1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
|
{-# OPTIONS -cpp -fglasgow-exts #-}
-----------------------------------------------------------------------------
-- Module : Data.IntMap
-- Copyright : (c) Daan Leijen 2002
-- License : BSD-style
-- Maintainer : libraries@haskell.org
-- Stability : provisional
-- Portability : portable
--
-- An efficient implementation of maps from integer keys to values.
--
-- This module is intended to be imported @qualified@, to avoid name
-- clashes with "Prelude" functions. eg.
--
-- > import Data.IntMap as Map
--
-- The implementation is based on /big-endian patricia trees/. This data
-- structure performs especially well on binary operations like 'union'
-- and 'intersection'. However, my benchmarks show that it is also
-- (much) faster on insertions and deletions when compared to a generic
-- size-balanced map implementation (see "Data.Map" and "Data.FiniteMap").
--
-- * Chris Okasaki and Andy Gill, \"/Fast Mergeable Integer Maps/\",
-- Workshop on ML, September 1998, pages 77-86,
-- <http://www.cse.ogi.edu/~andy/pub/finite.htm>
--
-- * D.R. Morrison, \"/PATRICIA -- Practical Algorithm To Retrieve
-- Information Coded In Alphanumeric/\", Journal of the ACM, 15(4),
-- October 1968, pages 514-534.
--
-- Many operations have a worst-case complexity of /O(min(n,W))/.
-- This means that the operation can become linear in the number of
-- elements with a maximum of /W/ -- the number of bits in an 'Int'
-- (32 or 64).
-----------------------------------------------------------------------------
module Data.IntMap (
-- * Map type
IntMap, Key -- instance Eq,Show
-- * Operators
, (!), (\\)
-- * Query
, null
, size
, member
, lookup
, findWithDefault
-- * Construction
, empty
, singleton
-- ** Insertion
, insert
, insertWith, insertWithKey, insertLookupWithKey
-- ** Delete\/Update
, delete
, adjust
, adjustWithKey
, update
, updateWithKey
, updateLookupWithKey
-- * Combine
-- ** Union
, union
, unionWith
, unionWithKey
, unions
, unionsWith
-- ** Difference
, difference
, differenceWith
, differenceWithKey
-- ** Intersection
, intersection
, intersectionWith
, intersectionWithKey
-- * Traversal
-- ** Map
, map
, mapWithKey
, mapAccum
, mapAccumWithKey
-- ** Fold
, fold
, foldWithKey
-- * Conversion
, elems
, keys
, keysSet
, assocs
-- ** Lists
, toList
, fromList
, fromListWith
, fromListWithKey
-- ** Ordered lists
, toAscList
, fromAscList
, fromAscListWith
, fromAscListWithKey
, fromDistinctAscList
-- * Filter
, filter
, filterWithKey
, partition
, partitionWithKey
, split
, splitLookup
-- * Submap
, isSubmapOf, isSubmapOfBy
, isProperSubmapOf, isProperSubmapOfBy
-- * Debugging
, showTree
, showTreeWith
) where
import Prelude hiding (lookup,map,filter,foldr,foldl,null)
import Data.Bits
import Data.Int
import Data.Monoid
import qualified Data.IntSet as IntSet
import Data.Typeable
{-
-- just for testing
import qualified Prelude
import Debug.QuickCheck
import List (nub,sort)
import qualified List
-}
#if __GLASGOW_HASKELL__
import Data.Generics.Basics
import Data.Generics.Instances
#endif
#if __GLASGOW_HASKELL__ >= 503
import GHC.Word
import GHC.Exts ( Word(..), Int(..), shiftRL# )
#elif __GLASGOW_HASKELL__
import Word
import GlaExts ( Word(..), Int(..), shiftRL# )
#else
import Data.Word
#endif
infixl 9 \\{-This comment teaches CPP correct behaviour -}
-- A "Nat" is a natural machine word (an unsigned Int)
type Nat = Word
natFromInt :: Key -> Nat
natFromInt i = fromIntegral i
intFromNat :: Nat -> Key
intFromNat w = fromIntegral w
shiftRL :: Nat -> Key -> Nat
#if __GLASGOW_HASKELL__
{--------------------------------------------------------------------
GHC: use unboxing to get @shiftRL@ inlined.
--------------------------------------------------------------------}
shiftRL (W# x) (I# i)
= W# (shiftRL# x i)
#else
shiftRL x i = shiftR x i
#endif
{--------------------------------------------------------------------
Operators
--------------------------------------------------------------------}
-- | /O(min(n,W))/. Find the value of a key. Calls @error@ when the element can not be found.
(!) :: IntMap a -> Key -> a
m ! k = find' k m
-- | /O(n+m)/. See 'difference'.
(\\) :: IntMap a -> IntMap b -> IntMap a
m1 \\ m2 = difference m1 m2
{--------------------------------------------------------------------
Types
--------------------------------------------------------------------}
-- | A map of integers to values @a@.
data IntMap a = Nil
| Tip {-# UNPACK #-} !Key a
| Bin {-# UNPACK #-} !Prefix {-# UNPACK #-} !Mask !(IntMap a) !(IntMap a)
type Prefix = Int
type Mask = Int
type Key = Int
#if __GLASGOW_HASKELL__
{--------------------------------------------------------------------
A Data instance
--------------------------------------------------------------------}
-- This instance preserves data abstraction at the cost of inefficiency.
-- We omit reflection services for the sake of data abstraction.
instance Data a => Data (IntMap a) where
gfoldl f z im = z fromList `f` (toList im)
toConstr _ = error "toConstr"
gunfold _ _ = error "gunfold"
dataTypeOf _ = mkNorepType "Data.IntMap.IntMap"
#endif
{--------------------------------------------------------------------
Query
--------------------------------------------------------------------}
-- | /O(1)/. Is the map empty?
null :: IntMap a -> Bool
null Nil = True
null other = False
-- | /O(n)/. Number of elements in the map.
size :: IntMap a -> Int
size t
= case t of
Bin p m l r -> size l + size r
Tip k x -> 1
Nil -> 0
-- | /O(min(n,W))/. Is the key a member of the map?
member :: Key -> IntMap a -> Bool
member k m
= case lookup k m of
Nothing -> False
Just x -> True
-- | /O(min(n,W))/. Lookup the value of a key in the map.
lookup :: Key -> IntMap a -> Maybe a
lookup k t
= let nk = natFromInt k in seq nk (lookupN nk t)
lookupN :: Nat -> IntMap a -> Maybe a
lookupN k t
= case t of
Bin p m l r
| zeroN k (natFromInt m) -> lookupN k l
| otherwise -> lookupN k r
Tip kx x
| (k == natFromInt kx) -> Just x
| otherwise -> Nothing
Nil -> Nothing
find' :: Key -> IntMap a -> a
find' k m
= case lookup k m of
Nothing -> error ("IntMap.find: key " ++ show k ++ " is not an element of the map")
Just x -> x
-- | /O(min(n,W))/. The expression @(findWithDefault def k map)@ returns the value of key @k@ or returns @def@ when
-- the key is not an element of the map.
findWithDefault :: a -> Key -> IntMap a -> a
findWithDefault def k m
= case lookup k m of
Nothing -> def
Just x -> x
{--------------------------------------------------------------------
Construction
--------------------------------------------------------------------}
-- | /O(1)/. The empty map.
empty :: IntMap a
empty
= Nil
-- | /O(1)/. A map of one element.
singleton :: Key -> a -> IntMap a
singleton k x
= Tip k x
{--------------------------------------------------------------------
Insert
'insert' is the inlined version of 'insertWith (\k x y -> x)'
--------------------------------------------------------------------}
-- | /O(min(n,W))/. Insert a new key\/value pair in the map. When the key
-- is already an element of the set, its value is replaced by the new value,
-- ie. 'insert' is left-biased.
insert :: Key -> a -> IntMap a -> IntMap a
insert k x t
= case t of
Bin p m l r
| nomatch k p m -> join k (Tip k x) p t
| zero k m -> Bin p m (insert k x l) r
| otherwise -> Bin p m l (insert k x r)
Tip ky y
| k==ky -> Tip k x
| otherwise -> join k (Tip k x) ky t
Nil -> Tip k x
-- right-biased insertion, used by 'union'
-- | /O(min(n,W))/. Insert with a combining function.
insertWith :: (a -> a -> a) -> Key -> a -> IntMap a -> IntMap a
insertWith f k x t
= insertWithKey (\k x y -> f x y) k x t
-- | /O(min(n,W))/. Insert with a combining function.
insertWithKey :: (Key -> a -> a -> a) -> Key -> a -> IntMap a -> IntMap a
insertWithKey f k x t
= case t of
Bin p m l r
| nomatch k p m -> join k (Tip k x) p t
| zero k m -> Bin p m (insertWithKey f k x l) r
| otherwise -> Bin p m l (insertWithKey f k x r)
Tip ky y
| k==ky -> Tip k (f k x y)
| otherwise -> join k (Tip k x) ky t
Nil -> Tip k x
-- | /O(min(n,W))/. The expression (@insertLookupWithKey f k x map@) is a pair where
-- the first element is equal to (@lookup k map@) and the second element
-- equal to (@insertWithKey f k x map@).
insertLookupWithKey :: (Key -> a -> a -> a) -> Key -> a -> IntMap a -> (Maybe a, IntMap a)
insertLookupWithKey f k x t
= case t of
Bin p m l r
| nomatch k p m -> (Nothing,join k (Tip k x) p t)
| zero k m -> let (found,l') = insertLookupWithKey f k x l in (found,Bin p m l' r)
| otherwise -> let (found,r') = insertLookupWithKey f k x r in (found,Bin p m l r')
Tip ky y
| k==ky -> (Just y,Tip k (f k x y))
| otherwise -> (Nothing,join k (Tip k x) ky t)
Nil -> (Nothing,Tip k x)
{--------------------------------------------------------------------
Deletion
[delete] is the inlined version of [deleteWith (\k x -> Nothing)]
--------------------------------------------------------------------}
-- | /O(min(n,W))/. Delete a key and its value from the map. When the key is not
-- a member of the map, the original map is returned.
delete :: Key -> IntMap a -> IntMap a
delete k t
= case t of
Bin p m l r
| nomatch k p m -> t
| zero k m -> bin p m (delete k l) r
| otherwise -> bin p m l (delete k r)
Tip ky y
| k==ky -> Nil
| otherwise -> t
Nil -> Nil
-- | /O(min(n,W))/. Adjust a value at a specific key. When the key is not
-- a member of the map, the original map is returned.
adjust :: (a -> a) -> Key -> IntMap a -> IntMap a
adjust f k m
= adjustWithKey (\k x -> f x) k m
-- | /O(min(n,W))/. Adjust a value at a specific key. When the key is not
-- a member of the map, the original map is returned.
adjustWithKey :: (Key -> a -> a) -> Key -> IntMap a -> IntMap a
adjustWithKey f k m
= updateWithKey (\k x -> Just (f k x)) k m
-- | /O(min(n,W))/. The expression (@update f k map@) updates the value @x@
-- at @k@ (if it is in the map). If (@f x@) is @Nothing@, the element is
-- deleted. If it is (@Just y@), the key @k@ is bound to the new value @y@.
update :: (a -> Maybe a) -> Key -> IntMap a -> IntMap a
update f k m
= updateWithKey (\k x -> f x) k m
-- | /O(min(n,W))/. The expression (@update f k map@) updates the value @x@
-- at @k@ (if it is in the map). If (@f k x@) is @Nothing@, the element is
-- deleted. If it is (@Just y@), the key @k@ is bound to the new value @y@.
updateWithKey :: (Key -> a -> Maybe a) -> Key -> IntMap a -> IntMap a
updateWithKey f k t
= case t of
Bin p m l r
| nomatch k p m -> t
| zero k m -> bin p m (updateWithKey f k l) r
| otherwise -> bin p m l (updateWithKey f k r)
Tip ky y
| k==ky -> case (f k y) of
Just y' -> Tip ky y'
Nothing -> Nil
| otherwise -> t
Nil -> Nil
-- | /O(min(n,W))/. Lookup and update.
updateLookupWithKey :: (Key -> a -> Maybe a) -> Key -> IntMap a -> (Maybe a,IntMap a)
updateLookupWithKey f k t
= case t of
Bin p m l r
| nomatch k p m -> (Nothing,t)
| zero k m -> let (found,l') = updateLookupWithKey f k l in (found,bin p m l' r)
| otherwise -> let (found,r') = updateLookupWithKey f k r in (found,bin p m l r')
Tip ky y
| k==ky -> case (f k y) of
Just y' -> (Just y,Tip ky y')
Nothing -> (Just y,Nil)
| otherwise -> (Nothing,t)
Nil -> (Nothing,Nil)
{--------------------------------------------------------------------
Union
--------------------------------------------------------------------}
-- | The union of a list of maps.
unions :: [IntMap a] -> IntMap a
unions xs
= foldlStrict union empty xs
-- | The union of a list of maps, with a combining operation
unionsWith :: (a->a->a) -> [IntMap a] -> IntMap a
unionsWith f ts
= foldlStrict (unionWith f) empty ts
-- | /O(n+m)/. The (left-biased) union of two sets.
union :: IntMap a -> IntMap a -> IntMap a
union t1@(Bin p1 m1 l1 r1) t2@(Bin p2 m2 l2 r2)
| shorter m1 m2 = union1
| shorter m2 m1 = union2
| p1 == p2 = Bin p1 m1 (union l1 l2) (union r1 r2)
| otherwise = join p1 t1 p2 t2
where
union1 | nomatch p2 p1 m1 = join p1 t1 p2 t2
| zero p2 m1 = Bin p1 m1 (union l1 t2) r1
| otherwise = Bin p1 m1 l1 (union r1 t2)
union2 | nomatch p1 p2 m2 = join p1 t1 p2 t2
| zero p1 m2 = Bin p2 m2 (union t1 l2) r2
| otherwise = Bin p2 m2 l2 (union t1 r2)
union (Tip k x) t = insert k x t
union t (Tip k x) = insertWith (\x y -> y) k x t -- right bias
union Nil t = t
union t Nil = t
-- | /O(n+m)/. The union with a combining function.
unionWith :: (a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
unionWith f m1 m2
= unionWithKey (\k x y -> f x y) m1 m2
-- | /O(n+m)/. The union with a combining function.
unionWithKey :: (Key -> a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
unionWithKey f t1@(Bin p1 m1 l1 r1) t2@(Bin p2 m2 l2 r2)
| shorter m1 m2 = union1
| shorter m2 m1 = union2
| p1 == p2 = Bin p1 m1 (unionWithKey f l1 l2) (unionWithKey f r1 r2)
| otherwise = join p1 t1 p2 t2
where
union1 | nomatch p2 p1 m1 = join p1 t1 p2 t2
| zero p2 m1 = Bin p1 m1 (unionWithKey f l1 t2) r1
| otherwise = Bin p1 m1 l1 (unionWithKey f r1 t2)
union2 | nomatch p1 p2 m2 = join p1 t1 p2 t2
| zero p1 m2 = Bin p2 m2 (unionWithKey f t1 l2) r2
| otherwise = Bin p2 m2 l2 (unionWithKey f t1 r2)
unionWithKey f (Tip k x) t = insertWithKey f k x t
unionWithKey f t (Tip k x) = insertWithKey (\k x y -> f k y x) k x t -- right bias
unionWithKey f Nil t = t
unionWithKey f t Nil = t
{--------------------------------------------------------------------
Difference
--------------------------------------------------------------------}
-- | /O(n+m)/. Difference between two maps (based on keys).
difference :: IntMap a -> IntMap b -> IntMap a
difference t1@(Bin p1 m1 l1 r1) t2@(Bin p2 m2 l2 r2)
| shorter m1 m2 = difference1
| shorter m2 m1 = difference2
| p1 == p2 = bin p1 m1 (difference l1 l2) (difference r1 r2)
| otherwise = t1
where
difference1 | nomatch p2 p1 m1 = t1
| zero p2 m1 = bin p1 m1 (difference l1 t2) r1
| otherwise = bin p1 m1 l1 (difference r1 t2)
difference2 | nomatch p1 p2 m2 = t1
| zero p1 m2 = difference t1 l2
| otherwise = difference t1 r2
difference t1@(Tip k x) t2
| member k t2 = Nil
| otherwise = t1
difference Nil t = Nil
difference t (Tip k x) = delete k t
difference t Nil = t
-- | /O(n+m)/. Difference with a combining function.
differenceWith :: (a -> b -> Maybe a) -> IntMap a -> IntMap b -> IntMap a
differenceWith f m1 m2
= differenceWithKey (\k x y -> f x y) m1 m2
-- | /O(n+m)/. Difference with a combining function. When two equal keys are
-- encountered, the combining function is applied to the key and both values.
-- If it returns @Nothing@, the element is discarded (proper set difference). If
-- it returns (@Just y@), the element is updated with a new value @y@.
differenceWithKey :: (Key -> a -> b -> Maybe a) -> IntMap a -> IntMap b -> IntMap a
differenceWithKey f t1@(Bin p1 m1 l1 r1) t2@(Bin p2 m2 l2 r2)
| shorter m1 m2 = difference1
| shorter m2 m1 = difference2
| p1 == p2 = bin p1 m1 (differenceWithKey f l1 l2) (differenceWithKey f r1 r2)
| otherwise = t1
where
difference1 | nomatch p2 p1 m1 = t1
| zero p2 m1 = bin p1 m1 (differenceWithKey f l1 t2) r1
| otherwise = bin p1 m1 l1 (differenceWithKey f r1 t2)
difference2 | nomatch p1 p2 m2 = t1
| zero p1 m2 = differenceWithKey f t1 l2
| otherwise = differenceWithKey f t1 r2
differenceWithKey f t1@(Tip k x) t2
= case lookup k t2 of
Just y -> case f k x y of
Just y' -> Tip k y'
Nothing -> Nil
Nothing -> t1
differenceWithKey f Nil t = Nil
differenceWithKey f t (Tip k y) = updateWithKey (\k x -> f k x y) k t
differenceWithKey f t Nil = t
{--------------------------------------------------------------------
Intersection
--------------------------------------------------------------------}
-- | /O(n+m)/. The (left-biased) intersection of two maps (based on keys).
intersection :: IntMap a -> IntMap b -> IntMap a
intersection t1@(Bin p1 m1 l1 r1) t2@(Bin p2 m2 l2 r2)
| shorter m1 m2 = intersection1
| shorter m2 m1 = intersection2
| p1 == p2 = bin p1 m1 (intersection l1 l2) (intersection r1 r2)
| otherwise = Nil
where
intersection1 | nomatch p2 p1 m1 = Nil
| zero p2 m1 = intersection l1 t2
| otherwise = intersection r1 t2
intersection2 | nomatch p1 p2 m2 = Nil
| zero p1 m2 = intersection t1 l2
| otherwise = intersection t1 r2
intersection t1@(Tip k x) t2
| member k t2 = t1
| otherwise = Nil
intersection t (Tip k x)
= case lookup k t of
Just y -> Tip k y
Nothing -> Nil
intersection Nil t = Nil
intersection t Nil = Nil
-- | /O(n+m)/. The intersection with a combining function.
intersectionWith :: (a -> b -> a) -> IntMap a -> IntMap b -> IntMap a
intersectionWith f m1 m2
= intersectionWithKey (\k x y -> f x y) m1 m2
-- | /O(n+m)/. The intersection with a combining function.
intersectionWithKey :: (Key -> a -> b -> a) -> IntMap a -> IntMap b -> IntMap a
intersectionWithKey f t1@(Bin p1 m1 l1 r1) t2@(Bin p2 m2 l2 r2)
| shorter m1 m2 = intersection1
| shorter m2 m1 = intersection2
| p1 == p2 = bin p1 m1 (intersectionWithKey f l1 l2) (intersectionWithKey f r1 r2)
| otherwise = Nil
where
intersection1 | nomatch p2 p1 m1 = Nil
| zero p2 m1 = intersectionWithKey f l1 t2
| otherwise = intersectionWithKey f r1 t2
intersection2 | nomatch p1 p2 m2 = Nil
| zero p1 m2 = intersectionWithKey f t1 l2
| otherwise = intersectionWithKey f t1 r2
intersectionWithKey f t1@(Tip k x) t2
= case lookup k t2 of
Just y -> Tip k (f k x y)
Nothing -> Nil
intersectionWithKey f t1 (Tip k y)
= case lookup k t1 of
Just x -> Tip k (f k x y)
Nothing -> Nil
intersectionWithKey f Nil t = Nil
intersectionWithKey f t Nil = Nil
{--------------------------------------------------------------------
Submap
--------------------------------------------------------------------}
-- | /O(n+m)/. Is this a proper submap? (ie. a submap but not equal).
-- Defined as (@isProperSubmapOf = isProperSubmapOfBy (==)@).
isProperSubmapOf :: Eq a => IntMap a -> IntMap a -> Bool
isProperSubmapOf m1 m2
= isProperSubmapOfBy (==) m1 m2
{- | /O(n+m)/. Is this a proper submap? (ie. a submap but not equal).
The expression (@isProperSubmapOfBy f m1 m2@) returns @True@ when
@m1@ and @m2@ are not equal,
all keys in @m1@ are in @m2@, and when @f@ returns @True@ when
applied to their respective values. For example, the following
expressions are all @True@.
> isProperSubmapOfBy (==) (fromList [(1,1)]) (fromList [(1,1),(2,2)])
> isProperSubmapOfBy (<=) (fromList [(1,1)]) (fromList [(1,1),(2,2)])
But the following are all @False@:
> isProperSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1),(2,2)])
> isProperSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1)])
> isProperSubmapOfBy (<) (fromList [(1,1)]) (fromList [(1,1),(2,2)])
-}
isProperSubmapOfBy :: (a -> b -> Bool) -> IntMap a -> IntMap b -> Bool
isProperSubmapOfBy pred t1 t2
= case submapCmp pred t1 t2 of
LT -> True
ge -> False
submapCmp pred t1@(Bin p1 m1 l1 r1) t2@(Bin p2 m2 l2 r2)
| shorter m1 m2 = GT
| shorter m2 m1 = submapCmpLt
| p1 == p2 = submapCmpEq
| otherwise = GT -- disjoint
where
submapCmpLt | nomatch p1 p2 m2 = GT
| zero p1 m2 = submapCmp pred t1 l2
| otherwise = submapCmp pred t1 r2
submapCmpEq = case (submapCmp pred l1 l2, submapCmp pred r1 r2) of
(GT,_ ) -> GT
(_ ,GT) -> GT
(EQ,EQ) -> EQ
other -> LT
submapCmp pred (Bin p m l r) t = GT
submapCmp pred (Tip kx x) (Tip ky y)
| (kx == ky) && pred x y = EQ
| otherwise = GT -- disjoint
submapCmp pred (Tip k x) t
= case lookup k t of
Just y | pred x y -> LT
other -> GT -- disjoint
submapCmp pred Nil Nil = EQ
submapCmp pred Nil t = LT
-- | /O(n+m)/. Is this a submap? Defined as (@isSubmapOf = isSubmapOfBy (==)@).
isSubmapOf :: Eq a => IntMap a -> IntMap a -> Bool
isSubmapOf m1 m2
= isSubmapOfBy (==) m1 m2
{- | /O(n+m)/.
The expression (@isSubmapOfBy f m1 m2@) returns @True@ if
all keys in @m1@ are in @m2@, and when @f@ returns @True@ when
applied to their respective values. For example, the following
expressions are all @True@.
> isSubmapOfBy (==) (fromList [(1,1)]) (fromList [(1,1),(2,2)])
> isSubmapOfBy (<=) (fromList [(1,1)]) (fromList [(1,1),(2,2)])
> isSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1),(2,2)])
But the following are all @False@:
> isSubmapOfBy (==) (fromList [(1,2)]) (fromList [(1,1),(2,2)])
> isSubmapOfBy (<) (fromList [(1,1)]) (fromList [(1,1),(2,2)])
> isSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1)])
-}
isSubmapOfBy :: (a -> b -> Bool) -> IntMap a -> IntMap b -> Bool
isSubmapOfBy pred t1@(Bin p1 m1 l1 r1) t2@(Bin p2 m2 l2 r2)
| shorter m1 m2 = False
| shorter m2 m1 = match p1 p2 m2 && (if zero p1 m2 then isSubmapOfBy pred t1 l2
else isSubmapOfBy pred t1 r2)
| otherwise = (p1==p2) && isSubmapOfBy pred l1 l2 && isSubmapOfBy pred r1 r2
isSubmapOfBy pred (Bin p m l r) t = False
isSubmapOfBy pred (Tip k x) t = case lookup k t of
Just y -> pred x y
Nothing -> False
isSubmapOfBy pred Nil t = True
{--------------------------------------------------------------------
Mapping
--------------------------------------------------------------------}
-- | /O(n)/. Map a function over all values in the map.
map :: (a -> b) -> IntMap a -> IntMap b
map f m
= mapWithKey (\k x -> f x) m
-- | /O(n)/. Map a function over all values in the map.
mapWithKey :: (Key -> a -> b) -> IntMap a -> IntMap b
mapWithKey f t
= case t of
Bin p m l r -> Bin p m (mapWithKey f l) (mapWithKey f r)
Tip k x -> Tip k (f k x)
Nil -> Nil
-- | /O(n)/. The function @mapAccum@ threads an accumulating
-- argument through the map in an unspecified order.
mapAccum :: (a -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c)
mapAccum f a m
= mapAccumWithKey (\a k x -> f a x) a m
-- | /O(n)/. The function @mapAccumWithKey@ threads an accumulating
-- argument through the map in an unspecified order.
mapAccumWithKey :: (a -> Key -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c)
mapAccumWithKey f a t
= mapAccumL f a t
-- | /O(n)/. The function @mapAccumL@ threads an accumulating
-- argument through the map in pre-order.
mapAccumL :: (a -> Key -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c)
mapAccumL f a t
= case t of
Bin p m l r -> let (a1,l') = mapAccumL f a l
(a2,r') = mapAccumL f a1 r
in (a2,Bin p m l' r')
Tip k x -> let (a',x') = f a k x in (a',Tip k x')
Nil -> (a,Nil)
-- | /O(n)/. The function @mapAccumR@ threads an accumulating
-- argument throught the map in post-order.
mapAccumR :: (a -> Key -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c)
mapAccumR f a t
= case t of
Bin p m l r -> let (a1,r') = mapAccumR f a r
(a2,l') = mapAccumR f a1 l
in (a2,Bin p m l' r')
Tip k x -> let (a',x') = f a k x in (a',Tip k x')
Nil -> (a,Nil)
{--------------------------------------------------------------------
Filter
--------------------------------------------------------------------}
-- | /O(n)/. Filter all values that satisfy some predicate.
filter :: (a -> Bool) -> IntMap a -> IntMap a
filter p m
= filterWithKey (\k x -> p x) m
-- | /O(n)/. Filter all keys\/values that satisfy some predicate.
filterWithKey :: (Key -> a -> Bool) -> IntMap a -> IntMap a
filterWithKey pred t
= case t of
Bin p m l r
-> bin p m (filterWithKey pred l) (filterWithKey pred r)
Tip k x
| pred k x -> t
| otherwise -> Nil
Nil -> Nil
-- | /O(n)/. partition the map according to some predicate. The first
-- map contains all elements that satisfy the predicate, the second all
-- elements that fail the predicate. See also 'split'.
partition :: (a -> Bool) -> IntMap a -> (IntMap a,IntMap a)
partition p m
= partitionWithKey (\k x -> p x) m
-- | /O(n)/. partition the map according to some predicate. The first
-- map contains all elements that satisfy the predicate, the second all
-- elements that fail the predicate. See also 'split'.
partitionWithKey :: (Key -> a -> Bool) -> IntMap a -> (IntMap a,IntMap a)
partitionWithKey pred t
= case t of
Bin p m l r
-> let (l1,l2) = partitionWithKey pred l
(r1,r2) = partitionWithKey pred r
in (bin p m l1 r1, bin p m l2 r2)
Tip k x
| pred k x -> (t,Nil)
| otherwise -> (Nil,t)
Nil -> (Nil,Nil)
-- | /O(log n)/. The expression (@split k map@) is a pair @(map1,map2)@
-- where all keys in @map1@ are lower than @k@ and all keys in
-- @map2@ larger than @k@. Any key equal to @k@ is found in neither @map1@ nor @map2@.
split :: Key -> IntMap a -> (IntMap a,IntMap a)
split k t
= case t of
Bin p m l r
| zero k m -> let (lt,gt) = split k l in (lt,union gt r)
| otherwise -> let (lt,gt) = split k r in (union l lt,gt)
Tip ky y
| k>ky -> (t,Nil)
| k<ky -> (Nil,t)
| otherwise -> (Nil,Nil)
Nil -> (Nil,Nil)
-- | /O(log n)/. Performs a 'split' but also returns whether the pivot
-- key was found in the original map.
splitLookup :: Key -> IntMap a -> (Maybe a,IntMap a,IntMap a)
splitLookup k t
= case t of
Bin p m l r
| zero k m -> let (found,lt,gt) = splitLookup k l in (found,lt,union gt r)
| otherwise -> let (found,lt,gt) = splitLookup k r in (found,union l lt,gt)
Tip ky y
| k>ky -> (Nothing,t,Nil)
| k<ky -> (Nothing,Nil,t)
| otherwise -> (Just y,Nil,Nil)
Nil -> (Nothing,Nil,Nil)
{--------------------------------------------------------------------
Fold
--------------------------------------------------------------------}
-- | /O(n)/. Fold over the elements of a map in an unspecified order.
--
-- > sum map = fold (+) 0 map
-- > elems map = fold (:) [] map
fold :: (a -> b -> b) -> b -> IntMap a -> b
fold f z t
= foldWithKey (\k x y -> f x y) z t
-- | /O(n)/. Fold over the elements of a map in an unspecified order.
--
-- > keys map = foldWithKey (\k x ks -> k:ks) [] map
foldWithKey :: (Key -> a -> b -> b) -> b -> IntMap a -> b
foldWithKey f z t
= foldr f z t
foldr :: (Key -> a -> b -> b) -> b -> IntMap a -> b
foldr f z t
= case t of
Bin p m l r -> foldr f (foldr f z r) l
Tip k x -> f k x z
Nil -> z
{--------------------------------------------------------------------
List variations
--------------------------------------------------------------------}
-- | /O(n)/. Return all elements of the map.
elems :: IntMap a -> [a]
elems m
= foldWithKey (\k x xs -> x:xs) [] m
-- | /O(n)/. Return all keys of the map.
keys :: IntMap a -> [Key]
keys m
= foldWithKey (\k x ks -> k:ks) [] m
-- | /O(n*min(n,W))/. The set of all keys of the map.
keysSet :: IntMap a -> IntSet.IntSet
keysSet m = IntSet.fromDistinctAscList (keys m)
-- | /O(n)/. Return all key\/value pairs in the map.
assocs :: IntMap a -> [(Key,a)]
assocs m
= toList m
{--------------------------------------------------------------------
Lists
--------------------------------------------------------------------}
-- | /O(n)/. Convert the map to a list of key\/value pairs.
toList :: IntMap a -> [(Key,a)]
toList t
= foldWithKey (\k x xs -> (k,x):xs) [] t
-- | /O(n)/. Convert the map to a list of key\/value pairs where the
-- keys are in ascending order.
toAscList :: IntMap a -> [(Key,a)]
toAscList t
= -- NOTE: the following algorithm only works for big-endian trees
let (pos,neg) = span (\(k,x) -> k >=0) (foldr (\k x xs -> (k,x):xs) [] t) in neg ++ pos
-- | /O(n*min(n,W))/. Create a map from a list of key\/value pairs.
fromList :: [(Key,a)] -> IntMap a
fromList xs
= foldlStrict ins empty xs
where
ins t (k,x) = insert k x t
-- | /O(n*min(n,W))/. Create a map from a list of key\/value pairs with a combining function. See also 'fromAscListWith'.
fromListWith :: (a -> a -> a) -> [(Key,a)] -> IntMap a
fromListWith f xs
= fromListWithKey (\k x y -> f x y) xs
-- | /O(n*min(n,W))/. Build a map from a list of key\/value pairs with a combining function. See also fromAscListWithKey'.
fromListWithKey :: (Key -> a -> a -> a) -> [(Key,a)] -> IntMap a
fromListWithKey f xs
= foldlStrict ins empty xs
where
ins t (k,x) = insertWithKey f k x t
-- | /O(n*min(n,W))/. Build a map from a list of key\/value pairs where
-- the keys are in ascending order.
fromAscList :: [(Key,a)] -> IntMap a
fromAscList xs
= fromList xs
-- | /O(n*min(n,W))/. Build a map from a list of key\/value pairs where
-- the keys are in ascending order, with a combining function on equal keys.
fromAscListWith :: (a -> a -> a) -> [(Key,a)] -> IntMap a
fromAscListWith f xs
= fromListWith f xs
-- | /O(n*min(n,W))/. Build a map from a list of key\/value pairs where
-- the keys are in ascending order, with a combining function on equal keys.
fromAscListWithKey :: (Key -> a -> a -> a) -> [(Key,a)] -> IntMap a
fromAscListWithKey f xs
= fromListWithKey f xs
-- | /O(n*min(n,W))/. Build a map from a list of key\/value pairs where
-- the keys are in ascending order and all distinct.
fromDistinctAscList :: [(Key,a)] -> IntMap a
fromDistinctAscList xs
= fromList xs
{--------------------------------------------------------------------
Eq
--------------------------------------------------------------------}
instance Eq a => Eq (IntMap a) where
t1 == t2 = equal t1 t2
t1 /= t2 = nequal t1 t2
equal :: Eq a => IntMap a -> IntMap a -> Bool
equal (Bin p1 m1 l1 r1) (Bin p2 m2 l2 r2)
= (m1 == m2) && (p1 == p2) && (equal l1 l2) && (equal r1 r2)
equal (Tip kx x) (Tip ky y)
= (kx == ky) && (x==y)
equal Nil Nil = True
equal t1 t2 = False
nequal :: Eq a => IntMap a -> IntMap a -> Bool
nequal (Bin p1 m1 l1 r1) (Bin p2 m2 l2 r2)
= (m1 /= m2) || (p1 /= p2) || (nequal l1 l2) || (nequal r1 r2)
nequal (Tip kx x) (Tip ky y)
= (kx /= ky) || (x/=y)
nequal Nil Nil = False
nequal t1 t2 = True
{--------------------------------------------------------------------
Ord
--------------------------------------------------------------------}
instance Ord a => Ord (IntMap a) where
compare m1 m2 = compare (toList m1) (toList m2)
{--------------------------------------------------------------------
Functor
--------------------------------------------------------------------}
instance Functor IntMap where
fmap = map
{--------------------------------------------------------------------
Monoid
--------------------------------------------------------------------}
instance Ord a => Monoid (IntMap a) where
mempty = empty
mappend = union
mconcat = unions
{--------------------------------------------------------------------
Show
--------------------------------------------------------------------}
instance Show a => Show (IntMap a) where
showsPrec d t = showMap (toList t)
showMap :: (Show a) => [(Key,a)] -> ShowS
showMap []
= showString "{}"
showMap (x:xs)
= showChar '{' . showElem x . showTail xs
where
showTail [] = showChar '}'
showTail (x:xs) = showChar ',' . showElem x . showTail xs
showElem (k,x) = shows k . showString ":=" . shows x
{--------------------------------------------------------------------
Typeable
--------------------------------------------------------------------}
#include "Typeable.h"
INSTANCE_TYPEABLE1(IntMap,intMapTc,"IntMap")
{--------------------------------------------------------------------
Debugging
--------------------------------------------------------------------}
-- | /O(n)/. Show the tree that implements the map. The tree is shown
-- in a compressed, hanging format.
showTree :: Show a => IntMap a -> String
showTree s
= showTreeWith True False s
{- | /O(n)/. The expression (@showTreeWith hang wide map@) shows
the tree that implements the map. If @hang@ is
@True@, a /hanging/ tree is shown otherwise a rotated tree is shown. If
@wide@ is true, an extra wide version is shown.
-}
showTreeWith :: Show a => Bool -> Bool -> IntMap a -> String
showTreeWith hang wide t
| hang = (showsTreeHang wide [] t) ""
| otherwise = (showsTree wide [] [] t) ""
showsTree :: Show a => Bool -> [String] -> [String] -> IntMap a -> ShowS
showsTree wide lbars rbars t
= case t of
Bin p m l r
-> showsTree wide (withBar rbars) (withEmpty rbars) r .
showWide wide rbars .
showsBars lbars . showString (showBin p m) . showString "\n" .
showWide wide lbars .
showsTree wide (withEmpty lbars) (withBar lbars) l
Tip k x
-> showsBars lbars . showString " " . shows k . showString ":=" . shows x . showString "\n"
Nil -> showsBars lbars . showString "|\n"
showsTreeHang :: Show a => Bool -> [String] -> IntMap a -> ShowS
showsTreeHang wide bars t
= case t of
Bin p m l r
-> showsBars bars . showString (showBin p m) . showString "\n" .
showWide wide bars .
showsTreeHang wide (withBar bars) l .
showWide wide bars .
showsTreeHang wide (withEmpty bars) r
Tip k x
-> showsBars bars . showString " " . shows k . showString ":=" . shows x . showString "\n"
Nil -> showsBars bars . showString "|\n"
showBin p m
= "*" -- ++ show (p,m)
showWide wide bars
| wide = showString (concat (reverse bars)) . showString "|\n"
| otherwise = id
showsBars :: [String] -> ShowS
showsBars bars
= case bars of
[] -> id
_ -> showString (concat (reverse (tail bars))) . showString node
node = "+--"
withBar bars = "| ":bars
withEmpty bars = " ":bars
{--------------------------------------------------------------------
Helpers
--------------------------------------------------------------------}
{--------------------------------------------------------------------
Join
--------------------------------------------------------------------}
join :: Prefix -> IntMap a -> Prefix -> IntMap a -> IntMap a
join p1 t1 p2 t2
| zero p1 m = Bin p m t1 t2
| otherwise = Bin p m t2 t1
where
m = branchMask p1 p2
p = mask p1 m
{--------------------------------------------------------------------
@bin@ assures that we never have empty trees within a tree.
--------------------------------------------------------------------}
bin :: Prefix -> Mask -> IntMap a -> IntMap a -> IntMap a
bin p m l Nil = l
bin p m Nil r = r
bin p m l r = Bin p m l r
{--------------------------------------------------------------------
Endian independent bit twiddling
--------------------------------------------------------------------}
zero :: Key -> Mask -> Bool
zero i m
= (natFromInt i) .&. (natFromInt m) == 0
nomatch,match :: Key -> Prefix -> Mask -> Bool
nomatch i p m
= (mask i m) /= p
match i p m
= (mask i m) == p
mask :: Key -> Mask -> Prefix
mask i m
= maskW (natFromInt i) (natFromInt m)
zeroN :: Nat -> Nat -> Bool
zeroN i m = (i .&. m) == 0
{--------------------------------------------------------------------
Big endian operations
--------------------------------------------------------------------}
maskW :: Nat -> Nat -> Prefix
maskW i m
= intFromNat (i .&. (complement (m-1) `xor` m))
shorter :: Mask -> Mask -> Bool
shorter m1 m2
= (natFromInt m1) > (natFromInt m2)
branchMask :: Prefix -> Prefix -> Mask
branchMask p1 p2
= intFromNat (highestBitMask (natFromInt p1 `xor` natFromInt p2))
{----------------------------------------------------------------------
Finding the highest bit (mask) in a word [x] can be done efficiently in
three ways:
* convert to a floating point value and the mantissa tells us the
[log2(x)] that corresponds with the highest bit position. The mantissa
is retrieved either via the standard C function [frexp] or by some bit
twiddling on IEEE compatible numbers (float). Note that one needs to
use at least [double] precision for an accurate mantissa of 32 bit
numbers.
* use bit twiddling, a logarithmic sequence of bitwise or's and shifts (bit).
* use processor specific assembler instruction (asm).
The most portable way would be [bit], but is it efficient enough?
I have measured the cycle counts of the different methods on an AMD
Athlon-XP 1800 (~ Pentium III 1.8Ghz) using the RDTSC instruction:
highestBitMask: method cycles
--------------
frexp 200
float 33
bit 11
asm 12
highestBit: method cycles
--------------
frexp 195
float 33
bit 11
asm 11
Wow, the bit twiddling is on today's RISC like machines even faster
than a single CISC instruction (BSR)!
----------------------------------------------------------------------}
{----------------------------------------------------------------------
[highestBitMask] returns a word where only the highest bit is set.
It is found by first setting all bits in lower positions than the
highest bit and than taking an exclusive or with the original value.
Allthough the function may look expensive, GHC compiles this into
excellent C code that subsequently compiled into highly efficient
machine code. The algorithm is derived from Jorg Arndt's FXT library.
----------------------------------------------------------------------}
highestBitMask :: Nat -> Nat
highestBitMask x
= case (x .|. shiftRL x 1) of
x -> case (x .|. shiftRL x 2) of
x -> case (x .|. shiftRL x 4) of
x -> case (x .|. shiftRL x 8) of
x -> case (x .|. shiftRL x 16) of
x -> case (x .|. shiftRL x 32) of -- for 64 bit platforms
x -> (x `xor` (shiftRL x 1))
{--------------------------------------------------------------------
Utilities
--------------------------------------------------------------------}
foldlStrict f z xs
= case xs of
[] -> z
(x:xx) -> let z' = f z x in seq z' (foldlStrict f z' xx)
{-
{--------------------------------------------------------------------
Testing
--------------------------------------------------------------------}
testTree :: [Int] -> IntMap Int
testTree xs = fromList [(x,x*x*30696 `mod` 65521) | x <- xs]
test1 = testTree [1..20]
test2 = testTree [30,29..10]
test3 = testTree [1,4,6,89,2323,53,43,234,5,79,12,9,24,9,8,423,8,42,4,8,9,3]
{--------------------------------------------------------------------
QuickCheck
--------------------------------------------------------------------}
qcheck prop
= check config prop
where
config = Config
{ configMaxTest = 500
, configMaxFail = 5000
, configSize = \n -> (div n 2 + 3)
, configEvery = \n args -> let s = show n in s ++ [ '\b' | _ <- s ]
}
{--------------------------------------------------------------------
Arbitrary, reasonably balanced trees
--------------------------------------------------------------------}
instance Arbitrary a => Arbitrary (IntMap a) where
arbitrary = do{ ks <- arbitrary
; xs <- mapM (\k -> do{ x <- arbitrary; return (k,x)}) ks
; return (fromList xs)
}
{--------------------------------------------------------------------
Single, Insert, Delete
--------------------------------------------------------------------}
prop_Single :: Key -> Int -> Bool
prop_Single k x
= (insert k x empty == singleton k x)
prop_InsertDelete :: Key -> Int -> IntMap Int -> Property
prop_InsertDelete k x t
= not (member k t) ==> delete k (insert k x t) == t
prop_UpdateDelete :: Key -> IntMap Int -> Bool
prop_UpdateDelete k t
= update (const Nothing) k t == delete k t
{--------------------------------------------------------------------
Union
--------------------------------------------------------------------}
prop_UnionInsert :: Key -> Int -> IntMap Int -> Bool
prop_UnionInsert k x t
= union (singleton k x) t == insert k x t
prop_UnionAssoc :: IntMap Int -> IntMap Int -> IntMap Int -> Bool
prop_UnionAssoc t1 t2 t3
= union t1 (union t2 t3) == union (union t1 t2) t3
prop_UnionComm :: IntMap Int -> IntMap Int -> Bool
prop_UnionComm t1 t2
= (union t1 t2 == unionWith (\x y -> y) t2 t1)
prop_Diff :: [(Key,Int)] -> [(Key,Int)] -> Bool
prop_Diff xs ys
= List.sort (keys (difference (fromListWith (+) xs) (fromListWith (+) ys)))
== List.sort ((List.\\) (nub (Prelude.map fst xs)) (nub (Prelude.map fst ys)))
prop_Int :: [(Key,Int)] -> [(Key,Int)] -> Bool
prop_Int xs ys
= List.sort (keys (intersection (fromListWith (+) xs) (fromListWith (+) ys)))
== List.sort (nub ((List.intersect) (Prelude.map fst xs) (Prelude.map fst ys)))
{--------------------------------------------------------------------
Lists
--------------------------------------------------------------------}
prop_Ordered
= forAll (choose (5,100)) $ \n ->
let xs = [(x,()) | x <- [0..n::Int]]
in fromAscList xs == fromList xs
prop_List :: [Key] -> Bool
prop_List xs
= (sort (nub xs) == [x | (x,()) <- toAscList (fromList [(x,()) | x <- xs])])
-}
|