1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
|
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE NoImplicitPrelude #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.Traversable
-- Copyright : Conor McBride and Ross Paterson 2005
-- License : BSD-style (see the LICENSE file in the distribution)
--
-- Maintainer : libraries@haskell.org
-- Stability : experimental
-- Portability : portable
--
-- Class of data structures that can be traversed from left to right,
-- performing an action on each element.
--
-- See also
--
-- * \"Applicative Programming with Effects\",
-- by Conor McBride and Ross Paterson,
-- /Journal of Functional Programming/ 18:1 (2008) 1-13, online at
-- <http://www.soi.city.ac.uk/~ross/papers/Applicative.html>.
--
-- * \"The Essence of the Iterator Pattern\",
-- by Jeremy Gibbons and Bruno Oliveira,
-- in /Mathematically-Structured Functional Programming/, 2006, online at
-- <http://web.comlab.ox.ac.uk/oucl/work/jeremy.gibbons/publications/#iterator>.
--
-- * \"An Investigation of the Laws of Traversals\",
-- by Mauro Jaskelioff and Ondrej Rypacek,
-- in /Mathematically-Structured Functional Programming/, 2012, online at
-- <http://arxiv.org/pdf/1202.2919>.
--
-----------------------------------------------------------------------------
module Data.Traversable (
-- * The 'Traversable' class
Traversable(..),
-- * Utility functions
for,
forM,
mapAccumL,
mapAccumR,
-- * General definitions for superclass methods
fmapDefault,
foldMapDefault,
) where
-- It is convenient to use 'Const' here but this means we must
-- define a few instances here which really belong in Control.Applicative
import Control.Applicative ( Const(..), ZipList(..) )
import Data.Either ( Either(..) )
import Data.Foldable ( Foldable )
import Data.Functor
import Data.Monoid ( Dual(..), Sum(..), Product(..), First(..), Last(..) )
import Data.Proxy ( Proxy(..) )
import GHC.Arr
import GHC.Base ( Applicative(..), Monad(..), Monoid, Maybe(..),
($), (.), id, flip )
import qualified GHC.List as List ( foldr )
-- | Functors representing data structures that can be traversed from
-- left to right.
--
-- A definition of 'traverse' must satisfy the following laws:
--
-- [/naturality/]
-- @t . 'traverse' f = 'traverse' (t . f)@
-- for every applicative transformation @t@
--
-- [/identity/]
-- @'traverse' Identity = Identity@
--
-- [/composition/]
-- @'traverse' (Compose . 'fmap' g . f) = Compose . 'fmap' ('traverse' g) . 'traverse' f@
--
-- A definition of 'sequenceA' must satisfy the following laws:
--
-- [/naturality/]
-- @t . 'sequenceA' = 'sequenceA' . 'fmap' t@
-- for every applicative transformation @t@
--
-- [/identity/]
-- @'sequenceA' . 'fmap' Identity = Identity@
--
-- [/composition/]
-- @'sequenceA' . 'fmap' Compose = Compose . 'fmap' 'sequenceA' . 'sequenceA'@
--
-- where an /applicative transformation/ is a function
--
-- @t :: (Applicative f, Applicative g) => f a -> g a@
--
-- preserving the 'Applicative' operations, i.e.
--
-- * @t ('pure' x) = 'pure' x@
--
-- * @t (x '<*>' y) = t x '<*>' t y@
--
-- and the identity functor @Identity@ and composition of functors @Compose@
-- are defined as
--
-- > newtype Identity a = Identity a
-- >
-- > instance Functor Identity where
-- > fmap f (Identity x) = Identity (f x)
-- >
-- > instance Applicative Identity where
-- > pure x = Identity x
-- > Identity f <*> Identity x = Identity (f x)
-- >
-- > newtype Compose f g a = Compose (f (g a))
-- >
-- > instance (Functor f, Functor g) => Functor (Compose f g) where
-- > fmap f (Compose x) = Compose (fmap (fmap f) x)
-- >
-- > instance (Applicative f, Applicative g) => Applicative (Compose f g) where
-- > pure x = Compose (pure (pure x))
-- > Compose f <*> Compose x = Compose ((<*>) <$> f <*> x)
--
-- (The naturality law is implied by parametricity.)
--
-- Instances are similar to 'Functor', e.g. given a data type
--
-- > data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
--
-- a suitable instance would be
--
-- > instance Traversable Tree where
-- > traverse f Empty = pure Empty
-- > traverse f (Leaf x) = Leaf <$> f x
-- > traverse f (Node l k r) = Node <$> traverse f l <*> f k <*> traverse f r
--
-- This is suitable even for abstract types, as the laws for '<*>'
-- imply a form of associativity.
--
-- The superclass instances should satisfy the following:
--
-- * In the 'Functor' instance, 'fmap' should be equivalent to traversal
-- with the identity applicative functor ('fmapDefault').
--
-- * In the 'Foldable' instance, 'Data.Foldable.foldMap' should be
-- equivalent to traversal with a constant applicative functor
-- ('foldMapDefault').
--
class (Functor t, Foldable t) => Traversable t where
{-# MINIMAL traverse | sequenceA #-}
-- | Map each element of a structure to an action, evaluate these actions
-- from left to right, and collect the results. For a version that ignores
-- the results see 'Data.Foldable.traverse_'.
traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
traverse f = sequenceA . fmap f
-- | Evaluate each action in the structure from left to right, and
-- and collect the results. For a version that ignores the results
-- see 'Data.Foldable.sequenceA_'.
sequenceA :: Applicative f => t (f a) -> f (t a)
sequenceA = traverse id
-- | Map each element of a structure to a monadic action, evaluate
-- these actions from left to right, and collect the results. For
-- a version that ignores the results see 'Data.Foldable.mapM_'.
mapM :: Monad m => (a -> m b) -> t a -> m (t b)
mapM = traverse
-- | Evaluate each monadic action in the structure from left to
-- right, and collect the results. For a version that ignores the
-- results see 'Data.Foldable.sequence_'.
sequence :: Monad m => t (m a) -> m (t a)
sequence = sequenceA
-- instances for Prelude types
instance Traversable Maybe where
traverse _ Nothing = pure Nothing
traverse f (Just x) = Just <$> f x
instance Traversable [] where
{-# INLINE traverse #-} -- so that traverse can fuse
traverse f = List.foldr cons_f (pure [])
where cons_f x ys = (:) <$> f x <*> ys
instance Traversable (Either a) where
traverse _ (Left x) = pure (Left x)
traverse f (Right y) = Right <$> f y
instance Traversable ((,) a) where
traverse f (x, y) = (,) x <$> f y
instance Ix i => Traversable (Array i) where
traverse f arr = listArray (bounds arr) `fmap` traverse f (elems arr)
instance Traversable Proxy where
traverse _ _ = pure Proxy
{-# INLINE traverse #-}
sequenceA _ = pure Proxy
{-# INLINE sequenceA #-}
mapM _ _ = pure Proxy
{-# INLINE mapM #-}
sequence _ = pure Proxy
{-# INLINE sequence #-}
instance Traversable (Const m) where
traverse _ (Const m) = pure $ Const m
instance Traversable Dual where
traverse f (Dual x) = Dual <$> f x
instance Traversable Sum where
traverse f (Sum x) = Sum <$> f x
instance Traversable Product where
traverse f (Product x) = Product <$> f x
instance Traversable First where
traverse f (First x) = First <$> traverse f x
instance Traversable Last where
traverse f (Last x) = Last <$> traverse f x
instance Traversable ZipList where
traverse f (ZipList x) = ZipList <$> traverse f x
-- general functions
-- | 'for' is 'traverse' with its arguments flipped. For a version
-- that ignores the results see 'Data.Foldable.for_'.
for :: (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b)
{-# INLINE for #-}
for = flip traverse
-- | 'forM' is 'mapM' with its arguments flipped. For a version that
-- ignores the results see 'Data.Foldable.forM_'.
forM :: (Traversable t, Monad m) => t a -> (a -> m b) -> m (t b)
{-# INLINE forM #-}
forM = flip mapM
-- left-to-right state transformer
newtype StateL s a = StateL { runStateL :: s -> (s, a) }
instance Functor (StateL s) where
fmap f (StateL k) = StateL $ \ s -> let (s', v) = k s in (s', f v)
instance Applicative (StateL s) where
pure x = StateL (\ s -> (s, x))
StateL kf <*> StateL kv = StateL $ \ s ->
let (s', f) = kf s
(s'', v) = kv s'
in (s'', f v)
-- |The 'mapAccumL' function behaves like a combination of 'fmap'
-- and 'foldl'; it applies a function to each element of a structure,
-- passing an accumulating parameter from left to right, and returning
-- a final value of this accumulator together with the new structure.
mapAccumL :: Traversable t => (a -> b -> (a, c)) -> a -> t b -> (a, t c)
mapAccumL f s t = runStateL (traverse (StateL . flip f) t) s
-- right-to-left state transformer
newtype StateR s a = StateR { runStateR :: s -> (s, a) }
instance Functor (StateR s) where
fmap f (StateR k) = StateR $ \ s -> let (s', v) = k s in (s', f v)
instance Applicative (StateR s) where
pure x = StateR (\ s -> (s, x))
StateR kf <*> StateR kv = StateR $ \ s ->
let (s', v) = kv s
(s'', f) = kf s'
in (s'', f v)
-- |The 'mapAccumR' function behaves like a combination of 'fmap'
-- and 'foldr'; it applies a function to each element of a structure,
-- passing an accumulating parameter from right to left, and returning
-- a final value of this accumulator together with the new structure.
mapAccumR :: Traversable t => (a -> b -> (a, c)) -> a -> t b -> (a, t c)
mapAccumR f s t = runStateR (traverse (StateR . flip f) t) s
-- | This function may be used as a value for `fmap` in a `Functor`
-- instance, provided that 'traverse' is defined. (Using
-- `fmapDefault` with a `Traversable` instance defined only by
-- 'sequenceA' will result in infinite recursion.)
fmapDefault :: Traversable t => (a -> b) -> t a -> t b
{-# INLINE fmapDefault #-}
fmapDefault f = getId . traverse (Id . f)
-- | This function may be used as a value for `Data.Foldable.foldMap`
-- in a `Foldable` instance.
foldMapDefault :: (Traversable t, Monoid m) => (a -> m) -> t a -> m
foldMapDefault f = getConst . traverse (Const . f)
-- local instances
newtype Id a = Id { getId :: a }
instance Functor Id where
fmap f (Id x) = Id (f x)
instance Applicative Id where
pure = Id
Id f <*> Id x = Id (f x)
|