m (b -> r) -> m r
k c = do { c' <- c; b <- f; return (c' b) }
z :: forall r. r -> m r
z = return
------------------------------------------------------------------------------
--
-- Datatype and constructor representations
--
------------------------------------------------------------------------------
--
-- | Representation of datatypes.
-- A package of constructor representations with names of type and module.
--
data DataType = DataType
{ tycon :: String
, datarep :: DataRep
}
deriving Show -- ^ @since 4.0.0.0
-- | Representation of constructors. Note that equality on constructors
-- with different types may not work -- i.e. the constructors for 'False' and
-- 'Nothing' may compare equal.
data Constr = Constr
{ conrep :: ConstrRep
, constring :: String
, confields :: [String] -- for AlgRep only
, confixity :: Fixity -- for AlgRep only
, datatype :: DataType
}
-- | @since 4.0.0.0
instance Show Constr where
show = constring
-- | Equality of constructors
--
-- @since 4.0.0.0
instance Eq Constr where
c == c' = constrRep c == constrRep c'
-- | Public representation of datatypes
data DataRep = AlgRep [Constr]
| IntRep
| FloatRep
| CharRep
| NoRep
deriving ( Eq -- ^ @since 4.0.0.0
, Show -- ^ @since 4.0.0.0
)
-- The list of constructors could be an array, a balanced tree, or others.
-- | Public representation of constructors
data ConstrRep = AlgConstr ConIndex
| IntConstr Integer
| FloatConstr Rational
| CharConstr Char
deriving ( Eq -- ^ @since 4.0.0.0
, Show -- ^ @since 4.0.0.0
)
-- | Unique index for datatype constructors,
-- counting from 1 in the order they are given in the program text.
type ConIndex = Int
-- | Fixity of constructors
data Fixity = Prefix
| Infix -- Later: add associativity and precedence
deriving ( Eq -- ^ @since 4.0.0.0
, Show -- ^ @since 4.0.0.0
)
------------------------------------------------------------------------------
--
-- Observers for datatype representations
--
------------------------------------------------------------------------------
-- | Gets the type constructor including the module
dataTypeName :: DataType -> String
dataTypeName = tycon
-- | Gets the public presentation of a datatype
dataTypeRep :: DataType -> DataRep
dataTypeRep = datarep
-- | Gets the datatype of a constructor
constrType :: Constr -> DataType
constrType = datatype
-- | Gets the public presentation of constructors
constrRep :: Constr -> ConstrRep
constrRep = conrep
-- | Look up a constructor by its representation
repConstr :: DataType -> ConstrRep -> Constr
repConstr dt cr =
case (dataTypeRep dt, cr) of
(AlgRep cs, AlgConstr i) -> cs !! (i-1)
(IntRep, IntConstr i) -> mkIntegralConstr dt i
(FloatRep, FloatConstr f) -> mkRealConstr dt f
(CharRep, CharConstr c) -> mkCharConstr dt c
_ -> errorWithoutStackTrace "Data.Data.repConstr: The given ConstrRep does not fit to the given DataType."
------------------------------------------------------------------------------
--
-- Representations of algebraic data types
--
------------------------------------------------------------------------------
-- | Constructs an algebraic datatype
mkDataType :: String -> [Constr] -> DataType
mkDataType str cs = DataType
{ tycon = str
, datarep = AlgRep cs
}
-- | Constructs a constructor
mkConstr :: DataType -> String -> [String] -> Fixity -> Constr
mkConstr dt str fields fix =
Constr
{ conrep = AlgConstr idx
, constring = str
, confields = fields
, confixity = fix
, datatype = dt
}
where
idx = head [ i | (c,i) <- dataTypeConstrs dt `zip` [1..],
showConstr c == str ]
-- | Gets the constructors of an algebraic datatype
dataTypeConstrs :: DataType -> [Constr]
dataTypeConstrs dt = case datarep dt of
(AlgRep cons) -> cons
_ -> errorWithoutStackTrace $ "Data.Data.dataTypeConstrs is not supported for "
++ dataTypeName dt ++
", as it is not an algebraic data type."
-- | Gets the field labels of a constructor. The list of labels
-- is returned in the same order as they were given in the original
-- constructor declaration.
constrFields :: Constr -> [String]
constrFields = confields
-- | Gets the fixity of a constructor
constrFixity :: Constr -> Fixity
constrFixity = confixity
------------------------------------------------------------------------------
--
-- From strings to constr's and vice versa: all data types
--
------------------------------------------------------------------------------
-- | Gets the string for a constructor
showConstr :: Constr -> String
showConstr = constring
-- | Lookup a constructor via a string
readConstr :: DataType -> String -> Maybe Constr
readConstr dt str =
case dataTypeRep dt of
AlgRep cons -> idx cons
IntRep -> mkReadCon (\i -> (mkPrimCon dt str (IntConstr i)))
FloatRep -> mkReadCon ffloat
CharRep -> mkReadCon (\c -> (mkPrimCon dt str (CharConstr c)))
NoRep -> Nothing
where
-- Read a value and build a constructor
mkReadCon :: Read t => (t -> Constr) -> Maybe Constr
mkReadCon f = case (reads str) of
[(t,"")] -> Just (f t)
_ -> Nothing
-- Traverse list of algebraic datatype constructors
idx :: [Constr] -> Maybe Constr
idx cons = let fit = filter ((==) str . showConstr) cons
in if fit == []
then Nothing
else Just (head fit)
ffloat :: Double -> Constr
ffloat = mkPrimCon dt str . FloatConstr . toRational
------------------------------------------------------------------------------
--
-- Convenience functions: algebraic data types
--
------------------------------------------------------------------------------
-- | Test for an algebraic type
isAlgType :: DataType -> Bool
isAlgType dt = case datarep dt of
(AlgRep _) -> True
_ -> False
-- | Gets the constructor for an index (algebraic datatypes only)
indexConstr :: DataType -> ConIndex -> Constr
indexConstr dt idx = case datarep dt of
(AlgRep cs) -> cs !! (idx-1)
_ -> errorWithoutStackTrace $ "Data.Data.indexConstr is not supported for "
++ dataTypeName dt ++
", as it is not an algebraic data type."
-- | Gets the index of a constructor (algebraic datatypes only)
constrIndex :: Constr -> ConIndex
constrIndex con = case constrRep con of
(AlgConstr idx) -> idx
_ -> errorWithoutStackTrace $ "Data.Data.constrIndex is not supported for "
++ dataTypeName (constrType con) ++
", as it is not an algebraic data type."
-- | Gets the maximum constructor index of an algebraic datatype
maxConstrIndex :: DataType -> ConIndex
maxConstrIndex dt = case dataTypeRep dt of
AlgRep cs -> length cs
_ -> errorWithoutStackTrace $ "Data.Data.maxConstrIndex is not supported for "
++ dataTypeName dt ++
", as it is not an algebraic data type."
------------------------------------------------------------------------------
--
-- Representation of primitive types
--
------------------------------------------------------------------------------
-- | Constructs the 'Int' type
mkIntType :: String -> DataType
mkIntType = mkPrimType IntRep
-- | Constructs the 'Float' type
mkFloatType :: String -> DataType
mkFloatType = mkPrimType FloatRep
-- | Constructs the 'Char' type
mkCharType :: String -> DataType
mkCharType = mkPrimType CharRep
-- | Helper for 'mkIntType', 'mkFloatType'
mkPrimType :: DataRep -> String -> DataType
mkPrimType dr str = DataType
{ tycon = str
, datarep = dr
}
-- Makes a constructor for primitive types
mkPrimCon :: DataType -> String -> ConstrRep -> Constr
mkPrimCon dt str cr = Constr
{ datatype = dt
, conrep = cr
, constring = str
, confields = errorWithoutStackTrace "Data.Data.confields"
, confixity = errorWithoutStackTrace "Data.Data.confixity"
}
mkIntegralConstr :: (Integral a, Show a) => DataType -> a -> Constr
mkIntegralConstr dt i = case datarep dt of
IntRep -> mkPrimCon dt (show i) (IntConstr (toInteger i))
_ -> errorWithoutStackTrace $ "Data.Data.mkIntegralConstr is not supported for "
++ dataTypeName dt ++
", as it is not an Integral data type."
mkRealConstr :: (Real a, Show a) => DataType -> a -> Constr
mkRealConstr dt f = case datarep dt of
FloatRep -> mkPrimCon dt (show f) (FloatConstr (toRational f))
_ -> errorWithoutStackTrace $ "Data.Data.mkRealConstr is not supported for "
++ dataTypeName dt ++
", as it is not a Real data type."
-- | Makes a constructor for 'Char'.
mkCharConstr :: DataType -> Char -> Constr
mkCharConstr dt c = case datarep dt of
CharRep -> mkPrimCon dt (show c) (CharConstr c)
_ -> errorWithoutStackTrace $ "Data.Data.mkCharConstr is not supported for "
++ dataTypeName dt ++
", as it is not an Char data type."
------------------------------------------------------------------------------
--
-- Non-representations for non-representable types
--
------------------------------------------------------------------------------
-- | Constructs a non-representation for a non-representable type
mkNoRepType :: String -> DataType
mkNoRepType str = DataType
{ tycon = str
, datarep = NoRep
}
-- | Test for a non-representable type
isNorepType :: DataType -> Bool
isNorepType dt = case datarep dt of
NoRep -> True
_ -> False
------------------------------------------------------------------------------
--
-- Convenience for qualified type constructors
--
------------------------------------------------------------------------------
-- | Gets the unqualified type constructor:
-- drop *.*.*... before name
--
tyconUQname :: String -> String
tyconUQname x = let x' = dropWhile (not . (==) '.') x
in if x' == [] then x else tyconUQname (tail x')
-- | Gets the module of a type constructor:
-- take *.*.*... before name
tyconModule :: String -> String
tyconModule x = let (a,b) = break ((==) '.') x
in if b == ""
then b
else a ++ tyconModule' (tail b)
where
tyconModule' y = let y' = tyconModule y
in if y' == "" then "" else ('.':y')
------------------------------------------------------------------------------
------------------------------------------------------------------------------
--
-- Instances of the Data class for Prelude-like types.
-- We define top-level definitions for representations.
--
------------------------------------------------------------------------------
-- | @since 4.0.0.0
deriving instance Data Bool
------------------------------------------------------------------------------
charType :: DataType
charType = mkCharType "Prelude.Char"
-- | @since 4.0.0.0
instance Data Char where
toConstr x = mkCharConstr charType x
gunfold _ z c = case constrRep c of
(CharConstr x) -> z x
_ -> errorWithoutStackTrace $ "Data.Data.gunfold: Constructor " ++ show c
++ " is not of type Char."
dataTypeOf _ = charType
------------------------------------------------------------------------------
floatType :: DataType
floatType = mkFloatType "Prelude.Float"
-- | @since 4.0.0.0
instance Data Float where
toConstr = mkRealConstr floatType
gunfold _ z c = case constrRep c of
(FloatConstr x) -> z (realToFrac x)
_ -> errorWithoutStackTrace $ "Data.Data.gunfold: Constructor " ++ show c
++ " is not of type Float."
dataTypeOf _ = floatType
------------------------------------------------------------------------------
doubleType :: DataType
doubleType = mkFloatType "Prelude.Double"
-- | @since 4.0.0.0
instance Data Double where
toConstr = mkRealConstr doubleType
gunfold _ z c = case constrRep c of
(FloatConstr x) -> z (realToFrac x)
_ -> errorWithoutStackTrace $ "Data.Data.gunfold: Constructor " ++ show c
++ " is not of type Double."
dataTypeOf _ = doubleType
------------------------------------------------------------------------------
intType :: DataType
intType = mkIntType "Prelude.Int"
-- | @since 4.0.0.0
instance Data Int where
toConstr x = mkIntegralConstr intType x
gunfold _ z c = case constrRep c of
(IntConstr x) -> z (fromIntegral x)
_ -> errorWithoutStackTrace $ "Data.Data.gunfold: Constructor " ++ show c
++ " is not of type Int."
dataTypeOf _ = intType
------------------------------------------------------------------------------
integerType :: DataType
integerType = mkIntType "Prelude.Integer"
-- | @since 4.0.0.0
instance Data Integer where
toConstr = mkIntegralConstr integerType
gunfold _ z c = case constrRep c of
(IntConstr x) -> z x
_ -> errorWithoutStackTrace $ "Data.Data.gunfold: Constructor " ++ show c
++ " is not of type Integer."
dataTypeOf _ = integerType
------------------------------------------------------------------------------
-- This follows the same style as the other integral 'Data' instances
-- defined in "Data.Data"
naturalType :: DataType
naturalType = mkIntType "Numeric.Natural.Natural"
-- | @since 4.8.0.0
instance Data Natural where
toConstr x = mkIntegralConstr naturalType x
gunfold _ z c = case constrRep c of
(IntConstr x) -> z (fromIntegral x)
_ -> errorWithoutStackTrace $ "Data.Data.gunfold: Constructor " ++ show c
++ " is not of type Natural"
dataTypeOf _ = naturalType
------------------------------------------------------------------------------
int8Type :: DataType
int8Type = mkIntType "Data.Int.Int8"
-- | @since 4.0.0.0
instance Data Int8 where
toConstr x = mkIntegralConstr int8Type x
gunfold _ z c = case constrRep c of
(IntConstr x) -> z (fromIntegral x)
_ -> errorWithoutStackTrace $ "Data.Data.gunfold: Constructor " ++ show c
++ " is not of type Int8."
dataTypeOf _ = int8Type
------------------------------------------------------------------------------
int16Type :: DataType
int16Type = mkIntType "Data.Int.Int16"
-- | @since 4.0.0.0
instance Data Int16 where
toConstr x = mkIntegralConstr int16Type x
gunfold _ z c = case constrRep c of
(IntConstr x) -> z (fromIntegral x)
_ -> errorWithoutStackTrace $ "Data.Data.gunfold: Constructor " ++ show c
++ " is not of type Int16."
dataTypeOf _ = int16Type
------------------------------------------------------------------------------
int32Type :: DataType
int32Type = mkIntType "Data.Int.Int32"
-- | @since 4.0.0.0
instance Data Int32 where
toConstr x = mkIntegralConstr int32Type x
gunfold _ z c = case constrRep c of
(IntConstr x) -> z (fromIntegral x)
_ -> errorWithoutStackTrace $ "Data.Data.gunfold: Constructor " ++ show c
++ " is not of type Int32."
dataTypeOf _ = int32Type
------------------------------------------------------------------------------
int64Type :: DataType
int64Type = mkIntType "Data.Int.Int64"
-- | @since 4.0.0.0
instance Data Int64 where
toConstr x = mkIntegralConstr int64Type x
gunfold _ z c = case constrRep c of
(IntConstr x) -> z (fromIntegral x)
_ -> errorWithoutStackTrace $ "Data.Data.gunfold: Constructor " ++ show c
++ " is not of type Int64."
dataTypeOf _ = int64Type
------------------------------------------------------------------------------
wordType :: DataType
wordType = mkIntType "Data.Word.Word"
-- | @since 4.0.0.0
instance Data Word where
toConstr x = mkIntegralConstr wordType x
gunfold _ z c = case constrRep c of
(IntConstr x) -> z (fromIntegral x)
_ -> errorWithoutStackTrace $ "Data.Data.gunfold: Constructor " ++ show c
++ " is not of type Word"
dataTypeOf _ = wordType
------------------------------------------------------------------------------
word8Type :: DataType
word8Type = mkIntType "Data.Word.Word8"
-- | @since 4.0.0.0
instance Data Word8 where
toConstr x = mkIntegralConstr word8Type x
gunfold _ z c = case constrRep c of
(IntConstr x) -> z (fromIntegral x)
_ -> errorWithoutStackTrace $ "Data.Data.gunfold: Constructor " ++ show c
++ " is not of type Word8."
dataTypeOf _ = word8Type
------------------------------------------------------------------------------
word16Type :: DataType
word16Type = mkIntType "Data.Word.Word16"
-- | @since 4.0.0.0
instance Data Word16 where
toConstr x = mkIntegralConstr word16Type x
gunfold _ z c = case constrRep c of
(IntConstr x) -> z (fromIntegral x)
_ -> errorWithoutStackTrace $ "Data.Data.gunfold: Constructor " ++ show c
++ " is not of type Word16."
dataTypeOf _ = word16Type
------------------------------------------------------------------------------
word32Type :: DataType
word32Type = mkIntType "Data.Word.Word32"
-- | @since 4.0.0.0
instance Data Word32 where
toConstr x = mkIntegralConstr word32Type x
gunfold _ z c = case constrRep c of
(IntConstr x) -> z (fromIntegral x)
_ -> errorWithoutStackTrace $ "Data.Data.gunfold: Constructor " ++ show c
++ " is not of type Word32."
dataTypeOf _ = word32Type
------------------------------------------------------------------------------
word64Type :: DataType
word64Type = mkIntType "Data.Word.Word64"
-- | @since 4.0.0.0
instance Data Word64 where
toConstr x = mkIntegralConstr word64Type x
gunfold _ z c = case constrRep c of
(IntConstr x) -> z (fromIntegral x)
_ -> errorWithoutStackTrace $ "Data.Data.gunfold: Constructor " ++ show c
++ " is not of type Word64."
dataTypeOf _ = word64Type
------------------------------------------------------------------------------
ratioConstr :: Constr
ratioConstr = mkConstr ratioDataType ":%" [] Infix
ratioDataType :: DataType
ratioDataType = mkDataType "GHC.Real.Ratio" [ratioConstr]
-- NB: This Data instance intentionally uses the (%) smart constructor instead
-- of the internal (:%) constructor to preserve the invariant that a Ratio
-- value is reduced to normal form. See #10011.
-- | @since 4.0.0.0
instance (Data a, Integral a) => Data (Ratio a) where
gfoldl k z (a :% b) = z (%) `k` a `k` b
toConstr _ = ratioConstr
gunfold k z c | constrIndex c == 1 = k (k (z (%)))
gunfold _ _ _ = errorWithoutStackTrace "Data.Data.gunfold(Ratio)"
dataTypeOf _ = ratioDataType
------------------------------------------------------------------------------
nilConstr :: Constr
nilConstr = mkConstr listDataType "[]" [] Prefix
consConstr :: Constr
consConstr = mkConstr listDataType "(:)" [] Infix
listDataType :: DataType
listDataType = mkDataType "Prelude.[]" [nilConstr,consConstr]
-- | @since 4.0.0.0
instance Data a => Data [a] where
gfoldl _ z [] = z []
gfoldl f z (x:xs) = z (:) `f` x `f` xs
toConstr [] = nilConstr
toConstr (_:_) = consConstr
gunfold k z c = case constrIndex c of
1 -> z []
2 -> k (k (z (:)))
_ -> errorWithoutStackTrace "Data.Data.gunfold(List)"
dataTypeOf _ = listDataType
dataCast1 f = gcast1 f
--
-- The gmaps are given as an illustration.
-- This shows that the gmaps for lists are different from list maps.
--
gmapT _ [] = []
gmapT f (x:xs) = (f x:f xs)
gmapQ _ [] = []
gmapQ f (x:xs) = [f x,f xs]
gmapM _ [] = return []
gmapM f (x:xs) = f x >>= \x' -> f xs >>= \xs' -> return (x':xs')
------------------------------------------------------------------------------
-- | @since 4.14.0.0
deriving instance (Typeable (a :: Type -> Type -> Type), Typeable b, Typeable c,
Data (a b c))
=> Data (WrappedArrow a b c)
-- | @since 4.14.0.0
deriving instance (Typeable (m :: Type -> Type), Typeable a, Data (m a))
=> Data (WrappedMonad m a)
-- | @since 4.14.0.0
deriving instance Data a => Data (ZipList a)
-- | @since 4.9.0.0
deriving instance Data a => Data (NonEmpty a)
-- | @since 4.0.0.0
deriving instance Data a => Data (Maybe a)
-- | @since 4.0.0.0
deriving instance Data Ordering
-- | @since 4.0.0.0
deriving instance (Data a, Data b) => Data (Either a b)
-- | @since 4.0.0.0
deriving instance Data ()
-- | @since 4.0.0.0
deriving instance (Data a, Data b) => Data (a,b)
-- | @since 4.0.0.0
deriving instance (Data a, Data b, Data c) => Data (a,b,c)
-- | @since 4.0.0.0
deriving instance (Data a, Data b, Data c, Data d)
=> Data (a,b,c,d)
-- | @since 4.0.0.0
deriving instance (Data a, Data b, Data c, Data d, Data e)
=> Data (a,b,c,d,e)
-- | @since 4.0.0.0
deriving instance (Data a, Data b, Data c, Data d, Data e, Data f)
=> Data (a,b,c,d,e,f)
-- | @since 4.0.0.0
deriving instance (Data a, Data b, Data c, Data d, Data e, Data f, Data g)
=> Data (a,b,c,d,e,f,g)
------------------------------------------------------------------------------
-- | @since 4.8.0.0
instance Data a => Data (Ptr a) where
toConstr _ = errorWithoutStackTrace "Data.Data.toConstr(Ptr)"
gunfold _ _ = errorWithoutStackTrace "Data.Data.gunfold(Ptr)"
dataTypeOf _ = mkNoRepType "GHC.Ptr.Ptr"
dataCast1 x = gcast1 x
------------------------------------------------------------------------------
-- | @since 4.8.0.0
instance Data a => Data (ForeignPtr a) where
toConstr _ = errorWithoutStackTrace "Data.Data.toConstr(ForeignPtr)"
gunfold _ _ = errorWithoutStackTrace "Data.Data.gunfold(ForeignPtr)"
dataTypeOf _ = mkNoRepType "GHC.ForeignPtr.ForeignPtr"
dataCast1 x = gcast1 x
-- | @since 4.11.0.0
deriving instance Data IntPtr
-- | @since 4.11.0.0
deriving instance Data WordPtr
------------------------------------------------------------------------------
-- The Data instance for Array preserves data abstraction at the cost of
-- inefficiency. We omit reflection services for the sake of data abstraction.
-- | @since 4.8.0.0
instance (Data a, Data b, Ix a) => Data (Array a b)
where
gfoldl f z a = z (listArray (bounds a)) `f` (elems a)
toConstr _ = errorWithoutStackTrace "Data.Data.toConstr(Array)"
gunfold _ _ = errorWithoutStackTrace "Data.Data.gunfold(Array)"
dataTypeOf _ = mkNoRepType "Data.Array.Array"
dataCast2 x = gcast2 x
----------------------------------------------------------------------------
-- Data instance for Proxy
-- | @since 4.7.0.0
deriving instance (Data t) => Data (Proxy t)
-- | @since 4.7.0.0
deriving instance (a ~ b, Data a) => Data (a :~: b)
-- | @since 4.10.0.0
deriving instance (Typeable i, Typeable j, Typeable a, Typeable b,
(a :: i) ~~ (b :: j))
=> Data (a :~~: b)
-- | @since 4.7.0.0
deriving instance (Coercible a b, Data a, Data b) => Data (Coercion a b)
-- | @since 4.9.0.0
deriving instance Data a => Data (Identity a)
-- | @since 4.10.0.0
deriving instance (Typeable k, Data a, Typeable (b :: k)) => Data (Const a b)
-- | @since 4.7.0.0
deriving instance Data Version
----------------------------------------------------------------------------
-- Data instances for Data.Monoid wrappers
-- | @since 4.8.0.0
deriving instance Data a => Data (Dual a)
-- | @since 4.8.0.0
deriving instance Data All
-- | @since 4.8.0.0
deriving instance Data Any
-- | @since 4.8.0.0
deriving instance Data a => Data (Sum a)
-- | @since 4.8.0.0
deriving instance Data a => Data (Product a)
-- | @since 4.8.0.0
deriving instance Data a => Data (First a)
-- | @since 4.8.0.0
deriving instance Data a => Data (Last a)
-- | @since 4.8.0.0
deriving instance (Data (f a), Data a, Typeable f) => Data (Alt f a)
-- | @since 4.12.0.0
deriving instance (Data (f a), Data a, Typeable f) => Data (Ap f a)
----------------------------------------------------------------------------
-- Data instances for GHC.Generics representations
-- | @since 4.9.0.0
deriving instance Data p => Data (U1 p)
-- | @since 4.9.0.0
deriving instance Data p => Data (Par1 p)
-- | @since 4.9.0.0
deriving instance (Data (f p), Typeable f, Data p) => Data (Rec1 f p)
-- | @since 4.9.0.0
deriving instance (Typeable i, Data p, Data c) => Data (K1 i c p)
-- | @since 4.9.0.0
deriving instance (Data p, Data (f p), Typeable c, Typeable i, Typeable f)
=> Data (M1 i c f p)
-- | @since 4.9.0.0
deriving instance (Typeable f, Typeable g, Data p, Data (f p), Data (g p))
=> Data ((f :+: g) p)
-- | @since 4.9.0.0
deriving instance (Typeable (f :: Type -> Type), Typeable (g :: Type -> Type),
Data p, Data (f (g p)))
=> Data ((f :.: g) p)
-- | @since 4.9.0.0
deriving instance Data p => Data (V1 p)
-- | @since 4.9.0.0
deriving instance (Typeable f, Typeable g, Data p, Data (f p), Data (g p))
=> Data ((f :*: g) p)
-- | @since 4.9.0.0
deriving instance Data Generics.Fixity
-- | @since 4.9.0.0
deriving instance Data Associativity
-- | @since 4.9.0.0
deriving instance Data SourceUnpackedness
-- | @since 4.9.0.0
deriving instance Data SourceStrictness
-- | @since 4.9.0.0
deriving instance Data DecidedStrictness
----------------------------------------------------------------------------
-- Data instances for Data.Ord
-- | @since 4.12.0.0
deriving instance Data a => Data (Down a)
|