1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
|
{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE TypeOperators #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.Semigroup
-- Copyright : (C) 2011-2015 Edward Kmett
-- License : BSD-style (see the file LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : provisional
-- Portability : portable
--
-- In mathematics, a semigroup is an algebraic structure consisting of a
-- set together with an associative binary operation. A semigroup
-- generalizes a monoid in that there might not exist an identity
-- element. It also (originally) generalized a group (a monoid with all
-- inverses) to a type where every element did not have to have an inverse,
-- thus the name semigroup.
--
-- The use of @(\<\>)@ in this module conflicts with an operator with the same
-- name that is being exported by Data.Monoid. However, this package
-- re-exports (most of) the contents of Data.Monoid, so to use semigroups
-- and monoids in the same package just
--
-- > import Data.Semigroup
--
-- @since 4.9.0.0
----------------------------------------------------------------------------
module Data.Semigroup (
Semigroup(..)
, stimesMonoid
, stimesIdempotent
, stimesIdempotentMonoid
, mtimesDefault
-- * Semigroups
, Min(..)
, Max(..)
, First(..)
, Last(..)
, WrappedMonoid(..)
-- * Re-exported monoids from Data.Monoid
, Monoid(..)
, Dual(..)
, Endo(..)
, All(..)
, Any(..)
, Sum(..)
, Product(..)
-- * A better monoid for Maybe
, Option(..)
, option
-- * Difference lists of a semigroup
, diff
, cycle1
-- * ArgMin, ArgMax
, Arg(..)
, ArgMin
, ArgMax
) where
import Prelude hiding (foldr1)
import Control.Applicative
import Control.Monad
import Control.Monad.Fix
import Data.Bifunctor
import Data.Coerce
import Data.Data
import Data.List.NonEmpty
import Data.Monoid (All (..), Any (..), Dual (..), Endo (..),
Product (..), Sum (..))
import Data.Monoid (Alt (..))
import qualified Data.Monoid as Monoid
import Data.Void
import GHC.Generics
infixr 6 <>
-- | The class of semigroups (types with an associative binary operation).
--
-- @since 4.9.0.0
class Semigroup a where
-- | An associative operation.
--
-- @
-- (a '<>' b) '<>' c = a '<>' (b '<>' c)
-- @
--
-- If @a@ is also a 'Monoid' we further require
--
-- @
-- ('<>') = 'mappend'
-- @
(<>) :: a -> a -> a
default (<>) :: Monoid a => a -> a -> a
(<>) = mappend
-- | Reduce a non-empty list with @\<\>@
--
-- The default definition should be sufficient, but this can be
-- overridden for efficiency.
--
sconcat :: NonEmpty a -> a
sconcat (a :| as) = go a as where
go b (c:cs) = b <> go c cs
go b [] = b
-- | Repeat a value @n@ times.
--
-- Given that this works on a 'Semigroup' it is allowed to fail if
-- you request 0 or fewer repetitions, and the default definition
-- will do so.
--
-- By making this a member of the class, idempotent semigroups and monoids can
-- upgrade this to execute in /O(1)/ by picking
-- @stimes = stimesIdempotent@ or @stimes = stimesIdempotentMonoid@
-- respectively.
stimes :: Integral b => b -> a -> a
stimes y0 x0
| y0 <= 0 = errorWithoutStackTrace "stimes: positive multiplier expected"
| otherwise = f x0 y0
where
f x y
| even y = f (x <> x) (y `quot` 2)
| y == 1 = x
| otherwise = g (x <> x) (pred y `quot` 2) x
g x y z
| even y = g (x <> x) (y `quot` 2) z
| y == 1 = x <> z
| otherwise = g (x <> x) (pred y `quot` 2) (x <> z)
-- | A generalization of 'Data.List.cycle' to an arbitrary 'Semigroup'.
-- May fail to terminate for some values in some semigroups.
cycle1 :: Semigroup m => m -> m
cycle1 xs = xs' where xs' = xs <> xs'
-- | @since 4.9.0.0
instance Semigroup () where
_ <> _ = ()
sconcat _ = ()
stimes _ _ = ()
-- | @since 4.9.0.0
instance Semigroup b => Semigroup (a -> b) where
f <> g = \a -> f a <> g a
stimes n f e = stimes n (f e)
-- | @since 4.9.0.0
instance Semigroup [a] where
(<>) = (++)
stimes n x
| n < 0 = errorWithoutStackTrace "stimes: [], negative multiplier"
| otherwise = rep n
where
rep 0 = []
rep i = x ++ rep (i - 1)
-- | @since 4.9.0.0
instance Semigroup a => Semigroup (Maybe a) where
Nothing <> b = b
a <> Nothing = a
Just a <> Just b = Just (a <> b)
stimes _ Nothing = Nothing
stimes n (Just a) = case compare n 0 of
LT -> errorWithoutStackTrace "stimes: Maybe, negative multiplier"
EQ -> Nothing
GT -> Just (stimes n a)
-- | @since 4.9.0.0
instance Semigroup (Either a b) where
Left _ <> b = b
a <> _ = a
stimes = stimesIdempotent
-- | @since 4.9.0.0
instance (Semigroup a, Semigroup b) => Semigroup (a, b) where
(a,b) <> (a',b') = (a<>a',b<>b')
stimes n (a,b) = (stimes n a, stimes n b)
-- | @since 4.9.0.0
instance (Semigroup a, Semigroup b, Semigroup c) => Semigroup (a, b, c) where
(a,b,c) <> (a',b',c') = (a<>a',b<>b',c<>c')
stimes n (a,b,c) = (stimes n a, stimes n b, stimes n c)
-- | @since 4.9.0.0
instance (Semigroup a, Semigroup b, Semigroup c, Semigroup d)
=> Semigroup (a, b, c, d) where
(a,b,c,d) <> (a',b',c',d') = (a<>a',b<>b',c<>c',d<>d')
stimes n (a,b,c,d) = (stimes n a, stimes n b, stimes n c, stimes n d)
-- | @since 4.9.0.0
instance (Semigroup a, Semigroup b, Semigroup c, Semigroup d, Semigroup e)
=> Semigroup (a, b, c, d, e) where
(a,b,c,d,e) <> (a',b',c',d',e') = (a<>a',b<>b',c<>c',d<>d',e<>e')
stimes n (a,b,c,d,e) =
(stimes n a, stimes n b, stimes n c, stimes n d, stimes n e)
-- | @since 4.9.0.0
instance Semigroup Ordering where
LT <> _ = LT
EQ <> y = y
GT <> _ = GT
stimes = stimesIdempotentMonoid
-- | @since 4.9.0.0
instance Semigroup a => Semigroup (Dual a) where
Dual a <> Dual b = Dual (b <> a)
stimes n (Dual a) = Dual (stimes n a)
-- | @since 4.9.0.0
instance Semigroup (Endo a) where
(<>) = coerce ((.) :: (a -> a) -> (a -> a) -> (a -> a))
stimes = stimesMonoid
-- | @since 4.9.0.0
instance Semigroup All where
(<>) = coerce (&&)
stimes = stimesIdempotentMonoid
-- | @since 4.9.0.0
instance Semigroup Any where
(<>) = coerce (||)
stimes = stimesIdempotentMonoid
-- | @since 4.9.0.0
instance Num a => Semigroup (Sum a) where
(<>) = coerce ((+) :: a -> a -> a)
stimes n (Sum a) = Sum (fromIntegral n * a)
-- | @since 4.9.0.0
instance Num a => Semigroup (Product a) where
(<>) = coerce ((*) :: a -> a -> a)
stimes n (Product a) = Product (a ^ n)
-- | This is a valid definition of 'stimes' for a 'Monoid'.
--
-- Unlike the default definition of 'stimes', it is defined for 0
-- and so it should be preferred where possible.
stimesMonoid :: (Integral b, Monoid a) => b -> a -> a
stimesMonoid n x0 = case compare n 0 of
LT -> errorWithoutStackTrace "stimesMonoid: negative multiplier"
EQ -> mempty
GT -> f x0 n
where
f x y
| even y = f (x `mappend` x) (y `quot` 2)
| y == 1 = x
| otherwise = g (x `mappend` x) (pred y `quot` 2) x
g x y z
| even y = g (x `mappend` x) (y `quot` 2) z
| y == 1 = x `mappend` z
| otherwise = g (x `mappend` x) (pred y `quot` 2) (x `mappend` z)
-- | This is a valid definition of 'stimes' for an idempotent 'Monoid'.
--
-- When @mappend x x = x@, this definition should be preferred, because it
-- works in /O(1)/ rather than /O(log n)/
stimesIdempotentMonoid :: (Integral b, Monoid a) => b -> a -> a
stimesIdempotentMonoid n x = case compare n 0 of
LT -> errorWithoutStackTrace "stimesIdempotentMonoid: negative multiplier"
EQ -> mempty
GT -> x
-- | This is a valid definition of 'stimes' for an idempotent 'Semigroup'.
--
-- When @x <> x = x@, this definition should be preferred, because it
-- works in /O(1)/ rather than /O(log n)/.
stimesIdempotent :: Integral b => b -> a -> a
stimesIdempotent n x
| n <= 0 = errorWithoutStackTrace "stimesIdempotent: positive multiplier expected"
| otherwise = x
-- | @since 4.9.0.0
instance Semigroup a => Semigroup (Const a b) where
(<>) = coerce ((<>) :: a -> a -> a)
stimes n (Const a) = Const (stimes n a)
-- | @since 4.9.0.0
instance Semigroup (Monoid.First a) where
Monoid.First Nothing <> b = b
a <> _ = a
stimes = stimesIdempotentMonoid
-- | @since 4.9.0.0
instance Semigroup (Monoid.Last a) where
a <> Monoid.Last Nothing = a
_ <> b = b
stimes = stimesIdempotentMonoid
-- | @since 4.9.0.0
instance Alternative f => Semigroup (Alt f a) where
(<>) = coerce ((<|>) :: f a -> f a -> f a)
stimes = stimesMonoid
-- | @since 4.9.0.0
instance Semigroup Void where
a <> _ = a
stimes = stimesIdempotent
-- | @since 4.9.0.0
instance Semigroup (NonEmpty a) where
(a :| as) <> ~(b :| bs) = a :| (as ++ b : bs)
newtype Min a = Min { getMin :: a }
deriving (Bounded, Eq, Ord, Show, Read, Data, Generic, Generic1)
-- | @since 4.9.0.0
instance Enum a => Enum (Min a) where
succ (Min a) = Min (succ a)
pred (Min a) = Min (pred a)
toEnum = Min . toEnum
fromEnum = fromEnum . getMin
enumFrom (Min a) = Min <$> enumFrom a
enumFromThen (Min a) (Min b) = Min <$> enumFromThen a b
enumFromTo (Min a) (Min b) = Min <$> enumFromTo a b
enumFromThenTo (Min a) (Min b) (Min c) = Min <$> enumFromThenTo a b c
-- | @since 4.9.0.0
instance Ord a => Semigroup (Min a) where
(<>) = coerce (min :: a -> a -> a)
stimes = stimesIdempotent
-- | @since 4.9.0.0
instance (Ord a, Bounded a) => Monoid (Min a) where
mempty = maxBound
mappend = (<>)
-- | @since 4.9.0.0
instance Functor Min where
fmap f (Min x) = Min (f x)
-- | @since 4.9.0.0
instance Foldable Min where
foldMap f (Min a) = f a
-- | @since 4.9.0.0
instance Traversable Min where
traverse f (Min a) = Min <$> f a
-- | @since 4.9.0.0
instance Applicative Min where
pure = Min
a <* _ = a
_ *> a = a
Min f <*> Min x = Min (f x)
-- | @since 4.9.0.0
instance Monad Min where
(>>) = (*>)
Min a >>= f = f a
-- | @since 4.9.0.0
instance MonadFix Min where
mfix f = fix (f . getMin)
-- | @since 4.9.0.0
instance Num a => Num (Min a) where
(Min a) + (Min b) = Min (a + b)
(Min a) * (Min b) = Min (a * b)
(Min a) - (Min b) = Min (a - b)
negate (Min a) = Min (negate a)
abs (Min a) = Min (abs a)
signum (Min a) = Min (signum a)
fromInteger = Min . fromInteger
newtype Max a = Max { getMax :: a }
deriving (Bounded, Eq, Ord, Show, Read, Data, Generic, Generic1)
-- | @since 4.9.0.0
instance Enum a => Enum (Max a) where
succ (Max a) = Max (succ a)
pred (Max a) = Max (pred a)
toEnum = Max . toEnum
fromEnum = fromEnum . getMax
enumFrom (Max a) = Max <$> enumFrom a
enumFromThen (Max a) (Max b) = Max <$> enumFromThen a b
enumFromTo (Max a) (Max b) = Max <$> enumFromTo a b
enumFromThenTo (Max a) (Max b) (Max c) = Max <$> enumFromThenTo a b c
-- | @since 4.9.0.0
instance Ord a => Semigroup (Max a) where
(<>) = coerce (max :: a -> a -> a)
stimes = stimesIdempotent
-- | @since 4.9.0.0
instance (Ord a, Bounded a) => Monoid (Max a) where
mempty = minBound
mappend = (<>)
-- | @since 4.9.0.0
instance Functor Max where
fmap f (Max x) = Max (f x)
-- | @since 4.9.0.0
instance Foldable Max where
foldMap f (Max a) = f a
-- | @since 4.9.0.0
instance Traversable Max where
traverse f (Max a) = Max <$> f a
-- | @since 4.9.0.0
instance Applicative Max where
pure = Max
a <* _ = a
_ *> a = a
Max f <*> Max x = Max (f x)
-- | @since 4.9.0.0
instance Monad Max where
(>>) = (*>)
Max a >>= f = f a
-- | @since 4.9.0.0
instance MonadFix Max where
mfix f = fix (f . getMax)
-- | @since 4.9.0.0
instance Num a => Num (Max a) where
(Max a) + (Max b) = Max (a + b)
(Max a) * (Max b) = Max (a * b)
(Max a) - (Max b) = Max (a - b)
negate (Max a) = Max (negate a)
abs (Max a) = Max (abs a)
signum (Max a) = Max (signum a)
fromInteger = Max . fromInteger
-- | 'Arg' isn't itself a 'Semigroup' in its own right, but it can be
-- placed inside 'Min' and 'Max' to compute an arg min or arg max.
data Arg a b = Arg a b deriving
(Show, Read, Data, Generic, Generic1)
type ArgMin a b = Min (Arg a b)
type ArgMax a b = Max (Arg a b)
-- | @since 4.9.0.0
instance Functor (Arg a) where
fmap f (Arg x a) = Arg x (f a)
-- | @since 4.9.0.0
instance Foldable (Arg a) where
foldMap f (Arg _ a) = f a
-- | @since 4.9.0.0
instance Traversable (Arg a) where
traverse f (Arg x a) = Arg x <$> f a
-- | @since 4.9.0.0
instance Eq a => Eq (Arg a b) where
Arg a _ == Arg b _ = a == b
-- | @since 4.9.0.0
instance Ord a => Ord (Arg a b) where
Arg a _ `compare` Arg b _ = compare a b
min x@(Arg a _) y@(Arg b _)
| a <= b = x
| otherwise = y
max x@(Arg a _) y@(Arg b _)
| a >= b = x
| otherwise = y
-- | @since 4.9.0.0
instance Bifunctor Arg where
bimap f g (Arg a b) = Arg (f a) (g b)
-- | Use @'Option' ('First' a)@ to get the behavior of
-- 'Data.Monoid.First' from "Data.Monoid".
newtype First a = First { getFirst :: a } deriving
(Bounded, Eq, Ord, Show, Read, Data, Generic, Generic1)
-- | @since 4.9.0.0
instance Enum a => Enum (First a) where
succ (First a) = First (succ a)
pred (First a) = First (pred a)
toEnum = First . toEnum
fromEnum = fromEnum . getFirst
enumFrom (First a) = First <$> enumFrom a
enumFromThen (First a) (First b) = First <$> enumFromThen a b
enumFromTo (First a) (First b) = First <$> enumFromTo a b
enumFromThenTo (First a) (First b) (First c) = First <$> enumFromThenTo a b c
-- | @since 4.9.0.0
instance Semigroup (First a) where
a <> _ = a
stimes = stimesIdempotent
-- | @since 4.9.0.0
instance Functor First where
fmap f (First x) = First (f x)
-- | @since 4.9.0.0
instance Foldable First where
foldMap f (First a) = f a
-- | @since 4.9.0.0
instance Traversable First where
traverse f (First a) = First <$> f a
-- | @since 4.9.0.0
instance Applicative First where
pure x = First x
a <* _ = a
_ *> a = a
First f <*> First x = First (f x)
-- | @since 4.9.0.0
instance Monad First where
(>>) = (*>)
First a >>= f = f a
-- | @since 4.9.0.0
instance MonadFix First where
mfix f = fix (f . getFirst)
-- | Use @'Option' ('Last' a)@ to get the behavior of
-- 'Data.Monoid.Last' from "Data.Monoid"
newtype Last a = Last { getLast :: a } deriving
(Bounded, Eq, Ord, Show, Read, Data, Generic, Generic1)
-- | @since 4.9.0.0
instance Enum a => Enum (Last a) where
succ (Last a) = Last (succ a)
pred (Last a) = Last (pred a)
toEnum = Last . toEnum
fromEnum = fromEnum . getLast
enumFrom (Last a) = Last <$> enumFrom a
enumFromThen (Last a) (Last b) = Last <$> enumFromThen a b
enumFromTo (Last a) (Last b) = Last <$> enumFromTo a b
enumFromThenTo (Last a) (Last b) (Last c) = Last <$> enumFromThenTo a b c
-- | @since 4.9.0.0
instance Semigroup (Last a) where
_ <> b = b
stimes = stimesIdempotent
-- | @since 4.9.0.0
instance Functor Last where
fmap f (Last x) = Last (f x)
a <$ _ = Last a
-- | @since 4.9.0.0
instance Foldable Last where
foldMap f (Last a) = f a
-- | @since 4.9.0.0
instance Traversable Last where
traverse f (Last a) = Last <$> f a
-- | @since 4.9.0.0
instance Applicative Last where
pure = Last
a <* _ = a
_ *> a = a
Last f <*> Last x = Last (f x)
-- | @since 4.9.0.0
instance Monad Last where
(>>) = (*>)
Last a >>= f = f a
-- | @since 4.9.0.0
instance MonadFix Last where
mfix f = fix (f . getLast)
-- | Provide a Semigroup for an arbitrary Monoid.
newtype WrappedMonoid m = WrapMonoid { unwrapMonoid :: m }
deriving (Bounded, Eq, Ord, Show, Read, Data, Generic, Generic1)
-- | @since 4.9.0.0
instance Monoid m => Semigroup (WrappedMonoid m) where
(<>) = coerce (mappend :: m -> m -> m)
-- | @since 4.9.0.0
instance Monoid m => Monoid (WrappedMonoid m) where
mempty = WrapMonoid mempty
mappend = (<>)
-- | @since 4.9.0.0
instance Enum a => Enum (WrappedMonoid a) where
succ (WrapMonoid a) = WrapMonoid (succ a)
pred (WrapMonoid a) = WrapMonoid (pred a)
toEnum = WrapMonoid . toEnum
fromEnum = fromEnum . unwrapMonoid
enumFrom (WrapMonoid a) = WrapMonoid <$> enumFrom a
enumFromThen (WrapMonoid a) (WrapMonoid b) = WrapMonoid <$> enumFromThen a b
enumFromTo (WrapMonoid a) (WrapMonoid b) = WrapMonoid <$> enumFromTo a b
enumFromThenTo (WrapMonoid a) (WrapMonoid b) (WrapMonoid c) =
WrapMonoid <$> enumFromThenTo a b c
-- | Repeat a value @n@ times.
--
-- > mtimesDefault n a = a <> a <> ... <> a -- using <> (n-1) times
--
-- Implemented using 'stimes' and 'mempty'.
--
-- This is a suitable definition for an 'mtimes' member of 'Monoid'.
mtimesDefault :: (Integral b, Monoid a) => b -> a -> a
mtimesDefault n x
| n == 0 = mempty
| otherwise = unwrapMonoid (stimes n (WrapMonoid x))
-- | 'Option' is effectively 'Maybe' with a better instance of
-- 'Monoid', built off of an underlying 'Semigroup' instead of an
-- underlying 'Monoid'.
--
-- Ideally, this type would not exist at all and we would just fix the
-- 'Monoid' instance of 'Maybe'
newtype Option a = Option { getOption :: Maybe a }
deriving (Eq, Ord, Show, Read, Data, Generic, Generic1)
-- | @since 4.9.0.0
instance Functor Option where
fmap f (Option a) = Option (fmap f a)
-- | @since 4.9.0.0
instance Applicative Option where
pure a = Option (Just a)
Option a <*> Option b = Option (a <*> b)
Option Nothing *> _ = Option Nothing
_ *> b = b
-- | @since 4.9.0.0
instance Monad Option where
Option (Just a) >>= k = k a
_ >>= _ = Option Nothing
(>>) = (*>)
-- | @since 4.9.0.0
instance Alternative Option where
empty = Option Nothing
Option Nothing <|> b = b
a <|> _ = a
-- | @since 4.9.0.0
instance MonadPlus Option
-- | @since 4.9.0.0
instance MonadFix Option where
mfix f = Option (mfix (getOption . f))
-- | @since 4.9.0.0
instance Foldable Option where
foldMap f (Option (Just m)) = f m
foldMap _ (Option Nothing) = mempty
-- | @since 4.9.0.0
instance Traversable Option where
traverse f (Option (Just a)) = Option . Just <$> f a
traverse _ (Option Nothing) = pure (Option Nothing)
-- | Fold an 'Option' case-wise, just like 'maybe'.
option :: b -> (a -> b) -> Option a -> b
option n j (Option m) = maybe n j m
-- | @since 4.9.0.0
instance Semigroup a => Semigroup (Option a) where
(<>) = coerce ((<>) :: Maybe a -> Maybe a -> Maybe a)
stimes _ (Option Nothing) = Option Nothing
stimes n (Option (Just a)) = case compare n 0 of
LT -> errorWithoutStackTrace "stimes: Option, negative multiplier"
EQ -> Option Nothing
GT -> Option (Just (stimes n a))
-- | @since 4.9.0.0
instance Semigroup a => Monoid (Option a) where
mempty = Option Nothing
mappend = (<>)
-- | This lets you use a difference list of a 'Semigroup' as a 'Monoid'.
diff :: Semigroup m => m -> Endo m
diff = Endo . (<>)
-- | @since 4.9.0.0
instance Semigroup (Proxy s) where
_ <> _ = Proxy
sconcat _ = Proxy
stimes _ _ = Proxy
|