1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
|
{-
The overall structure of the GHC Prelude is a bit tricky.
a) We want to avoid "orphan modules", i.e. ones with instance
decls that don't belong either to a tycon or a class
defined in the same module
b) We want to avoid giant modules
So the rough structure is as follows, in (linearised) dependency order
GHC.Prim Has no implementation. It defines built-in things, and
by importing it you bring them into scope.
The source file is GHC.Prim.hi-boot, which is just
copied to make GHC.Prim.hi
GHC.Base Classes: Eq, Ord, Functor, Monad
Types: list, (), Int, Bool, Ordering, Char, String
Data.Tuple Types: tuples, plus instances for GHC.Base classes
GHC.Show Class: Show, plus instances for GHC.Base/GHC.Tup types
GHC.Enum Class: Enum, plus instances for GHC.Base/GHC.Tup types
Data.Maybe Type: Maybe, plus instances for GHC.Base classes
GHC.List List functions
GHC.Num Class: Num, plus instances for Int
Type: Integer, plus instances for all classes so far (Eq, Ord, Num, Show)
Integer is needed here because it is mentioned in the signature
of 'fromInteger' in class Num
GHC.Real Classes: Real, Integral, Fractional, RealFrac
plus instances for Int, Integer
Types: Ratio, Rational
plus instances for classes so far
Rational is needed here because it is mentioned in the signature
of 'toRational' in class Real
GHC.ST The ST monad, instances and a few helper functions
Ix Classes: Ix, plus instances for Int, Bool, Char, Integer, Ordering, tuples
GHC.Arr Types: Array, MutableArray, MutableVar
Arrays are used by a function in GHC.Float
GHC.Float Classes: Floating, RealFloat
Types: Float, Double, plus instances of all classes so far
This module contains everything to do with floating point.
It is a big module (900 lines)
With a bit of luck, many modules can be compiled without ever reading GHC.Float.hi
Other Prelude modules are much easier with fewer complex dependencies.
-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE UnboxedTuples #-}
{-# LANGUAGE Unsafe #-}
-- -Wno-orphans is needed for things like:
-- Orphan rule: "x# -# x#" ALWAYS forall x# :: Int# -# x# x# = 0
{-# OPTIONS_GHC -Wno-orphans #-}
{-# OPTIONS_HADDOCK not-home #-}
-----------------------------------------------------------------------------
-- |
-- Module : GHC.Base
-- Copyright : (c) The University of Glasgow, 1992-2002
-- License : see libraries/base/LICENSE
--
-- Maintainer : cvs-ghc@haskell.org
-- Stability : internal
-- Portability : non-portable (GHC extensions)
--
-- Basic data types and classes.
--
-----------------------------------------------------------------------------
#include "MachDeps.h"
module GHC.Base
(
module GHC.Base,
module GHC.Classes,
module GHC.CString,
module GHC.Magic,
module GHC.Types,
module GHC.Prim, -- Re-export GHC.Prim and [boot] GHC.Err,
module GHC.Prim.Ext, -- to avoid lots of people having to
module GHC.Err, -- import it explicitly
module GHC.Maybe
)
where
import GHC.Types
import GHC.Classes
import GHC.CString
import GHC.Magic
import GHC.Prim
import GHC.Prim.Ext
import GHC.Err
import GHC.Maybe
import {-# SOURCE #-} GHC.IO (mkUserError, mplusIO)
import GHC.Tuple (Solo (..)) -- Note [Depend on GHC.Tuple]
import GHC.Num.Integer () -- Note [Depend on GHC.Num.Integer]
-- for 'class Semigroup'
import {-# SOURCE #-} GHC.Real (Integral)
import {-# SOURCE #-} Data.Semigroup.Internal ( stimesDefault
, stimesMaybe
, stimesList
, stimesIdempotentMonoid
)
-- $setup
-- >>> import GHC.Num
infixr 9 .
infixr 5 ++
infixl 4 <$
infixl 1 >>, >>=
infixr 1 =<<
infixr 0 $, $!
infixl 4 <*>, <*, *>, <**>
default () -- Double isn't available yet
{-
Note [Depend on GHC.Num.Integer]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The Integer type is special because GHC.Iface.Tidy uses constructors in
GHC.Num.Integer to construct Integer literal values. Currently it reads the
interface file whether or not the current module *has* any Integer literals, so
it's important that GHC.Num.Integer is compiled before any other module.
(There's a hack in GHC to disable this for packages ghc-prim and ghc-bignum
which aren't allowed to contain any Integer literals.)
Likewise we implicitly need Integer when deriving things like Eq instances.
The danger is that if the build system doesn't know about the dependency
on Integer, it'll compile some base module before GHC.Num.Integer,
resulting in:
Failed to load interface for ‘GHC.Num.Integer’
There are files missing in the ‘ghc-bignum’ package,
Bottom line: we make GHC.Base depend on GHC.Num.Integer; and everything
else either depends on GHC.Base, or does not have NoImplicitPrelude
(and hence depends on Prelude).
Note: this is only a problem with the make-based build system. Hadrian doesn't
seem to interleave compilation of modules from separate packages and respects
the dependency between `base` and `ghc-bignum`.
Note [Depend on GHC.Tuple]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Similarly, tuple syntax (or ()) creates an implicit dependency on
GHC.Tuple, so we use the same rule as for Integer --- see Note [Depend on
GHC.Integer] --- to explain this to the build system. We make GHC.Base
depend on GHC.Tuple, and everything else depends on GHC.Base or Prelude.
-}
#if 0
-- for use when compiling GHC.Base itself doesn't work
data Bool = False | True
data Ordering = LT | EQ | GT
data Char = C# Char#
type String = [Char]
data Int = I# Int#
data () = ()
data [] a = MkNil
not True = False
(&&) True True = True
otherwise = True
build = errorWithoutStackTrace "urk"
foldr = errorWithoutStackTrace "urk"
#endif
infixr 6 <>
-- | The class of semigroups (types with an associative binary operation).
--
-- Instances should satisfy the following:
--
-- [Associativity] @x '<>' (y '<>' z) = (x '<>' y) '<>' z@
--
-- @since 4.9.0.0
class Semigroup a where
-- | An associative operation.
--
-- >>> [1,2,3] <> [4,5,6]
-- [1,2,3,4,5,6]
(<>) :: a -> a -> a
-- | Reduce a non-empty list with '<>'
--
-- The default definition should be sufficient, but this can be
-- overridden for efficiency.
--
-- >>> import Data.List.NonEmpty (NonEmpty (..))
-- >>> sconcat $ "Hello" :| [" ", "Haskell", "!"]
-- "Hello Haskell!"
sconcat :: NonEmpty a -> a
sconcat (a :| as) = go a as where
go b (c:cs) = b <> go c cs
go b [] = b
-- | Repeat a value @n@ times.
--
-- Given that this works on a 'Semigroup' it is allowed to fail if
-- you request 0 or fewer repetitions, and the default definition
-- will do so.
--
-- By making this a member of the class, idempotent semigroups
-- and monoids can upgrade this to execute in \(\mathcal{O}(1)\) by
-- picking @stimes = 'Data.Semigroup.stimesIdempotent'@ or @stimes =
-- 'stimesIdempotentMonoid'@ respectively.
--
-- >>> stimes 4 [1]
-- [1,1,1,1]
stimes :: Integral b => b -> a -> a
stimes = stimesDefault
-- | The class of monoids (types with an associative binary operation that
-- has an identity). Instances should satisfy the following:
--
-- [Right identity] @x '<>' 'mempty' = x@
-- [Left identity] @'mempty' '<>' x = x@
-- [Associativity] @x '<>' (y '<>' z) = (x '<>' y) '<>' z@ ('Semigroup' law)
-- [Concatenation] @'mconcat' = 'foldr' ('<>') 'mempty'@
--
-- The method names refer to the monoid of lists under concatenation,
-- but there are many other instances.
--
-- Some types can be viewed as a monoid in more than one way,
-- e.g. both addition and multiplication on numbers.
-- In such cases we often define @newtype@s and make those instances
-- of 'Monoid', e.g. 'Data.Semigroup.Sum' and 'Data.Semigroup.Product'.
--
-- __NOTE__: 'Semigroup' is a superclass of 'Monoid' since /base-4.11.0.0/.
class Semigroup a => Monoid a where
-- | Identity of 'mappend'
--
-- >>> "Hello world" <> mempty
-- "Hello world"
mempty :: a
-- | An associative operation
--
-- __NOTE__: This method is redundant and has the default
-- implementation @'mappend' = ('<>')@ since /base-4.11.0.0/.
-- Should it be implemented manually, since 'mappend' is a synonym for
-- ('<>'), it is expected that the two functions are defined the same
-- way. In a future GHC release 'mappend' will be removed from 'Monoid'.
mappend :: a -> a -> a
mappend = (<>)
{-# INLINE mappend #-}
-- | Fold a list using the monoid.
--
-- For most types, the default definition for 'mconcat' will be
-- used, but the function is included in the class definition so
-- that an optimized version can be provided for specific types.
--
-- >>> mconcat ["Hello", " ", "Haskell", "!"]
-- "Hello Haskell!"
mconcat :: [a] -> a
mconcat = foldr mappend mempty
-- | @since 4.9.0.0
instance Semigroup [a] where
(<>) = (++)
{-# INLINE (<>) #-}
stimes = stimesList
-- | @since 2.01
instance Monoid [a] where
{-# INLINE mempty #-}
mempty = []
{-# INLINE mconcat #-}
mconcat xss = [x | xs <- xss, x <- xs]
-- See Note: [List comprehensions and inlining]
{-
Note: [List comprehensions and inlining]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The list monad operations are traditionally described in terms of concatMap:
xs >>= f = concatMap f xs
Similarly, mconcat for lists is just concat. Here in Base, however, we don't
have concatMap, and we'll refrain from adding it here so it won't have to be
hidden in imports. Instead, we use GHC's list comprehension desugaring
mechanism to define mconcat and the Applicative and Monad instances for lists.
We mark them INLINE because the inliner is not generally too keen to inline
build forms such as the ones these desugar to without our insistence. Defining
these using list comprehensions instead of foldr has an additional potential
benefit, as described in compiler/GHC/HsToCore/ListComp.hs: if optimizations
needed to make foldr/build forms efficient are turned off, we'll get reasonably
efficient translations anyway.
-}
-- | @since 4.9.0.0
instance Semigroup (NonEmpty a) where
(a :| as) <> ~(b :| bs) = a :| (as ++ b : bs)
-- | @since 4.9.0.0
instance Semigroup b => Semigroup (a -> b) where
f <> g = \x -> f x <> g x
stimes n f e = stimes n (f e)
-- | @since 2.01
instance Monoid b => Monoid (a -> b) where
mempty _ = mempty
-- | @since 4.9.0.0
instance Semigroup () where
_ <> _ = ()
sconcat _ = ()
stimes _ _ = ()
-- | @since 2.01
instance Monoid () where
-- Should it be strict?
mempty = ()
mconcat _ = ()
-- | @since 4.15
instance Semigroup a => Semigroup (Solo a) where
Solo a <> Solo b = Solo (a <> b)
stimes n (Solo a) = Solo (stimes n a)
-- | @since 4.15
instance Monoid a => Monoid (Solo a) where
mempty = Solo mempty
-- | @since 4.9.0.0
instance (Semigroup a, Semigroup b) => Semigroup (a, b) where
(a,b) <> (a',b') = (a<>a',b<>b')
stimes n (a,b) = (stimes n a, stimes n b)
-- | @since 2.01
instance (Monoid a, Monoid b) => Monoid (a,b) where
mempty = (mempty, mempty)
-- | @since 4.9.0.0
instance (Semigroup a, Semigroup b, Semigroup c) => Semigroup (a, b, c) where
(a,b,c) <> (a',b',c') = (a<>a',b<>b',c<>c')
stimes n (a,b,c) = (stimes n a, stimes n b, stimes n c)
-- | @since 2.01
instance (Monoid a, Monoid b, Monoid c) => Monoid (a,b,c) where
mempty = (mempty, mempty, mempty)
-- | @since 4.9.0.0
instance (Semigroup a, Semigroup b, Semigroup c, Semigroup d)
=> Semigroup (a, b, c, d) where
(a,b,c,d) <> (a',b',c',d') = (a<>a',b<>b',c<>c',d<>d')
stimes n (a,b,c,d) = (stimes n a, stimes n b, stimes n c, stimes n d)
-- | @since 2.01
instance (Monoid a, Monoid b, Monoid c, Monoid d) => Monoid (a,b,c,d) where
mempty = (mempty, mempty, mempty, mempty)
-- | @since 4.9.0.0
instance (Semigroup a, Semigroup b, Semigroup c, Semigroup d, Semigroup e)
=> Semigroup (a, b, c, d, e) where
(a,b,c,d,e) <> (a',b',c',d',e') = (a<>a',b<>b',c<>c',d<>d',e<>e')
stimes n (a,b,c,d,e) =
(stimes n a, stimes n b, stimes n c, stimes n d, stimes n e)
-- | @since 2.01
instance (Monoid a, Monoid b, Monoid c, Monoid d, Monoid e) =>
Monoid (a,b,c,d,e) where
mempty = (mempty, mempty, mempty, mempty, mempty)
-- | @since 4.9.0.0
instance Semigroup Ordering where
LT <> _ = LT
EQ <> y = y
GT <> _ = GT
stimes = stimesIdempotentMonoid
-- lexicographical ordering
-- | @since 2.01
instance Monoid Ordering where
mempty = EQ
-- | @since 4.9.0.0
instance Semigroup a => Semigroup (Maybe a) where
Nothing <> b = b
a <> Nothing = a
Just a <> Just b = Just (a <> b)
stimes = stimesMaybe
-- | Lift a semigroup into 'Maybe' forming a 'Monoid' according to
-- <http://en.wikipedia.org/wiki/Monoid>: \"Any semigroup @S@ may be
-- turned into a monoid simply by adjoining an element @e@ not in @S@
-- and defining @e*e = e@ and @e*s = s = s*e@ for all @s ∈ S@.\"
--
-- /Since 4.11.0/: constraint on inner @a@ value generalised from
-- 'Monoid' to 'Semigroup'.
--
-- @since 2.01
instance Semigroup a => Monoid (Maybe a) where
mempty = Nothing
-- | @since 4.15
instance Applicative Solo where
pure = Solo
-- Note: we really want to match strictly here. This lets us write,
-- for example,
--
-- forceSpine :: Foldable f => f a -> ()
-- forceSpine xs
-- | Solo r <- traverse_ Solo xs
-- = r
Solo f <*> Solo x = Solo (f x)
liftA2 f (Solo x) (Solo y) = Solo (f x y)
-- | For tuples, the 'Monoid' constraint on @a@ determines
-- how the first values merge.
-- For example, 'String's concatenate:
--
-- > ("hello ", (+15)) <*> ("world!", 2002)
-- > ("hello world!",2017)
--
-- @since 2.01
instance Monoid a => Applicative ((,) a) where
pure x = (mempty, x)
(u, f) <*> (v, x) = (u <> v, f x)
liftA2 f (u, x) (v, y) = (u <> v, f x y)
-- | @since 4.15
instance Monad Solo where
Solo x >>= f = f x
-- | @since 4.9.0.0
instance Monoid a => Monad ((,) a) where
(u, a) >>= k = case k a of (v, b) -> (u <> v, b)
-- | @since 4.14.0.0
instance Functor ((,,) a b) where
fmap f (a, b, c) = (a, b, f c)
-- | @since 4.14.0.0
instance (Monoid a, Monoid b) => Applicative ((,,) a b) where
pure x = (mempty, mempty, x)
(a, b, f) <*> (a', b', x) = (a <> a', b <> b', f x)
-- | @since 4.14.0.0
instance (Monoid a, Monoid b) => Monad ((,,) a b) where
(u, v, a) >>= k = case k a of (u', v', b) -> (u <> u', v <> v', b)
-- | @since 4.14.0.0
instance Functor ((,,,) a b c) where
fmap f (a, b, c, d) = (a, b, c, f d)
-- | @since 4.14.0.0
instance (Monoid a, Monoid b, Monoid c) => Applicative ((,,,) a b c) where
pure x = (mempty, mempty, mempty, x)
(a, b, c, f) <*> (a', b', c', x) = (a <> a', b <> b', c <> c', f x)
-- | @since 4.14.0.0
instance (Monoid a, Monoid b, Monoid c) => Monad ((,,,) a b c) where
(u, v, w, a) >>= k = case k a of (u', v', w', b) -> (u <> u', v <> v', w <> w', b)
-- | @since 4.10.0.0
instance Semigroup a => Semigroup (IO a) where
(<>) = liftA2 (<>)
-- | @since 4.9.0.0
instance Monoid a => Monoid (IO a) where
mempty = pure mempty
{- | A type @f@ is a Functor if it provides a function @fmap@ which, given any types @a@ and @b@
lets you apply any function from @(a -> b)@ to turn an @f a@ into an @f b@, preserving the
structure of @f@. Furthermore @f@ needs to adhere to the following:
[Identity] @'fmap' 'id' == 'id'@
[Composition] @'fmap' (f . g) == 'fmap' f . 'fmap' g@
Note, that the second law follows from the free theorem of the type 'fmap' and
the first law, so you need only check that the former condition holds.
-}
class Functor f where
-- | 'fmap' is used to apply a function of type @(a -> b)@ to a value of type @f a@,
-- where f is a functor, to produce a value of type @f b@.
-- Note that for any type constructor with more than one parameter (e.g., `Either`),
-- only the last type parameter can be modified with `fmap` (e.g., `b` in `Either a b`).
--
-- Some type constructors with two parameters or more have a @'Data.Bifunctor'@ instance that allows
-- both the last and the penultimate parameters to be mapped over.
--
-- ==== __Examples__
--
-- Convert from a @'Data.Maybe.Maybe' Int@ to a @Maybe String@
-- using 'Prelude.show':
--
-- >>> fmap show Nothing
-- Nothing
-- >>> fmap show (Just 3)
-- Just "3"
--
-- Convert from an @'Data.Either.Either' Int Int@ to an
-- @Either Int String@ using 'Prelude.show':
--
-- >>> fmap show (Left 17)
-- Left 17
-- >>> fmap show (Right 17)
-- Right "17"
--
-- Double each element of a list:
--
-- >>> fmap (*2) [1,2,3]
-- [2,4,6]
--
-- Apply 'Prelude.even' to the second element of a pair:
--
-- >>> fmap even (2,2)
-- (2,True)
--
-- It may seem surprising that the function is only applied to the last element of the tuple
-- compared to the list example above which applies it to every element in the list.
-- To understand, remember that tuples are type constructors with multiple type parameters:
-- a tuple of 3 elements @(a,b,c)@ can also be written @(,,) a b c@ and its @Functor@ instance
-- is defined for @Functor ((,,) a b)@ (i.e., only the third parameter is free to be mapped over
-- with @fmap@).
--
-- It explains why @fmap@ can be used with tuples containing values of different types as in the
-- following example:
--
-- >>> fmap even ("hello", 1.0, 4)
-- ("hello",1.0,True)
fmap :: (a -> b) -> f a -> f b
-- | Replace all locations in the input with the same value.
-- The default definition is @'fmap' . 'const'@, but this may be
-- overridden with a more efficient version.
--
(<$) :: a -> f b -> f a
(<$) = fmap . const
-- | A functor with application, providing operations to
--
-- * embed pure expressions ('pure'), and
--
-- * sequence computations and combine their results ('<*>' and 'liftA2').
--
-- A minimal complete definition must include implementations of 'pure'
-- and of either '<*>' or 'liftA2'. If it defines both, then they must behave
-- the same as their default definitions:
--
-- @('<*>') = 'liftA2' 'id'@
--
-- @'liftA2' f x y = f 'Prelude.<$>' x '<*>' y@
--
-- Further, any definition must satisfy the following:
--
-- [Identity]
--
-- @'pure' 'id' '<*>' v = v@
--
-- [Composition]
--
-- @'pure' (.) '<*>' u '<*>' v '<*>' w = u '<*>' (v '<*>' w)@
--
-- [Homomorphism]
--
-- @'pure' f '<*>' 'pure' x = 'pure' (f x)@
--
-- [Interchange]
--
-- @u '<*>' 'pure' y = 'pure' ('$' y) '<*>' u@
--
--
-- The other methods have the following default definitions, which may
-- be overridden with equivalent specialized implementations:
--
-- * @u '*>' v = ('id' '<$' u) '<*>' v@
--
-- * @u '<*' v = 'liftA2' 'const' u v@
--
-- As a consequence of these laws, the 'Functor' instance for @f@ will satisfy
--
-- * @'fmap' f x = 'pure' f '<*>' x@
--
--
-- It may be useful to note that supposing
--
-- @forall x y. p (q x y) = f x . g y@
--
-- it follows from the above that
--
-- @'liftA2' p ('liftA2' q u v) = 'liftA2' f u . 'liftA2' g v@
--
--
-- If @f@ is also a 'Monad', it should satisfy
--
-- * @'pure' = 'return'@
--
-- * @m1 '<*>' m2 = m1 '>>=' (\x1 -> m2 '>>=' (\x2 -> 'return' (x1 x2)))@
--
-- * @('*>') = ('>>')@
--
-- (which implies that 'pure' and '<*>' satisfy the applicative functor laws).
class Functor f => Applicative f where
{-# MINIMAL pure, ((<*>) | liftA2) #-}
-- | Lift a value.
pure :: a -> f a
-- | Sequential application.
--
-- A few functors support an implementation of '<*>' that is more
-- efficient than the default one.
--
-- ==== __Example__
-- Used in combination with @('<$>')@, @('<*>')@ can be used to build a record.
--
-- >>> data MyState = MyState {arg1 :: Foo, arg2 :: Bar, arg3 :: Baz}
--
-- >>> produceFoo :: Applicative f => f Foo
--
-- >>> produceBar :: Applicative f => f Bar
-- >>> produceBaz :: Applicative f => f Baz
--
-- >>> mkState :: Applicative f => f MyState
-- >>> mkState = MyState <$> produceFoo <*> produceBar <*> produceBaz
(<*>) :: f (a -> b) -> f a -> f b
(<*>) = liftA2 id
-- | Lift a binary function to actions.
--
-- Some functors support an implementation of 'liftA2' that is more
-- efficient than the default one. In particular, if 'fmap' is an
-- expensive operation, it is likely better to use 'liftA2' than to
-- 'fmap' over the structure and then use '<*>'.
--
-- This became a typeclass method in 4.10.0.0. Prior to that, it was
-- a function defined in terms of '<*>' and 'fmap'.
--
-- ==== __Example__
-- >>> liftA2 (,) (Just 3) (Just 5)
-- Just (3,5)
liftA2 :: (a -> b -> c) -> f a -> f b -> f c
liftA2 f x = (<*>) (fmap f x)
-- | Sequence actions, discarding the value of the first argument.
--
-- ==== __Examples__
-- If used in conjunction with the Applicative instance for 'Maybe',
-- you can chain Maybe computations, with a possible "early return"
-- in case of 'Nothing'.
--
-- >>> Just 2 *> Just 3
-- Just 3
--
-- >>> Nothing *> Just 3
-- Nothing
--
-- Of course a more interesting use case would be to have effectful
-- computations instead of just returning pure values.
--
-- >>> import Data.Char
-- >>> import Text.ParserCombinators.ReadP
-- >>> let p = string "my name is " *> munch1 isAlpha <* eof
-- >>> readP_to_S p "my name is Simon"
-- [("Simon","")]
(*>) :: f a -> f b -> f b
a1 *> a2 = (id <$ a1) <*> a2
-- This is essentially the same as liftA2 (flip const), but if the
-- Functor instance has an optimized (<$), it may be better to use
-- that instead. Before liftA2 became a method, this definition
-- was strictly better, but now it depends on the functor. For a
-- functor supporting a sharing-enhancing (<$), this definition
-- may reduce allocation by preventing a1 from ever being fully
-- realized. In an implementation with a boring (<$) but an optimizing
-- liftA2, it would likely be better to define (*>) using liftA2.
-- | Sequence actions, discarding the value of the second argument.
--
(<*) :: f a -> f b -> f a
(<*) = liftA2 const
-- | A variant of '<*>' with the arguments reversed.
--
(<**>) :: Applicative f => f a -> f (a -> b) -> f b
(<**>) = liftA2 (\a f -> f a)
-- Don't use $ here, see the note at the top of the page
-- | Lift a function to actions.
-- Equivalent to Functor's `fmap` but implemented using only `Applicative`'s methods:
-- `liftA f a = pure f <*> a`
--
-- As such this function may be used to implement a `Functor` instance from an `Applicative` one.
--
-- ==== __Examples__
-- Using the Applicative instance for Lists:
--
-- >>> liftA (+1) [1, 2]
-- [2,3]
--
-- Or the Applicative instance for 'Maybe'
--
-- >>> liftA (+1) (Just 3)
-- Just 4
liftA :: Applicative f => (a -> b) -> f a -> f b
liftA f a = pure f <*> a
-- Caution: since this may be used for `fmap`, we can't use the obvious
-- definition of liftA = fmap.
-- | Lift a ternary function to actions.
liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d
liftA3 f a b c = liftA2 f a b <*> c
{-# INLINABLE liftA #-}
{-# SPECIALISE liftA :: (a1->r) -> IO a1 -> IO r #-}
{-# SPECIALISE liftA :: (a1->r) -> Maybe a1 -> Maybe r #-}
{-# INLINABLE liftA3 #-}
{-# SPECIALISE liftA3 :: (a1->a2->a3->r) -> IO a1 -> IO a2 -> IO a3 -> IO r #-}
{-# SPECIALISE liftA3 :: (a1->a2->a3->r) ->
Maybe a1 -> Maybe a2 -> Maybe a3 -> Maybe r #-}
-- | The 'join' function is the conventional monad join operator. It
-- is used to remove one level of monadic structure, projecting its
-- bound argument into the outer level.
--
--
-- \'@'join' bss@\' can be understood as the @do@ expression
--
-- @
-- do bs <- bss
-- bs
-- @
--
-- ==== __Examples__
--
-- A common use of 'join' is to run an 'IO' computation returned from
-- an 'GHC.Conc.STM' transaction, since 'GHC.Conc.STM' transactions
-- can't perform 'IO' directly. Recall that
--
-- @
-- 'GHC.Conc.atomically' :: STM a -> IO a
-- @
--
-- is used to run 'GHC.Conc.STM' transactions atomically. So, by
-- specializing the types of 'GHC.Conc.atomically' and 'join' to
--
-- @
-- 'GHC.Conc.atomically' :: STM (IO b) -> IO (IO b)
-- 'join' :: IO (IO b) -> IO b
-- @
--
-- we can compose them as
--
-- @
-- 'join' . 'GHC.Conc.atomically' :: STM (IO b) -> IO b
-- @
--
-- to run an 'GHC.Conc.STM' transaction and the 'IO' action it
-- returns.
join :: (Monad m) => m (m a) -> m a
join x = x >>= id
{- | The 'Monad' class defines the basic operations over a /monad/,
a concept from a branch of mathematics known as /category theory/.
From the perspective of a Haskell programmer, however, it is best to
think of a monad as an /abstract datatype/ of actions.
Haskell's @do@ expressions provide a convenient syntax for writing
monadic expressions.
Instances of 'Monad' should satisfy the following:
[Left identity] @'return' a '>>=' k = k a@
[Right identity] @m '>>=' 'return' = m@
[Associativity] @m '>>=' (\\x -> k x '>>=' h) = (m '>>=' k) '>>=' h@
Furthermore, the 'Monad' and 'Applicative' operations should relate as follows:
* @'pure' = 'return'@
* @m1 '<*>' m2 = m1 '>>=' (\x1 -> m2 '>>=' (\x2 -> 'return' (x1 x2)))@
The above laws imply:
* @'fmap' f xs = xs '>>=' 'return' . f@
* @('>>') = ('*>')@
and that 'pure' and ('<*>') satisfy the applicative functor laws.
The instances of 'Monad' for lists, 'Data.Maybe.Maybe' and 'System.IO.IO'
defined in the "Prelude" satisfy these laws.
-}
class Applicative m => Monad m where
-- | Sequentially compose two actions, passing any value produced
-- by the first as an argument to the second.
--
-- \'@as '>>=' bs@\' can be understood as the @do@ expression
--
-- @
-- do a <- as
-- bs a
-- @
(>>=) :: forall a b. m a -> (a -> m b) -> m b
-- | Sequentially compose two actions, discarding any value produced
-- by the first, like sequencing operators (such as the semicolon)
-- in imperative languages.
--
-- \'@as '>>' bs@\' can be understood as the @do@ expression
--
-- @
-- do as
-- bs
-- @
(>>) :: forall a b. m a -> m b -> m b
m >> k = m >>= \_ -> k -- See Note [Recursive bindings for Applicative/Monad]
{-# INLINE (>>) #-}
-- | Inject a value into the monadic type.
return :: a -> m a
return = pure
{- Note [Recursive bindings for Applicative/Monad]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The original Applicative/Monad proposal stated that after
implementation, the designated implementation of (>>) would become
(>>) :: forall a b. m a -> m b -> m b
(>>) = (*>)
by default. You might be inclined to change this to reflect the stated
proposal, but you really shouldn't! Why? Because people tend to define
such instances the /other/ way around: in particular, it is perfectly
legitimate to define an instance of Applicative (*>) in terms of (>>),
which would lead to an infinite loop for the default implementation of
Monad! And people do this in the wild.
This turned into a nasty bug that was tricky to track down, and rather
than eliminate it everywhere upstream, it's easier to just retain the
original default.
-}
-- | Same as '>>=', but with the arguments interchanged.
{-# SPECIALISE (=<<) :: (a -> [b]) -> [a] -> [b] #-}
(=<<) :: Monad m => (a -> m b) -> m a -> m b
f =<< x = x >>= f
-- | Conditional execution of 'Applicative' expressions. For example,
--
-- > when debug (putStrLn "Debugging")
--
-- will output the string @Debugging@ if the Boolean value @debug@
-- is 'True', and otherwise do nothing.
when :: (Applicative f) => Bool -> f () -> f ()
{-# INLINABLE when #-}
{-# SPECIALISE when :: Bool -> IO () -> IO () #-}
{-# SPECIALISE when :: Bool -> Maybe () -> Maybe () #-}
when p s = if p then s else pure ()
-- | Evaluate each action in the sequence from left to right,
-- and collect the results.
sequence :: Monad m => [m a] -> m [a]
{-# INLINE sequence #-}
sequence = mapM id
-- Note: [sequence and mapM]
-- | @'mapM' f@ is equivalent to @'sequence' . 'map' f@.
mapM :: Monad m => (a -> m b) -> [a] -> m [b]
{-# INLINE mapM #-}
mapM f as = foldr k (return []) as
where
k a r = do { x <- f a; xs <- r; return (x:xs) }
{-
Note: [sequence and mapM]
~~~~~~~~~~~~~~~~~~~~~~~~~
Originally, we defined
mapM f = sequence . map f
This relied on list fusion to produce efficient code for mapM, and led to
excessive allocation in cryptarithm2. Defining
sequence = mapM id
relies only on inlining a tiny function (id) and beta reduction, which tends to
be a more reliable aspect of simplification. Indeed, this does not lead to
similar problems in nofib.
-}
-- | Promote a function to a monad.
liftM :: (Monad m) => (a1 -> r) -> m a1 -> m r
liftM f m1 = do { x1 <- m1; return (f x1) }
-- | Promote a function to a monad, scanning the monadic arguments from
-- left to right. For example,
--
-- > liftM2 (+) [0,1] [0,2] = [0,2,1,3]
-- > liftM2 (+) (Just 1) Nothing = Nothing
--
liftM2 :: (Monad m) => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r
liftM2 f m1 m2 = do { x1 <- m1; x2 <- m2; return (f x1 x2) }
-- Caution: since this may be used for `liftA2`, we can't use the obvious
-- definition of liftM2 = liftA2.
-- | Promote a function to a monad, scanning the monadic arguments from
-- left to right (cf. 'liftM2').
liftM3 :: (Monad m) => (a1 -> a2 -> a3 -> r) -> m a1 -> m a2 -> m a3 -> m r
liftM3 f m1 m2 m3 = do { x1 <- m1; x2 <- m2; x3 <- m3; return (f x1 x2 x3) }
-- | Promote a function to a monad, scanning the monadic arguments from
-- left to right (cf. 'liftM2').
liftM4 :: (Monad m) => (a1 -> a2 -> a3 -> a4 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m r
liftM4 f m1 m2 m3 m4 = do { x1 <- m1; x2 <- m2; x3 <- m3; x4 <- m4; return (f x1 x2 x3 x4) }
-- | Promote a function to a monad, scanning the monadic arguments from
-- left to right (cf. 'liftM2').
liftM5 :: (Monad m) => (a1 -> a2 -> a3 -> a4 -> a5 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m a5 -> m r
liftM5 f m1 m2 m3 m4 m5 = do { x1 <- m1; x2 <- m2; x3 <- m3; x4 <- m4; x5 <- m5; return (f x1 x2 x3 x4 x5) }
{-# INLINABLE liftM #-}
{-# SPECIALISE liftM :: (a1->r) -> IO a1 -> IO r #-}
{-# SPECIALISE liftM :: (a1->r) -> Maybe a1 -> Maybe r #-}
{-# INLINABLE liftM2 #-}
{-# SPECIALISE liftM2 :: (a1->a2->r) -> IO a1 -> IO a2 -> IO r #-}
{-# SPECIALISE liftM2 :: (a1->a2->r) -> Maybe a1 -> Maybe a2 -> Maybe r #-}
{-# INLINABLE liftM3 #-}
{-# SPECIALISE liftM3 :: (a1->a2->a3->r) -> IO a1 -> IO a2 -> IO a3 -> IO r #-}
{-# SPECIALISE liftM3 :: (a1->a2->a3->r) -> Maybe a1 -> Maybe a2 -> Maybe a3 -> Maybe r #-}
{-# INLINABLE liftM4 #-}
{-# SPECIALISE liftM4 :: (a1->a2->a3->a4->r) -> IO a1 -> IO a2 -> IO a3 -> IO a4 -> IO r #-}
{-# SPECIALISE liftM4 :: (a1->a2->a3->a4->r) -> Maybe a1 -> Maybe a2 -> Maybe a3 -> Maybe a4 -> Maybe r #-}
{-# INLINABLE liftM5 #-}
{-# SPECIALISE liftM5 :: (a1->a2->a3->a4->a5->r) -> IO a1 -> IO a2 -> IO a3 -> IO a4 -> IO a5 -> IO r #-}
{-# SPECIALISE liftM5 :: (a1->a2->a3->a4->a5->r) -> Maybe a1 -> Maybe a2 -> Maybe a3 -> Maybe a4 -> Maybe a5 -> Maybe r #-}
{- | In many situations, the 'liftM' operations can be replaced by uses of
'ap', which promotes function application.
> return f `ap` x1 `ap` ... `ap` xn
is equivalent to
> liftMn f x1 x2 ... xn
-}
ap :: (Monad m) => m (a -> b) -> m a -> m b
ap m1 m2 = do { x1 <- m1; x2 <- m2; return (x1 x2) }
-- Since many Applicative instances define (<*>) = ap, we
-- cannot define ap = (<*>)
{-# INLINABLE ap #-}
{-# SPECIALISE ap :: IO (a -> b) -> IO a -> IO b #-}
{-# SPECIALISE ap :: Maybe (a -> b) -> Maybe a -> Maybe b #-}
-- instances for Prelude types
-- | @since 2.01
instance Functor ((->) r) where
fmap = (.)
-- | @since 2.01
instance Applicative ((->) r) where
pure = const
(<*>) f g x = f x (g x)
liftA2 q f g x = q (f x) (g x)
-- | @since 2.01
instance Monad ((->) r) where
f >>= k = \ r -> k (f r) r
-- | @since 4.15
instance Functor Solo where
fmap f (Solo a) = Solo (f a)
-- Being strict in the `Solo` argument here seems most consistent
-- with the concept behind `Solo`: always strict in the wrapper and lazy
-- in the contents.
x <$ Solo _ = Solo x
-- | @since 2.01
instance Functor ((,) a) where
fmap f (x,y) = (x, f y)
-- | @since 2.01
instance Functor Maybe where
fmap _ Nothing = Nothing
fmap f (Just a) = Just (f a)
-- | @since 2.01
instance Applicative Maybe where
pure = Just
Just f <*> m = fmap f m
Nothing <*> _m = Nothing
liftA2 f (Just x) (Just y) = Just (f x y)
liftA2 _ _ _ = Nothing
Just _m1 *> m2 = m2
Nothing *> _m2 = Nothing
-- | @since 2.01
instance Monad Maybe where
(Just x) >>= k = k x
Nothing >>= _ = Nothing
(>>) = (*>)
-- -----------------------------------------------------------------------------
-- The Alternative class definition
infixl 3 <|>
-- | A monoid on applicative functors.
--
-- If defined, 'some' and 'many' should be the least solutions
-- of the equations:
--
-- * @'some' v = (:) 'Prelude.<$>' v '<*>' 'many' v@
--
-- * @'many' v = 'some' v '<|>' 'pure' []@
class Applicative f => Alternative f where
-- | The identity of '<|>'
empty :: f a
-- | An associative binary operation
(<|>) :: f a -> f a -> f a
-- | One or more.
some :: f a -> f [a]
some v = some_v
where
many_v = some_v <|> pure []
some_v = liftA2 (:) v many_v
-- | Zero or more.
many :: f a -> f [a]
many v = many_v
where
many_v = some_v <|> pure []
some_v = liftA2 (:) v many_v
-- | @since 2.01
instance Alternative Maybe where
empty = Nothing
Nothing <|> r = r
l <|> _ = l
-- -----------------------------------------------------------------------------
-- The MonadPlus class definition
-- | Monads that also support choice and failure.
class (Alternative m, Monad m) => MonadPlus m where
-- | The identity of 'mplus'. It should also satisfy the equations
--
-- > mzero >>= f = mzero
-- > v >> mzero = mzero
--
-- The default definition is
--
-- @
-- mzero = 'empty'
-- @
mzero :: m a
mzero = empty
-- | An associative operation. The default definition is
--
-- @
-- mplus = ('<|>')
-- @
mplus :: m a -> m a -> m a
mplus = (<|>)
-- | @since 2.01
instance MonadPlus Maybe
---------------------------------------------
-- The non-empty list type
infixr 5 :|
-- | Non-empty (and non-strict) list type.
--
-- @since 4.9.0.0
data NonEmpty a = a :| [a]
deriving ( Eq -- ^ @since 4.9.0.0
, Ord -- ^ @since 4.9.0.0
)
-- | @since 4.9.0.0
instance Functor NonEmpty where
fmap f ~(a :| as) = f a :| fmap f as
b <$ ~(_ :| as) = b :| (b <$ as)
-- | @since 4.9.0.0
instance Applicative NonEmpty where
pure a = a :| []
(<*>) = ap
liftA2 = liftM2
-- | @since 4.9.0.0
instance Monad NonEmpty where
~(a :| as) >>= f = b :| (bs ++ bs')
where b :| bs = f a
bs' = as >>= toList . f
toList ~(c :| cs) = c : cs
----------------------------------------------
-- The list type
-- | @since 2.01
instance Functor [] where
{-# INLINE fmap #-}
fmap = map
-- See Note: [List comprehensions and inlining]
-- | @since 2.01
instance Applicative [] where
{-# INLINE pure #-}
pure x = [x]
{-# INLINE (<*>) #-}
fs <*> xs = [f x | f <- fs, x <- xs]
{-# INLINE liftA2 #-}
liftA2 f xs ys = [f x y | x <- xs, y <- ys]
{-# INLINE (*>) #-}
xs *> ys = [y | _ <- xs, y <- ys]
-- See Note: [List comprehensions and inlining]
-- | @since 2.01
instance Monad [] where
{-# INLINE (>>=) #-}
xs >>= f = [y | x <- xs, y <- f x]
{-# INLINE (>>) #-}
(>>) = (*>)
-- | @since 2.01
instance Alternative [] where
empty = []
(<|>) = (++)
-- | @since 2.01
instance MonadPlus []
{-
A few list functions that appear here because they are used here.
The rest of the prelude list functions are in GHC.List.
-}
----------------------------------------------
-- foldr/build/augment
----------------------------------------------
-- | 'foldr', applied to a binary operator, a starting value (typically
-- the right-identity of the operator), and a list, reduces the list
-- using the binary operator, from right to left:
--
-- > foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)
foldr :: (a -> b -> b) -> b -> [a] -> b
-- foldr _ z [] = z
-- foldr f z (x:xs) = f x (foldr f z xs)
{-# INLINE [0] foldr #-}
-- Inline only in the final stage, after the foldr/cons rule has had a chance
-- Also note that we inline it when it has *two* parameters, which are the
-- ones we are keen about specialising!
foldr k z = go
where
go [] = z
go (y:ys) = y `k` go ys
-- | A list producer that can be fused with 'foldr'.
-- This function is merely
--
-- > build g = g (:) []
--
-- but GHC's simplifier will transform an expression of the form
-- @'foldr' k z ('build' g)@, which may arise after inlining, to @g k z@,
-- which avoids producing an intermediate list.
build :: forall a. (forall b. (a -> b -> b) -> b -> b) -> [a]
{-# INLINE [1] build #-}
-- The INLINE is important, even though build is tiny,
-- because it prevents [] getting inlined in the version that
-- appears in the interface file. If [] *is* inlined, it
-- won't match with [] appearing in rules in an importing module.
--
-- The "1" says to inline in phase 1
build g = g (:) []
-- | A list producer that can be fused with 'foldr'.
-- This function is merely
--
-- > augment g xs = g (:) xs
--
-- but GHC's simplifier will transform an expression of the form
-- @'foldr' k z ('augment' g xs)@, which may arise after inlining, to
-- @g k ('foldr' k z xs)@, which avoids producing an intermediate list.
augment :: forall a. (forall b. (a->b->b) -> b -> b) -> [a] -> [a]
{-# INLINE [1] augment #-}
augment g xs = g (:) xs
{-# RULES
"fold/build" forall k z (g::forall b. (a->b->b) -> b -> b) .
foldr k z (build g) = g k z
"foldr/augment" forall k z xs (g::forall b. (a->b->b) -> b -> b) .
foldr k z (augment g xs) = g k (foldr k z xs)
"foldr/id" foldr (:) [] = \x -> x
"foldr/app" [1] forall ys. foldr (:) ys = \xs -> xs ++ ys
-- Only activate this from phase 1, because that's
-- when we disable the rule that expands (++) into foldr
-- The foldr/cons rule looks nice, but it can give disastrously
-- bloated code when commpiling
-- array (a,b) [(1,2), (2,2), (3,2), ...very long list... ]
-- i.e. when there are very very long literal lists
-- So I've disabled it for now. We could have special cases
-- for short lists, I suppose.
-- "foldr/cons" forall k z x xs. foldr k z (x:xs) = k x (foldr k z xs)
"foldr/single" forall k z x. foldr k z [x] = k x z
"foldr/nil" forall k z. foldr k z [] = z
"foldr/cons/build" forall k z x (g::forall b. (a->b->b) -> b -> b) .
foldr k z (x:build g) = k x (g k z)
"augment/build" forall (g::forall b. (a->b->b) -> b -> b)
(h::forall b. (a->b->b) -> b -> b) .
augment g (build h) = build (\c n -> g c (h c n))
"augment/nil" forall (g::forall b. (a->b->b) -> b -> b) .
augment g [] = build g
#-}
-- This rule is true, but not (I think) useful:
-- augment g (augment h t) = augment (\cn -> g c (h c n)) t
----------------------------------------------
-- map
----------------------------------------------
-- | \(\mathcal{O}(n)\). 'map' @f xs@ is the list obtained by applying @f@ to
-- each element of @xs@, i.e.,
--
-- > map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn]
-- > map f [x1, x2, ...] == [f x1, f x2, ...]
--
-- >>> map (+1) [1, 2, 3]
-- [2,3,4]
map :: (a -> b) -> [a] -> [b]
{-# NOINLINE [0] map #-}
-- We want the RULEs "map" and "map/coerce" to fire first.
-- map is recursive, so won't inline anyway,
-- but saying so is more explicit, and silences warnings
map _ [] = []
map f (x:xs) = f x : map f xs
-- Note eta expanded
mapFB :: (elt -> lst -> lst) -> (a -> elt) -> a -> lst -> lst
{-# INLINE [0] mapFB #-} -- See Note [Inline FB functions] in GHC.List
mapFB c f = \x ys -> c (f x) ys
{- Note [The rules for map]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
The rules for map work like this.
* Up to (but not including) phase 1, we use the "map" rule to
rewrite all saturated applications of map with its build/fold
form, hoping for fusion to happen.
In phase 1 and 0, we switch off that rule, inline build, and
switch on the "mapList" rule, which rewrites the foldr/mapFB
thing back into plain map.
It's important that these two rules aren't both active at once
(along with build's unfolding) else we'd get an infinite loop
in the rules. Hence the activation control below.
* This same pattern is followed by many other functions:
e.g. append, filter, iterate, repeat, etc. in GHC.List
See also Note [Inline FB functions] in GHC.List
* The "mapFB" rule optimises compositions of map
* The "mapFB/id" rule gets rid of 'map id' calls.
You might think that (mapFB c id) will turn into c simply
when mapFB is inlined; but before that happens the "mapList"
rule turns
(foldr (mapFB (:) id) [] a
back into
map id
Which is not very clever.
* Any similarity to the Functor laws for [] is expected.
-}
{-# RULES
"map" [~1] forall f xs. map f xs = build (\c n -> foldr (mapFB c f) n xs)
"mapList" [1] forall f. foldr (mapFB (:) f) [] = map f
"mapFB" forall c f g. mapFB (mapFB c f) g = mapFB c (f.g)
"mapFB/id" forall c. mapFB c (\x -> x) = c
#-}
-- See Breitner, Eisenberg, Peyton Jones, and Weirich, "Safe Zero-cost
-- Coercions for Haskell", section 6.5:
-- http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/coercible.pdf
{-# RULES "map/coerce" [1] map coerce = coerce #-}
-- See Note [Getting the map/coerce RULE to work] in CoreOpt
----------------------------------------------
-- append
----------------------------------------------
-- | Append two lists, i.e.,
--
-- > [x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn]
-- > [x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]
--
-- If the first list is not finite, the result is the first list.
(++) :: [a] -> [a] -> [a]
{-# NOINLINE [1] (++) #-} -- We want the RULE to fire first.
-- It's recursive, so won't inline anyway,
-- but saying so is more explicit
(++) [] ys = ys
(++) (x:xs) ys = x : xs ++ ys
{-# RULES
"++" [~1] forall xs ys. xs ++ ys = augment (\c n -> foldr c n xs) ys
#-}
-- |'otherwise' is defined as the value 'True'. It helps to make
-- guards more readable. eg.
--
-- > f x | x < 0 = ...
-- > | otherwise = ...
otherwise :: Bool
otherwise = True
----------------------------------------------
-- Type Char and String
----------------------------------------------
-- | A 'String' is a list of characters. String constants in Haskell are values
-- of type 'String'.
--
-- See "Data.List" for operations on lists.
type String = [Char]
unsafeChr :: Int -> Char
unsafeChr (I# i#) = C# (chr# i#)
-- | The 'Prelude.fromEnum' method restricted to the type 'Data.Char.Char'.
ord :: Char -> Int
ord (C# c#) = I# (ord# c#)
-- | This 'String' equality predicate is used when desugaring
-- pattern-matches against strings.
eqString :: String -> String -> Bool
eqString [] [] = True
eqString (c1:cs1) (c2:cs2) = c1 == c2 && cs1 `eqString` cs2
eqString _ _ = False
{-# RULES "eqString" (==) = eqString #-}
-- eqString also has a BuiltInRule in GHC.Core.Opt.ConstantFold:
-- eqString (unpackCString# (Lit s1)) (unpackCString# (Lit s2)) = s1==s2
----------------------------------------------
-- 'Int' related definitions
----------------------------------------------
maxInt, minInt :: Int
{- Seems clumsy. Should perhaps put minInt and MaxInt directly into MachDeps.h -}
#if WORD_SIZE_IN_BITS == 31
minInt = I# (-0x40000000#)
maxInt = I# 0x3FFFFFFF#
#elif WORD_SIZE_IN_BITS == 32
minInt = I# (-0x80000000#)
maxInt = I# 0x7FFFFFFF#
#else
minInt = I# (-0x8000000000000000#)
maxInt = I# 0x7FFFFFFFFFFFFFFF#
#endif
----------------------------------------------
-- The function type
----------------------------------------------
-- | Identity function.
--
-- > id x = x
id :: a -> a
id x = x
-- Assertion function. This simply ignores its boolean argument.
-- The compiler may rewrite it to @('assertError' line)@.
-- | If the first argument evaluates to 'True', then the result is the
-- second argument. Otherwise an 'Control.Exception.AssertionFailed' exception
-- is raised, containing a 'String' with the source file and line number of the
-- call to 'assert'.
--
-- Assertions can normally be turned on or off with a compiler flag
-- (for GHC, assertions are normally on unless optimisation is turned on
-- with @-O@ or the @-fignore-asserts@
-- option is given). When assertions are turned off, the first
-- argument to 'assert' is ignored, and the second argument is
-- returned as the result.
-- SLPJ: in 5.04 etc 'assert' is in GHC.Prim,
-- but from Template Haskell onwards it's simply
-- defined here in Base.hs
assert :: Bool -> a -> a
assert _pred r = r
breakpoint :: a -> a
breakpoint r = r
breakpointCond :: Bool -> a -> a
breakpointCond _ r = r
data Opaque = forall a. O a
-- | @const x@ is a unary function which evaluates to @x@ for all inputs.
--
-- >>> const 42 "hello"
-- 42
--
-- >>> map (const 42) [0..3]
-- [42,42,42,42]
const :: a -> b -> a
const x _ = x
-- | Function composition.
{-# INLINE (.) #-}
-- Make sure it has TWO args only on the left, so that it inlines
-- when applied to two functions, even if there is no final argument
(.) :: (b -> c) -> (a -> b) -> a -> c
(.) f g = \x -> f (g x)
-- | @'flip' f@ takes its (first) two arguments in the reverse order of @f@.
--
-- >>> flip (++) "hello" "world"
-- "worldhello"
flip :: (a -> b -> c) -> b -> a -> c
flip f x y = f y x
-- | Application operator. This operator is redundant, since ordinary
-- application @(f x)@ means the same as @(f '$' x)@. However, '$' has
-- low, right-associative binding precedence, so it sometimes allows
-- parentheses to be omitted; for example:
--
-- > f $ g $ h x = f (g (h x))
--
-- It is also useful in higher-order situations, such as @'map' ('$' 0) xs@,
-- or @'Data.List.zipWith' ('$') fs xs@.
--
-- Note that @('$')@ is levity-polymorphic in its result type, so that
-- @foo '$' True@ where @foo :: Bool -> Int#@ is well-typed.
{-# INLINE ($) #-}
($) :: forall r a (b :: TYPE r). (a -> b) -> a -> b
f $ x = f x
-- | Strict (call-by-value) application operator. It takes a function and an
-- argument, evaluates the argument to weak head normal form (WHNF), then calls
-- the function with that value.
($!) :: forall r a (b :: TYPE r). (a -> b) -> a -> b
f $! x = let !vx = x in f vx -- see #2273
-- | @'until' p f@ yields the result of applying @f@ until @p@ holds.
until :: (a -> Bool) -> (a -> a) -> a -> a
until p f = go
where
go x | p x = x
| otherwise = go (f x)
-- | 'asTypeOf' is a type-restricted version of 'const'. It is usually
-- used as an infix operator, and its typing forces its first argument
-- (which is usually overloaded) to have the same type as the second.
asTypeOf :: a -> a -> a
asTypeOf = const
----------------------------------------------
-- Functor/Applicative/Monad instances for IO
----------------------------------------------
-- | @since 2.01
instance Functor IO where
fmap f x = x >>= (pure . f)
-- | @since 2.01
instance Applicative IO where
{-# INLINE pure #-}
{-# INLINE (*>) #-}
{-# INLINE liftA2 #-}
pure = returnIO
(*>) = thenIO
(<*>) = ap
liftA2 = liftM2
-- | @since 2.01
instance Monad IO where
{-# INLINE (>>) #-}
{-# INLINE (>>=) #-}
(>>) = (*>)
(>>=) = bindIO
-- | @since 4.9.0.0
instance Alternative IO where
empty = failIO "mzero"
(<|>) = mplusIO
-- | @since 4.9.0.0
instance MonadPlus IO
returnIO :: a -> IO a
returnIO x = IO (\ s -> (# s, x #))
bindIO :: IO a -> (a -> IO b) -> IO b
bindIO (IO m) k = IO (\ s -> case m s of (# new_s, a #) -> unIO (k a) new_s)
thenIO :: IO a -> IO b -> IO b
thenIO (IO m) k = IO (\ s -> case m s of (# new_s, _ #) -> unIO k new_s)
-- Note that it is import that we do not SOURCE import this as
-- its demand signature encodes knowledge of its bottoming
-- behavior, which can expose useful simplifications. See
-- #16588.
failIO :: String -> IO a
failIO s = IO (raiseIO# (mkUserError s))
unIO :: IO a -> (State# RealWorld -> (# State# RealWorld, a #))
unIO (IO a) = a
{- |
Returns the tag of a constructor application; this function is used
by the deriving code for Eq, Ord and Enum.
-}
{-# INLINE getTag #-}
getTag :: a -> Int#
getTag x = dataToTag# x
----------------------------------------------
-- Numeric primops
----------------------------------------------
-- Definitions of the boxed PrimOps; these will be
-- used in the case of partial applications, etc.
-- See Note [INLINE division wrappers]
{-# INLINE quotInt #-}
{-# INLINE remInt #-}
{-# INLINE divInt #-}
{-# INLINE modInt #-}
{-# INLINE quotRemInt #-}
{-# INLINE divModInt #-}
quotInt, remInt, divInt, modInt :: Int -> Int -> Int
(I# x) `quotInt` (I# y) = I# (x `quotInt#` y)
(I# x) `remInt` (I# y) = I# (x `remInt#` y)
(I# x) `divInt` (I# y) = I# (x `divInt#` y)
(I# x) `modInt` (I# y) = I# (x `modInt#` y)
quotRemInt :: Int -> Int -> (Int, Int)
(I# x) `quotRemInt` (I# y) = case x `quotRemInt#` y of
(# q, r #) ->
(I# q, I# r)
divModInt :: Int -> Int -> (Int, Int)
(I# x) `divModInt` (I# y) = case x `divModInt#` y of
(# q, r #) -> (I# q, I# r)
divModInt# :: Int# -> Int# -> (# Int#, Int# #)
x# `divModInt#` y#
| isTrue# (x# ># 0#) && isTrue# (y# <# 0#) =
case (x# -# 1#) `quotRemInt#` y# of
(# q, r #) -> (# q -# 1#, r +# y# +# 1# #)
| isTrue# (x# <# 0#) && isTrue# (y# ># 0#) =
case (x# +# 1#) `quotRemInt#` y# of
(# q, r #) -> (# q -# 1#, r +# y# -# 1# #)
| otherwise =
x# `quotRemInt#` y#
{- Note [INLINE division wrappers]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The Int division functions such as 'quotRemInt' and 'divModInt' have
been manually worker/wrappered, presumably because they construct
*nested* products.
We intend to preserve the exact worker/wrapper split, hence we mark
the wrappers INLINE (#19267). That makes sure the optimiser doesn't
accidentally inline the worker into the wrapper, undoing the manual
split again.
-}
-- Wrappers for the shift operations. The uncheckedShift# family are
-- undefined when the amount being shifted by is greater than the size
-- in bits of Int#, so these wrappers perform a check and return
-- either zero or -1 appropriately.
--
-- Note that these wrappers still produce undefined results when the
-- second argument (the shift amount) is negative.
-- | Shift the argument left by the specified number of bits
-- (which must be non-negative).
shiftL# :: Word# -> Int# -> Word#
a `shiftL#` b | isTrue# (b >=# WORD_SIZE_IN_BITS#) = 0##
| otherwise = a `uncheckedShiftL#` b
-- | Shift the argument right by the specified number of bits
-- (which must be non-negative).
-- The "RL" means "right, logical" (as opposed to RA for arithmetic)
-- (although an arithmetic right shift wouldn't make sense for Word#)
shiftRL# :: Word# -> Int# -> Word#
a `shiftRL#` b | isTrue# (b >=# WORD_SIZE_IN_BITS#) = 0##
| otherwise = a `uncheckedShiftRL#` b
-- | Shift the argument left by the specified number of bits
-- (which must be non-negative).
iShiftL# :: Int# -> Int# -> Int#
a `iShiftL#` b | isTrue# (b >=# WORD_SIZE_IN_BITS#) = 0#
| otherwise = a `uncheckedIShiftL#` b
-- | Shift the argument right (signed) by the specified number of bits
-- (which must be non-negative).
-- The "RA" means "right, arithmetic" (as opposed to RL for logical)
iShiftRA# :: Int# -> Int# -> Int#
a `iShiftRA#` b | isTrue# (b >=# WORD_SIZE_IN_BITS#) = if isTrue# (a <# 0#)
then (-1#)
else 0#
| otherwise = a `uncheckedIShiftRA#` b
-- | Shift the argument right (unsigned) by the specified number of bits
-- (which must be non-negative).
-- The "RL" means "right, logical" (as opposed to RA for arithmetic)
iShiftRL# :: Int# -> Int# -> Int#
a `iShiftRL#` b | isTrue# (b >=# WORD_SIZE_IN_BITS#) = 0#
| otherwise = a `uncheckedIShiftRL#` b
-- Rules for C strings (the functions themselves are now in GHC.CString)
{-# RULES
"unpack" [~1] forall a . unpackCString# a = build (unpackFoldrCString# a)
"unpack-list" [1] forall a . unpackFoldrCString# a (:) [] = unpackCString# a
"unpack-append" forall a n . unpackFoldrCString# a (:) n = unpackAppendCString# a n
"unpack-utf8" [~1] forall a . unpackCStringUtf8# a = build (unpackFoldrCStringUtf8# a)
"unpack-list-utf8" [1] forall a . unpackFoldrCStringUtf8# a (:) [] = unpackCStringUtf8# a
"unpack-append-utf8" forall a n . unpackFoldrCStringUtf8# a (:) n = unpackAppendCStringUtf8# a n
-- There's a built-in rule (in GHC.Core.Op.ConstantFold) for
-- unpackFoldr "foo" c (unpackFoldr "baz" c n) = unpackFoldr "foobaz" c n
-- See also the Note [String literals in GHC] in CString.hs
#-}
|