summaryrefslogtreecommitdiff
path: root/libraries/base/Data/Foldable.hs
blob: cb13e5ce7ec6f68d3d35f795e1a29f0fcdd4cb47 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE Trustworthy #-}

-----------------------------------------------------------------------------
-- |
-- Module      :  Data.Foldable
-- Copyright   :  Ross Paterson 2005
-- License     :  BSD-style (see the LICENSE file in the distribution)
--
-- Maintainer  :  libraries@haskell.org
-- Stability   :  experimental
-- Portability :  portable
--
-- Class of data structures that can be folded to a summary value.
--
-- Many of these functions generalize "Prelude", "Control.Monad" and
-- "Data.List" functions of the same names from lists to any 'Foldable'
-- functor.  To avoid ambiguity, either import those modules hiding
-- these names or qualify uses of these function names with an alias
-- for this module.
--
-----------------------------------------------------------------------------

module Data.Foldable (
    -- * Folds
    Foldable(..),
    -- ** Special biased folds
    foldrM,
    foldlM,
    -- ** Folding actions
    -- *** Applicative actions
    traverse_,
    for_,
    sequenceA_,
    asum,
    -- *** Monadic actions
    mapM_,
    forM_,
    sequence_,
    msum,
    -- ** Specialized folds
    toList,
    concat,
    concatMap,
    and,
    or,
    any,
    all,
    sum,
    product,
    maximum,
    maximumBy,
    minimum,
    minimumBy,
    -- ** Searches
    elem,
    notElem,
    find
    ) where

import Data.Bool
import Data.Either
import Data.Eq
import qualified Data.OldList as List
import Data.Maybe
import Data.Monoid
import Data.Ord
import Data.Proxy

import GHC.Arr  ( Array(..), Ix(..), elems )
import GHC.Base hiding ( foldr )
import GHC.Num  ( Num(..) )

infix  4 `elem`, `notElem`

-- | Data structures that can be folded.
--
-- Minimal complete definition: 'foldMap' or 'foldr'.
--
-- For example, given a data type
--
-- > data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
--
-- a suitable instance would be
--
-- > instance Foldable Tree where
-- >    foldMap f Empty = mempty
-- >    foldMap f (Leaf x) = f x
-- >    foldMap f (Node l k r) = foldMap f l `mappend` f k `mappend` foldMap f r
--
-- This is suitable even for abstract types, as the monoid is assumed
-- to satisfy the monoid laws.  Alternatively, one could define @foldr@:
--
-- > instance Foldable Tree where
-- >    foldr f z Empty = z
-- >    foldr f z (Leaf x) = f x z
-- >    foldr f z (Node l k r) = foldr f (f k (foldr f z r)) l
--
class Foldable t where
    -- | Combine the elements of a structure using a monoid.
    fold :: Monoid m => t m -> m
    fold = foldMap id

    -- | Map each element of the structure to a monoid,
    -- and combine the results.
    foldMap :: Monoid m => (a -> m) -> t a -> m
    foldMap f = foldr (mappend . f) mempty

    -- | Right-associative fold of a structure.
    --
    -- @'foldr' f z = 'Prelude.foldr' f z . 'toList'@
    foldr :: (a -> b -> b) -> b -> t a -> b
    foldr f z t = appEndo (foldMap (Endo . f) t) z

    -- | Right-associative fold of a structure, 
    -- but with strict application of the operator.
    foldr' :: (a -> b -> b) -> b -> t a -> b
    foldr' f z0 xs = foldl f' id xs z0
      where f' k x z = k $! f x z

    -- | Left-associative fold of a structure.
    --
    -- @'foldl' f z = 'Prelude.foldl' f z . 'toList'@
    foldl :: (b -> a -> b) -> b -> t a -> b
    foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z

    -- | Left-associative fold of a structure.
    -- but with strict application of the operator.
    --
    -- @'foldl' f z = 'List.foldl'' f z . 'toList'@
    foldl' :: (b -> a -> b) -> b -> t a -> b
    foldl' f z0 xs = foldr f' id xs z0
      where f' x k z = k $! f z x

    -- | A variant of 'foldr' that has no base case,
    -- and thus may only be applied to non-empty structures.
    --
    -- @'foldr1' f = 'Prelude.foldr1' f . 'toList'@
    foldr1 :: (a -> a -> a) -> t a -> a
    foldr1 f xs = fromMaybe (error "foldr1: empty structure")
                    (foldr mf Nothing xs)
      where
        mf x Nothing = Just x
        mf x (Just y) = Just (f x y)

    -- | A variant of 'foldl' that has no base case,
    -- and thus may only be applied to non-empty structures.
    --
    -- @'foldl1' f = 'Prelude.foldl1' f . 'toList'@
    foldl1 :: (a -> a -> a) -> t a -> a
    foldl1 f xs = fromMaybe (error "foldl1: empty structure")
                    (foldl mf Nothing xs)
      where
        mf Nothing y = Just y
        mf (Just x) y = Just (f x y)
    {-# MINIMAL foldMap | foldr #-}

-- instances for Prelude types

instance Foldable Maybe where
    foldr _ z Nothing = z
    foldr f z (Just x) = f x z

    foldl _ z Nothing = z
    foldl f z (Just x) = f z x

instance Foldable [] where
    foldr = List.foldr
    foldl = List.foldl
    foldl' = List.foldl'
    foldr1 = List.foldr1
    foldl1 = List.foldl1

instance Foldable (Either a) where
    foldMap _ (Left _) = mempty
    foldMap f (Right y) = f y

    foldr _ z (Left _) = z
    foldr f z (Right y) = f y z

instance Foldable ((,) a) where
    foldMap f (_, y) = f y

    foldr f z (_, y) = f y z

instance Ix i => Foldable (Array i) where
    foldr f z = List.foldr f z . elems
    foldl f z = List.foldl f z . elems
    foldr1 f = List.foldr1 f . elems
    foldl1 f = List.foldl1 f . elems

instance Foldable Proxy where
    foldMap _ _ = mempty
    {-# INLINE foldMap #-}
    fold _ = mempty
    {-# INLINE fold #-}
    foldr _ z _ = z
    {-# INLINE foldr #-}
    foldl _ z _ = z
    {-# INLINE foldl #-}
    foldl1 _ _ = error "foldl1: Proxy"
    {-# INLINE foldl1 #-}
    foldr1 _ _ = error "foldr1: Proxy"
    {-# INLINE foldr1 #-}

-- | Monadic fold over the elements of a structure,
-- associating to the right, i.e. from right to left.
foldrM :: (Foldable t, Monad m) => (a -> b -> m b) -> b -> t a -> m b
foldrM f z0 xs = foldl f' return xs z0
  where f' k x z = f x z >>= k

-- | Monadic fold over the elements of a structure,
-- associating to the left, i.e. from left to right.
foldlM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b
foldlM f z0 xs = foldr f' return xs z0
  where f' x k z = f z x >>= k

-- | Map each element of a structure to an action, evaluate
-- these actions from left to right, and ignore the results.
traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f ()
traverse_ f = foldr ((*>) . f) (pure ())

-- | 'for_' is 'traverse_' with its arguments flipped.
for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f ()
{-# INLINE for_ #-}
for_ = flip traverse_

-- | Map each element of a structure to a monadic action, evaluate
-- these actions from left to right, and ignore the results.
mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m ()
mapM_ f = foldr ((>>) . f) (return ())

-- | 'forM_' is 'mapM_' with its arguments flipped.
forM_ :: (Foldable t, Monad m) => t a -> (a -> m b) -> m ()
{-# INLINE forM_ #-}
forM_ = flip mapM_

-- | Evaluate each action in the structure from left to right,
-- and ignore the results.
sequenceA_ :: (Foldable t, Applicative f) => t (f a) -> f ()
sequenceA_ = foldr (*>) (pure ())

-- | Evaluate each monadic action in the structure from left to right,
-- and ignore the results.
sequence_ :: (Foldable t, Monad m) => t (m a) -> m ()
sequence_ = foldr (>>) (return ())

-- | The sum of a collection of actions, generalizing 'concat'.
asum :: (Foldable t, Alternative f) => t (f a) -> f a
{-# INLINE asum #-}
asum = foldr (<|>) empty

-- | The sum of a collection of actions, generalizing 'concat'.
msum :: (Foldable t, MonadPlus m) => t (m a) -> m a
{-# INLINE msum #-}
msum = foldr mplus mzero

-- These use foldr rather than foldMap to avoid repeated concatenation.

-- | List of elements of a structure.
toList :: Foldable t => t a -> [a]
{-# INLINE toList #-}
toList t = build (\ c n -> foldr c n t)

-- | The concatenation of all the elements of a container of lists.
concat :: Foldable t => t [a] -> [a]
concat = fold

-- | Map a function over all the elements of a container and concatenate
-- the resulting lists.
concatMap :: Foldable t => (a -> [b]) -> t a -> [b]
concatMap = foldMap

-- | 'and' returns the conjunction of a container of Bools.  For the
-- result to be 'True', the container must be finite; 'False', however,
-- results from a 'False' value finitely far from the left end.
and :: Foldable t => t Bool -> Bool
and = getAll . foldMap All

-- | 'or' returns the disjunction of a container of Bools.  For the
-- result to be 'False', the container must be finite; 'True', however,
-- results from a 'True' value finitely far from the left end.
or :: Foldable t => t Bool -> Bool
or = getAny . foldMap Any

-- | Determines whether any element of the structure satisfies the predicate.
any :: Foldable t => (a -> Bool) -> t a -> Bool
any p = getAny . foldMap (Any . p)

-- | Determines whether all elements of the structure satisfy the predicate.
all :: Foldable t => (a -> Bool) -> t a -> Bool
all p = getAll . foldMap (All . p)

-- | The 'sum' function computes the sum of the numbers of a structure.
sum :: (Foldable t, Num a) => t a -> a
sum = getSum . foldMap Sum

-- | The 'product' function computes the product of the numbers of a structure.
product :: (Foldable t, Num a) => t a -> a
product = getProduct . foldMap Product

-- | The largest element of a non-empty structure.
maximum :: (Foldable t, Ord a) => t a -> a
maximum = foldr1 max

-- | The largest element of a non-empty structure with respect to the
-- given comparison function.
maximumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a
maximumBy cmp = foldr1 max'
  where max' x y = case cmp x y of
                        GT -> x
                        _  -> y

-- | The least element of a non-empty structure.
minimum :: (Foldable t, Ord a) => t a -> a
minimum = foldr1 min

-- | The least element of a non-empty structure with respect to the
-- given comparison function.
minimumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a
minimumBy cmp = foldr1 min'
  where min' x y = case cmp x y of
                        GT -> y
                        _  -> x

-- | Does the element occur in the structure?
elem :: (Foldable t, Eq a) => a -> t a -> Bool
elem = any . (==)

-- | 'notElem' is the negation of 'elem'.
notElem :: (Foldable t, Eq a) => a -> t a -> Bool
notElem x = not . elem x

-- | The 'find' function takes a predicate and a structure and returns
-- the leftmost element of the structure matching the predicate, or
-- 'Nothing' if there is no such element.
find :: Foldable t => (a -> Bool) -> t a -> Maybe a
find p = listToMaybe . concatMap (\ x -> if p x then [x] else [])