1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE Trustworthy #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.Semigroup
-- Copyright : (C) 2011-2015 Edward Kmett
-- License : BSD-style (see the file LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : provisional
-- Portability : portable
--
-- A type @a@ is a 'Semigroup' if it provides an associative function ('<>')
-- that lets you combine any two values of type @a@ into one. Where being
-- associative means that the following must always hold:
--
-- prop> (a <> b) <> c == a <> (b <> c)
--
-- ==== __Examples__
--
-- The 'Min' 'Semigroup' instance for 'Int' is defined to always pick the smaller
-- number:
-- >>> Min 1 <> Min 2 <> Min 3 <> Min 4 :: Min Int
-- Min {getMin = 1}
--
-- If we need to combine multiple values we can use the 'sconcat' function
-- to do so. We need to ensure however that we have at least one value to
-- operate on, since otherwise our result would be undefined. It is for this
-- reason that 'sconcat' uses "Data.List.NonEmpty.NonEmpty" - a list that
-- can never be empty:
--
-- >>> (1 :| [])
-- 1 :| [] -- equivalent to [1] but guaranteed to be non-empty.
--
-- >>> (1 :| [2, 3, 4])
-- 1 :| [2,3,4] -- equivalent to [1,2,3,4] but guaranteed to be non-empty.
--
-- Equipped with this guaranteed to be non-empty data structure, we can combine
-- values using 'sconcat' and a 'Semigroup' of our choosing. We can try the 'Min'
-- and 'Max' instances of 'Int' which pick the smallest, or largest number
-- respectively:
--
-- >>> sconcat (1 :| [2, 3, 4]) :: Min Int
-- Min {getMin = 1}
-- >>> sconcat (1 :| [2, 3, 4]) :: Max Int
-- Max {getMax = 4}
--
-- String concatenation is another example of a 'Semigroup' instance:
--
-- >>> "foo" <> "bar"
-- "foobar"
--
-- A 'Semigroup' is a generalization of a 'Monoid'. Yet unlike the 'Semigroup', the 'Monoid'
-- requires the presence of a neutral element ('mempty') in addition to the associative
-- operator. The requirement for a neutral element prevents many types from being a full Monoid,
-- like "Data.List.NonEmpty.NonEmpty".
--
-- Note that the use of @(\<\>)@ in this module conflicts with an operator with the same
-- name that is being exported by "Data.Monoid". However, this package
-- re-exports (most of) the contents of Data.Monoid, so to use semigroups
-- and monoids in the same package just
--
-- > import Data.Semigroup
--
-- @since 4.9.0.0
----------------------------------------------------------------------------
module Data.Semigroup (
Semigroup(..)
, stimesMonoid
, stimesIdempotent
, stimesIdempotentMonoid
, mtimesDefault
-- * Semigroups
, Min(..)
, Max(..)
, First(..)
, Last(..)
, WrappedMonoid(..)
-- * Re-exported monoids from Data.Monoid
, Dual(..)
, Endo(..)
, All(..)
, Any(..)
, Sum(..)
, Product(..)
-- * Difference lists of a semigroup
, diff
, cycle1
-- * ArgMin, ArgMax
, Arg(..)
, ArgMin
, ArgMax
) where
import Prelude hiding (foldr1)
import GHC.Base (Semigroup(..))
import Data.Semigroup.Internal
import Control.Applicative
import Control.Monad.Fix
import Data.Bifoldable
import Data.Bifunctor
import Data.Bitraversable
import Data.Coerce
import Data.Data
import GHC.Generics
-- $setup
-- >>> import Prelude
-- >>> import Data.List.NonEmpty (NonEmpty (..))
-- | A generalization of 'Data.List.cycle' to an arbitrary 'Semigroup'.
-- May fail to terminate for some values in some semigroups.
cycle1 :: Semigroup m => m -> m
cycle1 xs = xs' where xs' = xs <> xs'
-- | This lets you use a difference list of a 'Semigroup' as a 'Monoid'.
--
-- === __Example:__
-- >>> let hello = diff "Hello, "
-- >>> appEndo hello "World!"
-- "Hello, World!"
-- >>> appEndo (hello <> mempty) "World!"
-- "Hello, World!"
-- >>> appEndo (mempty <> hello) "World!"
-- "Hello, World!"
-- >>> let world = diff "World"
-- >>> let excl = diff "!"
-- >>> appEndo (hello <> (world <> excl)) mempty
-- "Hello, World!"
-- >>> appEndo ((hello <> world) <> excl) mempty
-- "Hello, World!"
diff :: Semigroup m => m -> Endo m
diff = Endo . (<>)
newtype Min a = Min { getMin :: a }
deriving ( Bounded -- ^ @since 4.9.0.0
, Eq -- ^ @since 4.9.0.0
, Ord -- ^ @since 4.9.0.0
, Show -- ^ @since 4.9.0.0
, Read -- ^ @since 4.9.0.0
, Data -- ^ @since 4.9.0.0
, Generic -- ^ @since 4.9.0.0
, Generic1 -- ^ @since 4.9.0.0
)
-- | @since 4.9.0.0
instance Enum a => Enum (Min a) where
succ (Min a) = Min (succ a)
pred (Min a) = Min (pred a)
toEnum = Min . toEnum
fromEnum = fromEnum . getMin
enumFrom (Min a) = Min <$> enumFrom a
enumFromThen (Min a) (Min b) = Min <$> enumFromThen a b
enumFromTo (Min a) (Min b) = Min <$> enumFromTo a b
enumFromThenTo (Min a) (Min b) (Min c) = Min <$> enumFromThenTo a b c
-- | @since 4.9.0.0
instance Ord a => Semigroup (Min a) where
(<>) = coerce (min :: a -> a -> a)
stimes = stimesIdempotent
-- | @since 4.9.0.0
instance (Ord a, Bounded a) => Monoid (Min a) where
mempty = maxBound
-- | @since 4.9.0.0
instance Functor Min where
fmap f (Min x) = Min (f x)
-- | @since 4.9.0.0
instance Foldable Min where
foldMap f (Min a) = f a
-- | @since 4.9.0.0
instance Traversable Min where
traverse f (Min a) = Min <$> f a
-- | @since 4.9.0.0
instance Applicative Min where
pure = Min
a <* _ = a
_ *> a = a
(<*>) = coerce
liftA2 = coerce
-- | @since 4.9.0.0
instance Monad Min where
(>>) = (*>)
Min a >>= f = f a
-- | @since 4.9.0.0
instance MonadFix Min where
mfix f = fix (f . getMin)
-- | @since 4.9.0.0
instance Num a => Num (Min a) where
(Min a) + (Min b) = Min (a + b)
(Min a) * (Min b) = Min (a * b)
(Min a) - (Min b) = Min (a - b)
negate (Min a) = Min (negate a)
abs (Min a) = Min (abs a)
signum (Min a) = Min (signum a)
fromInteger = Min . fromInteger
newtype Max a = Max { getMax :: a }
deriving ( Bounded -- ^ @since 4.9.0.0
, Eq -- ^ @since 4.9.0.0
, Ord -- ^ @since 4.9.0.0
, Show -- ^ @since 4.9.0.0
, Read -- ^ @since 4.9.0.0
, Data -- ^ @since 4.9.0.0
, Generic -- ^ @since 4.9.0.0
, Generic1 -- ^ @since 4.9.0.0
)
-- | @since 4.9.0.0
instance Enum a => Enum (Max a) where
succ (Max a) = Max (succ a)
pred (Max a) = Max (pred a)
toEnum = Max . toEnum
fromEnum = fromEnum . getMax
enumFrom (Max a) = Max <$> enumFrom a
enumFromThen (Max a) (Max b) = Max <$> enumFromThen a b
enumFromTo (Max a) (Max b) = Max <$> enumFromTo a b
enumFromThenTo (Max a) (Max b) (Max c) = Max <$> enumFromThenTo a b c
-- | @since 4.9.0.0
instance Ord a => Semigroup (Max a) where
(<>) = coerce (max :: a -> a -> a)
stimes = stimesIdempotent
-- | @since 4.9.0.0
instance (Ord a, Bounded a) => Monoid (Max a) where
mempty = minBound
-- | @since 4.9.0.0
instance Functor Max where
fmap f (Max x) = Max (f x)
-- | @since 4.9.0.0
instance Foldable Max where
foldMap f (Max a) = f a
-- | @since 4.9.0.0
instance Traversable Max where
traverse f (Max a) = Max <$> f a
-- | @since 4.9.0.0
instance Applicative Max where
pure = Max
a <* _ = a
_ *> a = a
(<*>) = coerce
liftA2 = coerce
-- | @since 4.9.0.0
instance Monad Max where
(>>) = (*>)
Max a >>= f = f a
-- | @since 4.9.0.0
instance MonadFix Max where
mfix f = fix (f . getMax)
-- | @since 4.9.0.0
instance Num a => Num (Max a) where
(Max a) + (Max b) = Max (a + b)
(Max a) * (Max b) = Max (a * b)
(Max a) - (Max b) = Max (a - b)
negate (Max a) = Max (negate a)
abs (Max a) = Max (abs a)
signum (Max a) = Max (signum a)
fromInteger = Max . fromInteger
-- | 'Arg' isn't itself a 'Semigroup' in its own right, but it can be
-- placed inside 'Min' and 'Max' to compute an arg min or arg max.
--
-- >>> minimum [ Arg (x * x) x | x <- [-10 .. 10] ]
-- Arg 0 0
data Arg a b = Arg
a
-- ^ The argument used for comparisons in 'Eq' and 'Ord'.
b
-- ^ The "value" exposed via the 'Functor', 'Foldable' etc. instances.
deriving
( Show -- ^ @since 4.9.0.0
, Read -- ^ @since 4.9.0.0
, Data -- ^ @since 4.9.0.0
, Generic -- ^ @since 4.9.0.0
, Generic1 -- ^ @since 4.9.0.0
)
-- |
-- >>> Min (Arg 0 ()) <> Min (Arg 1 ())
-- Min {getMin = Arg 0 ()}
type ArgMin a b = Min (Arg a b)
-- |
-- >>> Max (Arg 0 ()) <> Max (Arg 1 ())
-- Max {getMax = Arg 1 ()}
type ArgMax a b = Max (Arg a b)
-- | @since 4.9.0.0
instance Functor (Arg a) where
fmap f (Arg x a) = Arg x (f a)
-- | @since 4.9.0.0
instance Foldable (Arg a) where
foldMap f (Arg _ a) = f a
-- | @since 4.9.0.0
instance Traversable (Arg a) where
traverse f (Arg x a) = Arg x <$> f a
-- | @since 4.9.0.0
instance Eq a => Eq (Arg a b) where
Arg a _ == Arg b _ = a == b
-- | @since 4.9.0.0
instance Ord a => Ord (Arg a b) where
Arg a _ `compare` Arg b _ = compare a b
min x@(Arg a _) y@(Arg b _)
| a <= b = x
| otherwise = y
max x@(Arg a _) y@(Arg b _)
| a >= b = x
| otherwise = y
-- | @since 4.9.0.0
instance Bifunctor Arg where
bimap f g (Arg a b) = Arg (f a) (g b)
-- | @since 4.10.0.0
instance Bifoldable Arg where
bifoldMap f g (Arg a b) = f a <> g b
-- | @since 4.10.0.0
instance Bitraversable Arg where
bitraverse f g (Arg a b) = Arg <$> f a <*> g b
newtype First a = First { getFirst :: a }
deriving ( Bounded -- ^ @since 4.9.0.0
, Eq -- ^ @since 4.9.0.0
, Ord -- ^ @since 4.9.0.0
, Show -- ^ @since 4.9.0.0
, Read -- ^ @since 4.9.0.0
, Data -- ^ @since 4.9.0.0
, Generic -- ^ @since 4.9.0.0
, Generic1 -- ^ @since 4.9.0.0
)
-- | @since 4.9.0.0
instance Enum a => Enum (First a) where
succ (First a) = First (succ a)
pred (First a) = First (pred a)
toEnum = First . toEnum
fromEnum = fromEnum . getFirst
enumFrom (First a) = First <$> enumFrom a
enumFromThen (First a) (First b) = First <$> enumFromThen a b
enumFromTo (First a) (First b) = First <$> enumFromTo a b
enumFromThenTo (First a) (First b) (First c) = First <$> enumFromThenTo a b c
-- | @since 4.9.0.0
instance Semigroup (First a) where
a <> _ = a
stimes = stimesIdempotent
-- | @since 4.9.0.0
instance Functor First where
fmap f (First x) = First (f x)
-- | @since 4.9.0.0
instance Foldable First where
foldMap f (First a) = f a
-- | @since 4.9.0.0
instance Traversable First where
traverse f (First a) = First <$> f a
-- | @since 4.9.0.0
instance Applicative First where
pure x = First x
a <* _ = a
_ *> a = a
(<*>) = coerce
liftA2 = coerce
-- | @since 4.9.0.0
instance Monad First where
(>>) = (*>)
First a >>= f = f a
-- | @since 4.9.0.0
instance MonadFix First where
mfix f = fix (f . getFirst)
newtype Last a = Last { getLast :: a }
deriving ( Bounded -- ^ @since 4.9.0.0
, Eq -- ^ @since 4.9.0.0
, Ord -- ^ @since 4.9.0.0
, Show -- ^ @since 4.9.0.0
, Read -- ^ @since 4.9.0.0
, Data -- ^ @since 4.9.0.0
, Generic -- ^ @since 4.9.0.0
, Generic1 -- ^ @since 4.9.0.0
)
-- | @since 4.9.0.0
instance Enum a => Enum (Last a) where
succ (Last a) = Last (succ a)
pred (Last a) = Last (pred a)
toEnum = Last . toEnum
fromEnum = fromEnum . getLast
enumFrom (Last a) = Last <$> enumFrom a
enumFromThen (Last a) (Last b) = Last <$> enumFromThen a b
enumFromTo (Last a) (Last b) = Last <$> enumFromTo a b
enumFromThenTo (Last a) (Last b) (Last c) = Last <$> enumFromThenTo a b c
-- | @since 4.9.0.0
instance Semigroup (Last a) where
_ <> b = b
stimes = stimesIdempotent
-- | @since 4.9.0.0
instance Functor Last where
fmap f (Last x) = Last (f x)
a <$ _ = Last a
-- | @since 4.9.0.0
instance Foldable Last where
foldMap f (Last a) = f a
-- | @since 4.9.0.0
instance Traversable Last where
traverse f (Last a) = Last <$> f a
-- | @since 4.9.0.0
instance Applicative Last where
pure = Last
a <* _ = a
_ *> a = a
(<*>) = coerce
liftA2 = coerce
-- | @since 4.9.0.0
instance Monad Last where
(>>) = (*>)
Last a >>= f = f a
-- | @since 4.9.0.0
instance MonadFix Last where
mfix f = fix (f . getLast)
-- | Provide a Semigroup for an arbitrary Monoid.
--
-- __NOTE__: This is not needed anymore since 'Semigroup' became a superclass of
-- 'Monoid' in /base-4.11/ and this newtype be deprecated at some point in the future.
newtype WrappedMonoid m = WrapMonoid { unwrapMonoid :: m }
deriving ( Bounded -- ^ @since 4.9.0.0
, Eq -- ^ @since 4.9.0.0
, Ord -- ^ @since 4.9.0.0
, Show -- ^ @since 4.9.0.0
, Read -- ^ @since 4.9.0.0
, Data -- ^ @since 4.9.0.0
, Generic -- ^ @since 4.9.0.0
, Generic1 -- ^ @since 4.9.0.0
)
-- | @since 4.9.0.0
instance Monoid m => Semigroup (WrappedMonoid m) where
(<>) = coerce (mappend :: m -> m -> m)
-- | @since 4.9.0.0
instance Monoid m => Monoid (WrappedMonoid m) where
mempty = WrapMonoid mempty
-- | @since 4.9.0.0
instance Enum a => Enum (WrappedMonoid a) where
succ (WrapMonoid a) = WrapMonoid (succ a)
pred (WrapMonoid a) = WrapMonoid (pred a)
toEnum = WrapMonoid . toEnum
fromEnum = fromEnum . unwrapMonoid
enumFrom (WrapMonoid a) = WrapMonoid <$> enumFrom a
enumFromThen (WrapMonoid a) (WrapMonoid b) = WrapMonoid <$> enumFromThen a b
enumFromTo (WrapMonoid a) (WrapMonoid b) = WrapMonoid <$> enumFromTo a b
enumFromThenTo (WrapMonoid a) (WrapMonoid b) (WrapMonoid c) =
WrapMonoid <$> enumFromThenTo a b c
-- | Repeat a value @n@ times.
--
-- > mtimesDefault n a = a <> a <> ... <> a -- using <> (n-1) times
--
-- Implemented using 'stimes' and 'mempty'.
--
-- This is a suitable definition for an 'mtimes' member of 'Monoid'.
mtimesDefault :: (Integral b, Monoid a) => b -> a -> a
mtimesDefault n x
| n == 0 = mempty
| otherwise = unwrapMonoid (stimes n (WrapMonoid x))
|