summaryrefslogtreecommitdiff
path: root/libraries/base/Data/Traversable.hs
blob: 5454446bcb2ee2b0e9d3f7b52fe6127ed751c5ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE TypeOperators #-}

-----------------------------------------------------------------------------
-- |
-- Module      :  Data.Traversable
-- Copyright   :  Conor McBride and Ross Paterson 2005
-- License     :  BSD-style (see the LICENSE file in the distribution)
--
-- Maintainer  :  libraries@haskell.org
-- Stability   :  experimental
-- Portability :  portable
--
-- Class of data structures that can be traversed from left to right,
-- performing an action on each element.
--
-- See also
--
--  * \"Applicative Programming with Effects\",
--    by Conor McBride and Ross Paterson,
--    /Journal of Functional Programming/ 18:1 (2008) 1-13, online at
--    <http://www.soi.city.ac.uk/~ross/papers/Applicative.html>.
--
--  * \"The Essence of the Iterator Pattern\",
--    by Jeremy Gibbons and Bruno Oliveira,
--    in /Mathematically-Structured Functional Programming/, 2006, online at
--    <http://web.comlab.ox.ac.uk/oucl/work/jeremy.gibbons/publications/#iterator>.
--
--  * \"An Investigation of the Laws of Traversals\",
--    by Mauro Jaskelioff and Ondrej Rypacek,
--    in /Mathematically-Structured Functional Programming/, 2012, online at
--    <http://arxiv.org/pdf/1202.2919>.
--
-----------------------------------------------------------------------------

module Data.Traversable (
    -- * The 'Traversable' class
    Traversable(..),
    -- * Utility functions
    for,
    forM,
    mapAccumL,
    mapAccumR,
    -- * General definitions for superclass methods
    fmapDefault,
    foldMapDefault,
    ) where

-- It is convenient to use 'Const' here but this means we must
-- define a few instances here which really belong in Control.Applicative
import Control.Applicative ( Const(..), ZipList(..) )
import Data.Coerce
import Data.Either ( Either(..) )
import Data.Foldable ( Foldable )
import Data.Functor
import Data.Functor.Identity ( Identity(..) )
import Data.Functor.Utils ( StateL(..), StateR(..) )
import Data.Monoid ( Dual(..), Sum(..), Product(..),
                     First(..), Last(..), Alt(..), Ap(..) )
import Data.Ord ( Down(..) )
import Data.Proxy ( Proxy(..) )

import GHC.Arr
import GHC.Base ( Applicative(..), Monad(..), Monoid, Maybe(..), NonEmpty(..),
                  ($), (.), id, flip )
import GHC.Generics
import qualified GHC.List as List ( foldr )

-- | Functors representing data structures that can be traversed from
-- left to right.
--
-- A definition of 'traverse' must satisfy the following laws:
--
-- [Naturality]
--   @t . 'traverse' f = 'traverse' (t . f)@
--   for every applicative transformation @t@
--
-- [Identity]
--   @'traverse' 'Identity' = 'Identity'@
--
-- [Composition]
--   @'traverse' ('Data.Functor.Compose.Compose' . 'fmap' g . f)
--     = 'Data.Functor.Compose.Compose' . 'fmap' ('traverse' g) . 'traverse' f@
--
-- A definition of 'sequenceA' must satisfy the following laws:
--
-- [Naturality]
--   @t . 'sequenceA' = 'sequenceA' . 'fmap' t@
--   for every applicative transformation @t@
--
-- [Identity]
--   @'sequenceA' . 'fmap' 'Identity' = 'Identity'@
--
-- [Composition]
--   @'sequenceA' . 'fmap' 'Data.Functor.Compose.Compose'
--     = 'Data.Functor.Compose.Compose' . 'fmap' 'sequenceA' . 'sequenceA'@
--
-- where an /applicative transformation/ is a function
--
-- @t :: (Applicative f, Applicative g) => f a -> g a@
--
-- preserving the 'Applicative' operations, i.e.
--
-- @
-- t ('pure' x) = 'pure' x
-- t (f '<*>' x) = t f '<*>' t x
-- @
--
-- and the identity functor 'Identity' and composition functors
-- 'Data.Functor.Compose.Compose' are from "Data.Functor.Identity" and
-- "Data.Functor.Compose".
--
-- A result of the naturality law is a `purity law` for 'traverse'
--
-- @'traverse' 'pure' = 'pure'@
--
-- (The naturality law is implied by parametricity and thus so is the
-- purity law [1, p15].)
--
-- Instances are similar to 'Functor', e.g. given a data type
--
-- > data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
--
-- a suitable instance would be
--
-- > instance Traversable Tree where
-- >    traverse f Empty = pure Empty
-- >    traverse f (Leaf x) = Leaf <$> f x
-- >    traverse f (Node l k r) = Node <$> traverse f l <*> f k <*> traverse f r
--
-- This is suitable even for abstract types, as the laws for '<*>'
-- imply a form of associativity.
--
-- The superclass instances should satisfy the following:
--
--  * In the 'Functor' instance, 'fmap' should be equivalent to traversal
--    with the identity applicative functor ('fmapDefault').
--
--  * In the 'Foldable' instance, 'Data.Foldable.foldMap' should be
--    equivalent to traversal with a constant applicative functor
--    ('foldMapDefault').
--
-- References:
-- [1] The Essence of the Iterator Pattern, Jeremy Gibbons and Bruno C. d. S. Oliveira
class (Functor t, Foldable t) => Traversable t where
    {-# MINIMAL traverse | sequenceA #-}

    -- | Map each element of a structure to an action, evaluate these actions
    -- from left to right, and collect the results. For a version that ignores
    -- the results see 'Data.Foldable.traverse_'.
    traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
    {-# INLINE traverse #-}  -- See Note [Inline default methods]
    traverse f = sequenceA . fmap f

    -- | Evaluate each action in the structure from left to right, and
    -- collect the results. For a version that ignores the results
    -- see 'Data.Foldable.sequenceA_'.
    sequenceA :: Applicative f => t (f a) -> f (t a)
    {-# INLINE sequenceA #-}  -- See Note [Inline default methods]
    sequenceA = traverse id

    -- | Map each element of a structure to a monadic action, evaluate
    -- these actions from left to right, and collect the results. For
    -- a version that ignores the results see 'Data.Foldable.mapM_'.
    mapM :: Monad m => (a -> m b) -> t a -> m (t b)
    {-# INLINE mapM #-}  -- See Note [Inline default methods]
    mapM = traverse

    -- | Evaluate each monadic action in the structure from left to
    -- right, and collect the results. For a version that ignores the
    -- results see 'Data.Foldable.sequence_'.
    sequence :: Monad m => t (m a) -> m (t a)
    {-# INLINE sequence #-}  -- See Note [Inline default methods]
    sequence = sequenceA

{- Note [Inline default methods]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider

   class ... => Traversable t where
       ...
       mapM :: Monad m => (a -> m b) -> t a -> m (t b)
       mapM = traverse   -- Default method

   instance Traversable [] where
       {-# INLINE traverse #-}
       traverse = ...code for traverse on lists ...

This gives rise to a list-instance of mapM looking like this

  $fTraversable[]_$ctraverse = ...code for traverse on lists...
       {-# INLINE $fTraversable[]_$ctraverse #-}
  $fTraversable[]_$cmapM    = $fTraversable[]_$ctraverse

Now the $ctraverse obediently inlines into the RHS of $cmapM, /but/
that's all!  We get

  $fTraversable[]_$cmapM = ...code for traverse on lists...

with NO INLINE pragma!  This happens even though 'traverse' had an
INLINE pragma because the author knew it should be inlined pretty
vigorously.

Indeed, it turned out that the rhs of $cmapM was just too big to
inline, so all uses of mapM on lists used a terribly inefficient
dictionary-passing style, because of its 'Monad m =>' type.  Disaster!

Solution: add an INLINE pragma on the default method:

   class ... => Traversable t where
       ...
       mapM :: Monad m => (a -> m b) -> t a -> m (t b)
       {-# INLINE mapM #-}     -- VERY IMPORTANT!
       mapM = traverse
-}

-- instances for Prelude types

-- | @since 2.01
instance Traversable Maybe where
    traverse _ Nothing = pure Nothing
    traverse f (Just x) = Just <$> f x

-- | @since 2.01
instance Traversable [] where
    {-# INLINE traverse #-} -- so that traverse can fuse
    traverse f = List.foldr cons_f (pure [])
      where cons_f x ys = liftA2 (:) (f x) ys

-- | @since 4.9.0.0
instance Traversable NonEmpty where
  traverse f ~(a :| as) = liftA2 (:|) (f a) (traverse f as)

-- | @since 4.7.0.0
instance Traversable (Either a) where
    traverse _ (Left x) = pure (Left x)
    traverse f (Right y) = Right <$> f y

-- | @since 4.7.0.0
instance Traversable ((,) a) where
    traverse f (x, y) = (,) x <$> f y

-- | @since 2.01
instance Ix i => Traversable (Array i) where
    traverse f arr = listArray (bounds arr) `fmap` traverse f (elems arr)

-- | @since 4.7.0.0
instance Traversable Proxy where
    traverse _ _ = pure Proxy
    {-# INLINE traverse #-}
    sequenceA _ = pure Proxy
    {-# INLINE sequenceA #-}
    mapM _ _ = pure Proxy
    {-# INLINE mapM #-}
    sequence _ = pure Proxy
    {-# INLINE sequence #-}

-- | @since 4.7.0.0
instance Traversable (Const m) where
    traverse _ (Const m) = pure $ Const m

-- | @since 4.8.0.0
instance Traversable Dual where
    traverse f (Dual x) = Dual <$> f x

-- | @since 4.8.0.0
instance Traversable Sum where
    traverse f (Sum x) = Sum <$> f x

-- | @since 4.8.0.0
instance Traversable Product where
    traverse f (Product x) = Product <$> f x

-- | @since 4.8.0.0
instance Traversable First where
    traverse f (First x) = First <$> traverse f x

-- | @since 4.8.0.0
instance Traversable Last where
    traverse f (Last x) = Last <$> traverse f x

-- | @since 4.12.0.0
instance (Traversable f) => Traversable (Alt f) where
    traverse f (Alt x) = Alt <$> traverse f x

-- | @since 4.12.0.0
instance (Traversable f) => Traversable (Ap f) where
    traverse f (Ap x) = Ap <$> traverse f x

-- | @since 4.9.0.0
instance Traversable ZipList where
    traverse f (ZipList x) = ZipList <$> traverse f x

-- | @since 4.9.0.0
deriving instance Traversable Identity


-- Instances for GHC.Generics
-- | @since 4.9.0.0
instance Traversable U1 where
    traverse _ _ = pure U1
    {-# INLINE traverse #-}
    sequenceA _ = pure U1
    {-# INLINE sequenceA #-}
    mapM _ _ = pure U1
    {-# INLINE mapM #-}
    sequence _ = pure U1
    {-# INLINE sequence #-}

-- | @since 4.9.0.0
deriving instance Traversable V1

-- | @since 4.9.0.0
deriving instance Traversable Par1

-- | @since 4.9.0.0
deriving instance Traversable f => Traversable (Rec1 f)

-- | @since 4.9.0.0
deriving instance Traversable (K1 i c)

-- | @since 4.9.0.0
deriving instance Traversable f => Traversable (M1 i c f)

-- | @since 4.9.0.0
deriving instance (Traversable f, Traversable g) => Traversable (f :+: g)

-- | @since 4.9.0.0
deriving instance (Traversable f, Traversable g) => Traversable (f :*: g)

-- | @since 4.9.0.0
deriving instance (Traversable f, Traversable g) => Traversable (f :.: g)

-- | @since 4.9.0.0
deriving instance Traversable UAddr

-- | @since 4.9.0.0
deriving instance Traversable UChar

-- | @since 4.9.0.0
deriving instance Traversable UDouble

-- | @since 4.9.0.0
deriving instance Traversable UFloat

-- | @since 4.9.0.0
deriving instance Traversable UInt

-- | @since 4.9.0.0
deriving instance Traversable UWord

-- Instance for Data.Ord
-- | @since 4.12.0.0
deriving instance Traversable Down

-- general functions

-- | 'for' is 'traverse' with its arguments flipped. For a version
-- that ignores the results see 'Data.Foldable.for_'.
for :: (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b)
{-# INLINE for #-}
for = flip traverse

-- | 'forM' is 'mapM' with its arguments flipped. For a version that
-- ignores the results see 'Data.Foldable.forM_'.
forM :: (Traversable t, Monad m) => t a -> (a -> m b) -> m (t b)
{-# INLINE forM #-}
forM = flip mapM

-- |The 'mapAccumL' function behaves like a combination of 'fmap'
-- and 'Data.Foldable.foldl'; it applies a function to each element of a structure,
-- passing an accumulating parameter from left to right, and returning
-- a final value of this accumulator together with the new structure.
mapAccumL :: Traversable t => (a -> b -> (a, c)) -> a -> t b -> (a, t c)
mapAccumL f s t = runStateL (traverse (StateL . flip f) t) s

-- |The 'mapAccumR' function behaves like a combination of 'fmap'
-- and 'Data.Foldable.foldr'; it applies a function to each element of a structure,
-- passing an accumulating parameter from right to left, and returning
-- a final value of this accumulator together with the new structure.
mapAccumR :: Traversable t => (a -> b -> (a, c)) -> a -> t b -> (a, t c)
mapAccumR f s t = runStateR (traverse (StateR . flip f) t) s

-- | This function may be used as a value for `fmap` in a `Functor`
--   instance, provided that 'traverse' is defined. (Using
--   `fmapDefault` with a `Traversable` instance defined only by
--   'sequenceA' will result in infinite recursion.)
--
-- @
-- 'fmapDefault' f ≡ 'runIdentity' . 'traverse' ('Identity' . f)
-- @
fmapDefault :: forall t a b . Traversable t
            => (a -> b) -> t a -> t b
{-# INLINE fmapDefault #-}
-- See Note [Function coercion] in Data.Functor.Utils.
fmapDefault = coerce (traverse :: (a -> Identity b) -> t a -> Identity (t b))

-- | This function may be used as a value for `Data.Foldable.foldMap`
-- in a `Foldable` instance.
--
-- @
-- 'foldMapDefault' f ≡ 'getConst' . 'traverse' ('Const' . f)
-- @
foldMapDefault :: forall t m a . (Traversable t, Monoid m)
               => (a -> m) -> t a -> m
{-# INLINE foldMapDefault #-}
-- See Note [Function coercion] in Data.Functor.Utils.
foldMapDefault = coerce (traverse :: (a -> Const m ()) -> t a -> Const m (t ()))