1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
|
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE CPP, NoImplicitPrelude, MagicHash, UnboxedTuples #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.IORef
-- Copyright : (c) The University of Glasgow 2001
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : experimental
-- Portability : portable
--
-- Mutable references in the IO monad.
--
-----------------------------------------------------------------------------
module Data.IORef
(
-- * IORefs
IORef, -- abstract, instance of: Eq, Typeable
newIORef, -- :: a -> IO (IORef a)
readIORef, -- :: IORef a -> IO a
writeIORef, -- :: IORef a -> a -> IO ()
modifyIORef, -- :: IORef a -> (a -> a) -> IO ()
atomicModifyIORef, -- :: IORef a -> (a -> (a,b)) -> IO b
#if !defined(__PARALLEL_HASKELL__) && defined(__GLASGOW_HASKELL__)
mkWeakIORef, -- :: IORef a -> IO () -> IO (Weak (IORef a))
#endif
-- ** Memory Model
-- $memmodel
) where
#ifdef __HUGS__
import Hugs.IORef
#endif
#ifdef __GLASGOW_HASKELL__
import GHC.Base
import GHC.STRef
import GHC.IORef hiding (atomicModifyIORef)
import qualified GHC.IORef
#if !defined(__PARALLEL_HASKELL__)
import GHC.Weak
#endif
#endif /* __GLASGOW_HASKELL__ */
#ifdef __NHC__
import NHC.IOExtras
( IORef
, newIORef
, readIORef
, writeIORef
, excludeFinalisers
)
#endif
#if defined(__GLASGOW_HASKELL__) && !defined(__PARALLEL_HASKELL__)
-- |Make a 'Weak' pointer to an 'IORef', using the second argument as a finalizer
-- to run when 'IORef' is garbage-collected
mkWeakIORef :: IORef a -> IO () -> IO (Weak (IORef a))
mkWeakIORef r@(IORef (STRef r#)) f = IO $ \s ->
case mkWeak# r# r f s of (# s1, w #) -> (# s1, Weak w #)
#endif
-- |Mutate the contents of an 'IORef'
modifyIORef :: IORef a -> (a -> a) -> IO ()
modifyIORef ref f = readIORef ref >>= writeIORef ref . f
-- |Atomically modifies the contents of an 'IORef'.
--
-- This function is useful for using 'IORef' in a safe way in a multithreaded
-- program. If you only have one 'IORef', then using 'atomicModifyIORef' to
-- access and modify it will prevent race conditions.
--
-- Extending the atomicity to multiple 'IORef's is problematic, so it
-- is recommended that if you need to do anything more complicated
-- then using 'Control.Concurrent.MVar.MVar' instead is a good idea.
--
atomicModifyIORef :: IORef a -> (a -> (a,b)) -> IO b
#if defined(__GLASGOW_HASKELL__)
atomicModifyIORef = GHC.IORef.atomicModifyIORef
#elif defined(__HUGS__)
atomicModifyIORef = plainModifyIORef -- Hugs has no preemption
where plainModifyIORef r f = do
a <- readIORef r
case f a of (a',b) -> writeIORef r a' >> return b
#elif defined(__NHC__)
atomicModifyIORef r f =
excludeFinalisers $ do
a <- readIORef r
let (a',b) = f a
writeIORef r a'
return b
#endif
{- $memmodel
In a concurrent program, 'IORef' operations may appear out-of-order
to another thread, depending on the memory model of the underlying
processor architecture. For example, on x86, loads can move ahead
of stores, so in the following example:
> maybePrint :: IORef Bool -> IORef Bool -> IO ()
> maybePrint myRef yourRef = do
> writeIORef myRef True
> yourVal <- readIORef yourRef
> unless yourVal $ putStrLn "critical section"
>
> main :: IO ()
> main = do
> r1 <- newIORef False
> r2 <- newIORef False
> forkIO $ maybePrint r1 r2
> forkIO $ maybePrint r2 r1
> threadDelay 1000000
it is possible that the string @"critical section"@ is printed
twice, even though there is no interleaving of the operations of the
two threads that allows that outcome. The memory model of x86
allows 'readIORef' to happen before the earlier 'writeIORef'.
The implementation is required to ensure that reordering of memory
operations cannot cause type-correct code to go wrong. In
particular, when inspecting the value read from an 'IORef', the
memory writes that created that value must have occurred from the
point of view of the current therad.
'atomicModifyIORef' acts as a barrier to reordering. Multiple
'atomicModifyIORef' operations occur in strict program order. An
'atomicModifyIORef' is never observed to take place ahead of any
earlier (in program order) 'IORef' operations, or after any later
'IORef' operations.
-}
|