summaryrefslogtreecommitdiff
path: root/libraries/base/Data/Foldable.hs
blob: 722b68f694742359cd9c0b3b94d2778b57d3e1b7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE ScopedTypeVariables #-}

-----------------------------------------------------------------------------
-- |
-- Module      :  Data.Foldable
-- Copyright   :  Ross Paterson 2005
-- License     :  BSD-style (see the LICENSE file in the distribution)
--
-- Maintainer  :  libraries@haskell.org
-- Stability   :  experimental
-- Portability :  portable
--
-- Class of data structures that can be folded to a summary value.
--
-----------------------------------------------------------------------------

module Data.Foldable (
    -- * Folds
    Foldable(..),
    -- ** Special biased folds
    foldrM,
    foldlM,
    -- ** Folding actions
    -- *** Applicative actions
    traverse_,
    for_,
    sequenceA_,
    asum,
    -- *** Monadic actions
    mapM_,
    forM_,
    sequence_,
    msum,
    -- ** Specialized folds
    concat,
    concatMap,
    and,
    or,
    any,
    all,
    maximumBy,
    minimumBy,
    -- ** Searches
    notElem,
    find
    ) where

import Data.Bool
import Data.Either
import Data.Eq
import qualified GHC.List as List
import Data.Maybe
import Data.Monoid
import Data.Ord
import Data.Proxy

import GHC.Arr  ( Array(..), elems, numElements,
                  foldlElems, foldrElems,
                  foldlElems', foldrElems',
                  foldl1Elems, foldr1Elems)
import GHC.Base hiding ( foldr )
import GHC.Num  ( Num(..) )

infix  4 `elem`, `notElem`

-- | Data structures that can be folded.
--
-- For example, given a data type
--
-- > data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
--
-- a suitable instance would be
--
-- > instance Foldable Tree where
-- >    foldMap f Empty = mempty
-- >    foldMap f (Leaf x) = f x
-- >    foldMap f (Node l k r) = foldMap f l `mappend` f k `mappend` foldMap f r
--
-- This is suitable even for abstract types, as the monoid is assumed
-- to satisfy the monoid laws.  Alternatively, one could define @foldr@:
--
-- > instance Foldable Tree where
-- >    foldr f z Empty = z
-- >    foldr f z (Leaf x) = f x z
-- >    foldr f z (Node l k r) = foldr f (f k (foldr f z r)) l
--
-- @Foldable@ instances are expected to satisfy the following laws:
--
-- > foldr f z t = appEndo (foldMap (Endo . f) t ) z
--
-- > foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z
--
-- > fold = foldMap id
--
-- @sum@, @product@, @maximum@, and @minimum@ should all be essentially
-- equivalent to @foldMap@ forms, such as
--
-- > sum = getSum . foldMap Sum
--
-- but may be less defined.
--
-- If the type is also a 'Functor' instance, it should satisfy
--
-- > foldMap f = fold . fmap f
--
-- which implies that
--
-- > foldMap f . fmap g = foldMap (f . g)

class Foldable t where
    {-# MINIMAL foldMap | foldr #-}

    -- | Combine the elements of a structure using a monoid.
    fold :: Monoid m => t m -> m
    fold = foldMap id

    -- | Map each element of the structure to a monoid,
    -- and combine the results.
    foldMap :: Monoid m => (a -> m) -> t a -> m
    {-# INLINE foldMap #-}
    -- This INLINE allows more list functions to fuse. See Trac #9848.
    foldMap f = foldr (mappend . f) mempty

    -- | Right-associative fold of a structure.
    --
    -- @'foldr' f z = 'Prelude.foldr' f z . 'toList'@
    foldr :: (a -> b -> b) -> b -> t a -> b
    foldr f z t = appEndo (foldMap (Endo #. f) t) z

    -- | Right-associative fold of a structure,
    -- but with strict application of the operator.
    foldr' :: (a -> b -> b) -> b -> t a -> b
    foldr' f z0 xs = foldl f' id xs z0
      where f' k x z = k $! f x z

    -- | Left-associative fold of a structure.
    --
    -- @'foldl' f z = 'Prelude.foldl' f z . 'toList'@
    foldl :: (b -> a -> b) -> b -> t a -> b
    foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z
    -- There's no point mucking around with coercions here,
    -- because flip forces us to build a new function anyway.

    -- | Left-associative fold of a structure.
    -- but with strict application of the operator.
    --
    -- @'foldl' f z = 'List.foldl'' f z . 'toList'@
    foldl' :: (b -> a -> b) -> b -> t a -> b
    foldl' f z0 xs = foldr f' id xs z0
      where f' x k z = k $! f z x

    -- | A variant of 'foldr' that has no base case,
    -- and thus may only be applied to non-empty structures.
    --
    -- @'foldr1' f = 'Prelude.foldr1' f . 'toList'@
    foldr1 :: (a -> a -> a) -> t a -> a
    foldr1 f xs = fromMaybe (errorWithoutStackTrace "foldr1: empty structure")
                    (foldr mf Nothing xs)
      where
        mf x m = Just (case m of
                         Nothing -> x
                         Just y  -> f x y)

    -- | A variant of 'foldl' that has no base case,
    -- and thus may only be applied to non-empty structures.
    --
    -- @'foldl1' f = 'Prelude.foldl1' f . 'toList'@
    foldl1 :: (a -> a -> a) -> t a -> a
    foldl1 f xs = fromMaybe (errorWithoutStackTrace "foldl1: empty structure")
                    (foldl mf Nothing xs)
      where
        mf m y = Just (case m of
                         Nothing -> y
                         Just x  -> f x y)

    -- | List of elements of a structure, from left to right.
    toList :: t a -> [a]
    {-# INLINE toList #-}
    toList t = build (\ c n -> foldr c n t)

    -- | Test whether the structure is empty. The default implementation is
    -- optimized for structures that are similar to cons-lists, because there
    -- is no general way to do better.
    null :: t a -> Bool
    null = foldr (\_ _ -> False) True

    -- | Returns the size/length of a finite structure as an 'Int'.  The
    -- default implementation is optimized for structures that are similar to
    -- cons-lists, because there is no general way to do better.
    length :: t a -> Int
    length = foldl' (\c _ -> c+1) 0

    -- | Does the element occur in the structure?
    elem :: Eq a => a -> t a -> Bool
    elem = any . (==)

    -- | The largest element of a non-empty structure.
    maximum :: forall a . Ord a => t a -> a
    maximum = fromMaybe (errorWithoutStackTrace "maximum: empty structure") .
       getMax . foldMap (Max #. (Just :: a -> Maybe a))

    -- | The least element of a non-empty structure.
    minimum :: forall a . Ord a => t a -> a
    minimum = fromMaybe (errorWithoutStackTrace "minimum: empty structure") .
       getMin . foldMap (Min #. (Just :: a -> Maybe a))

    -- | The 'sum' function computes the sum of the numbers of a structure.
    sum :: Num a => t a -> a
    sum = getSum #. foldMap Sum

    -- | The 'product' function computes the product of the numbers of a
    -- structure.
    product :: Num a => t a -> a
    product = getProduct #. foldMap Product

-- instances for Prelude types

instance Foldable Maybe where
    foldr _ z Nothing = z
    foldr f z (Just x) = f x z

    foldl _ z Nothing = z
    foldl f z (Just x) = f z x

instance Foldable [] where
    elem    = List.elem
    foldl   = List.foldl
    foldl'  = List.foldl'
    foldl1  = List.foldl1
    foldr   = List.foldr
    foldr1  = List.foldr1
    length  = List.length
    maximum = List.maximum
    minimum = List.minimum
    null    = List.null
    product = List.product
    sum     = List.sum
    toList  = id

instance Foldable (Either a) where
    foldMap _ (Left _) = mempty
    foldMap f (Right y) = f y

    foldr _ z (Left _) = z
    foldr f z (Right y) = f y z

    length (Left _)  = 0
    length (Right _) = 1

    null             = isLeft

instance Foldable ((,) a) where
    foldMap f (_, y) = f y

    foldr f z (_, y) = f y z

instance Foldable (Array i) where
    foldr = foldrElems
    foldl = foldlElems
    foldl' = foldlElems'
    foldr' = foldrElems'
    foldl1 = foldl1Elems
    foldr1 = foldr1Elems
    toList = elems
    length = numElements
    null a = numElements a == 0

instance Foldable Proxy where
    foldMap _ _ = mempty
    {-# INLINE foldMap #-}
    fold _ = mempty
    {-# INLINE fold #-}
    foldr _ z _ = z
    {-# INLINE foldr #-}
    foldl _ z _ = z
    {-# INLINE foldl #-}
    foldl1 _ _ = errorWithoutStackTrace "foldl1: Proxy"
    foldr1 _ _ = errorWithoutStackTrace "foldr1: Proxy"
    length _   = 0
    null _     = True
    elem _ _   = False
    sum _      = 0
    product _  = 1

instance Foldable Dual where
    foldMap            = coerce

    elem               = (. getDual) #. (==)
    foldl              = coerce
    foldl'             = coerce
    foldl1 _           = getDual
    foldr f z (Dual x) = f x z
    foldr'             = foldr
    foldr1 _           = getDual
    length _           = 1
    maximum            = getDual
    minimum            = getDual
    null _             = False
    product            = getDual
    sum                = getDual
    toList (Dual x)    = [x]

instance Foldable Sum where
    foldMap            = coerce

    elem               = (. getSum) #. (==)
    foldl              = coerce
    foldl'             = coerce
    foldl1 _           = getSum
    foldr f z (Sum x)  = f x z
    foldr'             = foldr
    foldr1 _           = getSum
    length _           = 1
    maximum            = getSum
    minimum            = getSum
    null _             = False
    product            = getSum
    sum                = getSum
    toList (Sum x)     = [x]

instance Foldable Product where
    foldMap               = coerce

    elem                  = (. getProduct) #. (==)
    foldl                 = coerce
    foldl'                = coerce
    foldl1 _              = getProduct
    foldr f z (Product x) = f x z
    foldr'                = foldr
    foldr1 _              = getProduct
    length _              = 1
    maximum               = getProduct
    minimum               = getProduct
    null _                = False
    product               = getProduct
    sum                   = getProduct
    toList (Product x)    = [x]

instance Foldable First where
    foldMap f = foldMap f . getFirst

instance Foldable Last where
    foldMap f = foldMap f . getLast

-- We don't export Max and Min because, as Edward Kmett pointed out to me,
-- there are two reasonable ways to define them. One way is to use Maybe, as we
-- do here; the other way is to impose a Bounded constraint on the Monoid
-- instance. We may eventually want to add both versions, but we don't want to
-- trample on anyone's toes by imposing Max = MaxMaybe.

newtype Max a = Max {getMax :: Maybe a}
newtype Min a = Min {getMin :: Maybe a}

instance Ord a => Monoid (Max a) where
  mempty = Max Nothing

  {-# INLINE mappend #-}
  m `mappend` Max Nothing = m
  Max Nothing `mappend` n = n
  (Max m@(Just x)) `mappend` (Max n@(Just y))
    | x >= y    = Max m
    | otherwise = Max n

instance Ord a => Monoid (Min a) where
  mempty = Min Nothing

  {-# INLINE mappend #-}
  m `mappend` Min Nothing = m
  Min Nothing `mappend` n = n
  (Min m@(Just x)) `mappend` (Min n@(Just y))
    | x <= y    = Min m
    | otherwise = Min n

-- | Monadic fold over the elements of a structure,
-- associating to the right, i.e. from right to left.
foldrM :: (Foldable t, Monad m) => (a -> b -> m b) -> b -> t a -> m b
foldrM f z0 xs = foldl f' return xs z0
  where f' k x z = f x z >>= k

-- | Monadic fold over the elements of a structure,
-- associating to the left, i.e. from left to right.
foldlM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b
foldlM f z0 xs = foldr f' return xs z0
  where f' x k z = f z x >>= k

-- | Map each element of a structure to an action, evaluate these
-- actions from left to right, and ignore the results. For a version
-- that doesn't ignore the results see 'Data.Traversable.traverse'.
traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f ()
traverse_ f = foldr ((*>) . f) (pure ())

-- | 'for_' is 'traverse_' with its arguments flipped. For a version
-- that doesn't ignore the results see 'Data.Traversable.for'.
--
-- >>> for_ [1..4] print
-- 1
-- 2
-- 3
-- 4
for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f ()
{-# INLINE for_ #-}
for_ = flip traverse_

-- | Map each element of a structure to a monadic action, evaluate
-- these actions from left to right, and ignore the results. For a
-- version that doesn't ignore the results see
-- 'Data.Traversable.mapM'.
--
-- As of base 4.8.0.0, 'mapM_' is just 'traverse_', specialized to
-- 'Monad'.
mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m ()
mapM_ f= foldr ((>>) . f) (return ())

-- | 'forM_' is 'mapM_' with its arguments flipped. For a version that
-- doesn't ignore the results see 'Data.Traversable.forM'.
--
-- As of base 4.8.0.0, 'forM_' is just 'for_', specialized to 'Monad'.
forM_ :: (Foldable t, Monad m) => t a -> (a -> m b) -> m ()
{-# INLINE forM_ #-}
forM_ = flip mapM_

-- | Evaluate each action in the structure from left to right, and
-- ignore the results. For a version that doesn't ignore the results
-- see 'Data.Traversable.sequenceA'.
sequenceA_ :: (Foldable t, Applicative f) => t (f a) -> f ()
sequenceA_ = foldr (*>) (pure ())

-- | Evaluate each monadic action in the structure from left to right,
-- and ignore the results. For a version that doesn't ignore the
-- results see 'Data.Traversable.sequence'.
--
-- As of base 4.8.0.0, 'sequence_' is just 'sequenceA_', specialized
-- to 'Monad'.
sequence_ :: (Foldable t, Monad m) => t (m a) -> m ()
sequence_ = foldr (>>) (return ())

-- | The sum of a collection of actions, generalizing 'concat'.
asum :: (Foldable t, Alternative f) => t (f a) -> f a
{-# INLINE asum #-}
asum = foldr (<|>) empty

-- | The sum of a collection of actions, generalizing 'concat'.
-- As of base 4.8.0.0, 'msum' is just 'asum', specialized to 'MonadPlus'.
msum :: (Foldable t, MonadPlus m) => t (m a) -> m a
{-# INLINE msum #-}
msum = asum

-- | The concatenation of all the elements of a container of lists.
concat :: Foldable t => t [a] -> [a]
concat xs = build (\c n -> foldr (\x y -> foldr c y x) n xs)
{-# INLINE concat #-}

-- | Map a function over all the elements of a container and concatenate
-- the resulting lists.
concatMap :: Foldable t => (a -> [b]) -> t a -> [b]
concatMap f xs = build (\c n -> foldr (\x b -> foldr c b (f x)) n xs)
{-# INLINE concatMap #-}

-- These use foldr rather than foldMap to avoid repeated concatenation.

-- | 'and' returns the conjunction of a container of Bools.  For the
-- result to be 'True', the container must be finite; 'False', however,
-- results from a 'False' value finitely far from the left end.
and :: Foldable t => t Bool -> Bool
and = getAll #. foldMap All

-- | 'or' returns the disjunction of a container of Bools.  For the
-- result to be 'False', the container must be finite; 'True', however,
-- results from a 'True' value finitely far from the left end.
or :: Foldable t => t Bool -> Bool
or = getAny #. foldMap Any

-- | Determines whether any element of the structure satisfies the predicate.
any :: Foldable t => (a -> Bool) -> t a -> Bool
any p = getAny #. foldMap (Any #. p)

-- | Determines whether all elements of the structure satisfy the predicate.
all :: Foldable t => (a -> Bool) -> t a -> Bool
all p = getAll #. foldMap (All #. p)

-- | The largest element of a non-empty structure with respect to the
-- given comparison function.
maximumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a
maximumBy cmp = foldr1 max'
  where max' x y = case cmp x y of
                        GT -> x
                        _  -> y

-- | The least element of a non-empty structure with respect to the
-- given comparison function.
minimumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a
minimumBy cmp = foldr1 min'
  where min' x y = case cmp x y of
                        GT -> y
                        _  -> x

-- | 'notElem' is the negation of 'elem'.
notElem :: (Foldable t, Eq a) => a -> t a -> Bool
notElem x = not . elem x

-- | The 'find' function takes a predicate and a structure and returns
-- the leftmost element of the structure matching the predicate, or
-- 'Nothing' if there is no such element.
find :: Foldable t => (a -> Bool) -> t a -> Maybe a
find p = getFirst . foldMap (\ x -> First (if p x then Just x else Nothing))

-- See Note [Function coercion]
(#.) :: Coercible b c => (b -> c) -> (a -> b) -> (a -> c)
(#.) _f = coerce
{-# INLINE (#.) #-}

{-
Note [Function coercion]
~~~~~~~~~~~~~~~~~~~~~~~~

Several functions here use (#.) instead of (.) to avoid potential efficiency
problems relating to #7542. The problem, in a nutshell:

If N is a newtype constructor, then N x will always have the same
representation as x (something similar applies for a newtype deconstructor).
However, if f is a function,

N . f = \x -> N (f x)

This looks almost the same as f, but the eta expansion lifts it--the lhs could
be _|_, but the rhs never is. This can lead to very inefficient code.  Thus we
steal a technique from Shachaf and Edward Kmett and adapt it to the current
(rather clean) setting. Instead of using  N . f,  we use  N .## f, which is
just

coerce f `asTypeOf` (N . f)

That is, we just *pretend* that f has the right type, and thanks to the safety
of coerce, the type checker guarantees that nothing really goes wrong. We still
have to be a bit careful, though: remember that #. completely ignores the
*value* of its left operand.
-}