summaryrefslogtreecommitdiff
path: root/libraries/base/GHC/Base.hs
blob: 1f989c41681ea66c72fcd11aafe101db544d3392 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
{-

NOTA BENE: Do NOT use ($) anywhere in this module! The type of ($) is
slightly magical (it can return unlifted types), and it is wired in.
But, it is also *defined* in this module, with a non-magical type.
GHC gets terribly confused (and *hangs*) if you try to use ($) in this
module, because it has different types in different scenarios.

This is not a problem in general, because the type ($), being wired in, is not
written out to the interface file, so importing files don't get confused.
The problem is only if ($) is used here. So don't!

---------------------------------------------

The overall structure of the GHC Prelude is a bit tricky.

  a) We want to avoid "orphan modules", i.e. ones with instance
        decls that don't belong either to a tycon or a class
        defined in the same module

  b) We want to avoid giant modules

So the rough structure is as follows, in (linearised) dependency order


GHC.Prim        Has no implementation.  It defines built-in things, and
                by importing it you bring them into scope.
                The source file is GHC.Prim.hi-boot, which is just
                copied to make GHC.Prim.hi

GHC.Base        Classes: Eq, Ord, Functor, Monad
                Types:   list, (), Int, Bool, Ordering, Char, String

Data.Tuple      Types: tuples, plus instances for GHC.Base classes

GHC.Show        Class: Show, plus instances for GHC.Base/GHC.Tup types

GHC.Enum        Class: Enum,  plus instances for GHC.Base/GHC.Tup types

Data.Maybe      Type: Maybe, plus instances for GHC.Base classes

GHC.List        List functions

GHC.Num         Class: Num, plus instances for Int
                Type:  Integer, plus instances for all classes so far (Eq, Ord, Num, Show)

                Integer is needed here because it is mentioned in the signature
                of 'fromInteger' in class Num

GHC.Real        Classes: Real, Integral, Fractional, RealFrac
                         plus instances for Int, Integer
                Types:  Ratio, Rational
                        plus intances for classes so far

                Rational is needed here because it is mentioned in the signature
                of 'toRational' in class Real

GHC.ST  The ST monad, instances and a few helper functions

Ix              Classes: Ix, plus instances for Int, Bool, Char, Integer, Ordering, tuples

GHC.Arr         Types: Array, MutableArray, MutableVar

                Arrays are used by a function in GHC.Float

GHC.Float       Classes: Floating, RealFloat
                Types:   Float, Double, plus instances of all classes so far

                This module contains everything to do with floating point.
                It is a big module (900 lines)
                With a bit of luck, many modules can be compiled without ever reading GHC.Float.hi


Other Prelude modules are much easier with fewer complex dependencies.
-}

{-# LANGUAGE Unsafe #-}
{-# LANGUAGE CPP
           , NoImplicitPrelude
           , BangPatterns
           , ExplicitForAll
           , MagicHash
           , UnboxedTuples
           , ExistentialQuantification
           , RankNTypes
  #-}
-- -Wno-orphans is needed for things like:
-- Orphan rule: "x# -# x#" ALWAYS forall x# :: Int# -# x# x# = 0
{-# OPTIONS_GHC -Wno-orphans #-}
{-# OPTIONS_HADDOCK hide #-}

-----------------------------------------------------------------------------
-- |
-- Module      :  GHC.Base
-- Copyright   :  (c) The University of Glasgow, 1992-2002
-- License     :  see libraries/base/LICENSE
--
-- Maintainer  :  cvs-ghc@haskell.org
-- Stability   :  internal
-- Portability :  non-portable (GHC extensions)
--
-- Basic data types and classes.
--
-----------------------------------------------------------------------------

#include "MachDeps.h"

module GHC.Base
        (
        module GHC.Base,
        module GHC.Classes,
        module GHC.CString,
        module GHC.Magic,
        module GHC.Types,
        module GHC.Prim,        -- Re-export GHC.Prim and [boot] GHC.Err,
                                -- to avoid lots of people having to
        module GHC.Err          -- import it explicitly
  )
        where

import GHC.Types
import GHC.Classes
import GHC.CString
import GHC.Magic
import GHC.Prim
import GHC.Err
import {-# SOURCE #-} GHC.IO (failIO,mplusIO)

import GHC.Tuple ()     -- Note [Depend on GHC.Tuple]
import GHC.Integer ()   -- Note [Depend on GHC.Integer]

infixr 9  .
infixr 5  ++
infixl 4  <$
infixl 1  >>, >>=
infixr 1  =<<
infixr 0  $, $!

infixl 4 <*>, <*, *>, <**>

default ()              -- Double isn't available yet

{-
Note [Depend on GHC.Integer]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The Integer type is special because TidyPgm uses
GHC.Integer.Type.mkInteger to construct Integer literal values
Currently it reads the interface file whether or not the current
module *has* any Integer literals, so it's important that
GHC.Integer.Type (in package integer-gmp or integer-simple) is
compiled before any other module.  (There's a hack in GHC to disable
this for packages ghc-prim, integer-gmp, integer-simple, which aren't
allowed to contain any Integer literals.)

Likewise we implicitly need Integer when deriving things like Eq
instances.

The danger is that if the build system doesn't know about the dependency
on Integer, it'll compile some base module before GHC.Integer.Type,
resulting in:
  Failed to load interface for ‘GHC.Integer.Type’
    There are files missing in the ‘integer-gmp’ package,

Bottom line: we make GHC.Base depend on GHC.Integer; and everything
else either depends on GHC.Base, or does not have NoImplicitPrelude
(and hence depends on Prelude).

Note [Depend on GHC.Tuple]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Similarly, tuple syntax (or ()) creates an implicit dependency on
GHC.Tuple, so we use the same rule as for Integer --- see Note [Depend on
GHC.Integer] --- to explain this to the build system.  We make GHC.Base
depend on GHC.Tuple, and everything else depends on GHC.Base or Prelude.
-}

#if 0
-- for use when compiling GHC.Base itself doesn't work
data  Bool  =  False | True
data Ordering = LT | EQ | GT
data Char = C# Char#
type  String = [Char]
data Int = I# Int#
data  ()  =  ()
data [] a = MkNil

not True = False
(&&) True True = True
otherwise = True

build = errorWithoutStackTrace "urk"
foldr = errorWithoutStackTrace "urk"
#endif

-- | The 'Maybe' type encapsulates an optional value.  A value of type
-- @'Maybe' a@ either contains a value of type @a@ (represented as @'Just' a@),
-- or it is empty (represented as 'Nothing').  Using 'Maybe' is a good way to
-- deal with errors or exceptional cases without resorting to drastic
-- measures such as 'error'.
--
-- The 'Maybe' type is also a monad.  It is a simple kind of error
-- monad, where all errors are represented by 'Nothing'.  A richer
-- error monad can be built using the 'Data.Either.Either' type.
--
data  Maybe a  =  Nothing | Just a
  deriving (Eq, Ord)

-- | The class of monoids (types with an associative binary operation that
-- has an identity).  Instances should satisfy the following laws:
--
--  * @mappend mempty x = x@
--
--  * @mappend x mempty = x@
--
--  * @mappend x (mappend y z) = mappend (mappend x y) z@
--
--  * @mconcat = 'foldr' mappend mempty@
--
-- The method names refer to the monoid of lists under concatenation,
-- but there are many other instances.
--
-- Some types can be viewed as a monoid in more than one way,
-- e.g. both addition and multiplication on numbers.
-- In such cases we often define @newtype@s and make those instances
-- of 'Monoid', e.g. 'Sum' and 'Product'.

class Monoid a where
        mempty  :: a
        -- ^ Identity of 'mappend'
        mappend :: a -> a -> a
        -- ^ An associative operation
        mconcat :: [a] -> a

        -- ^ Fold a list using the monoid.
        -- For most types, the default definition for 'mconcat' will be
        -- used, but the function is included in the class definition so
        -- that an optimized version can be provided for specific types.

        mconcat = foldr mappend mempty

instance Monoid [a] where
        {-# INLINE mempty #-}
        mempty  = []
        {-# INLINE mappend #-}
        mappend = (++)
        {-# INLINE mconcat #-}
        mconcat xss = [x | xs <- xss, x <- xs]
-- See Note: [List comprehensions and inlining]

{-
Note: [List comprehensions and inlining]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The list monad operations are traditionally described in terms of concatMap:

xs >>= f = concatMap f xs

Similarly, mconcat for lists is just concat. Here in Base, however, we don't
have concatMap, and we'll refrain from adding it here so it won't have to be
hidden in imports. Instead, we use GHC's list comprehension desugaring
mechanism to define mconcat and the Applicative and Monad instances for lists.
We mark them INLINE because the inliner is not generally too keen to inline
build forms such as the ones these desugar to without our insistence.  Defining
these using list comprehensions instead of foldr has an additional potential
benefit, as described in compiler/deSugar/DsListComp.lhs: if optimizations
needed to make foldr/build forms efficient are turned off, we'll get reasonably
efficient translations anyway.
-}

instance Monoid b => Monoid (a -> b) where
        mempty _ = mempty
        mappend f g x = f x `mappend` g x

instance Monoid () where
        -- Should it be strict?
        mempty        = ()
        _ `mappend` _ = ()
        mconcat _     = ()

instance (Monoid a, Monoid b) => Monoid (a,b) where
        mempty = (mempty, mempty)
        (a1,b1) `mappend` (a2,b2) =
                (a1 `mappend` a2, b1 `mappend` b2)

instance (Monoid a, Monoid b, Monoid c) => Monoid (a,b,c) where
        mempty = (mempty, mempty, mempty)
        (a1,b1,c1) `mappend` (a2,b2,c2) =
                (a1 `mappend` a2, b1 `mappend` b2, c1 `mappend` c2)

instance (Monoid a, Monoid b, Monoid c, Monoid d) => Monoid (a,b,c,d) where
        mempty = (mempty, mempty, mempty, mempty)
        (a1,b1,c1,d1) `mappend` (a2,b2,c2,d2) =
                (a1 `mappend` a2, b1 `mappend` b2,
                 c1 `mappend` c2, d1 `mappend` d2)

instance (Monoid a, Monoid b, Monoid c, Monoid d, Monoid e) =>
                Monoid (a,b,c,d,e) where
        mempty = (mempty, mempty, mempty, mempty, mempty)
        (a1,b1,c1,d1,e1) `mappend` (a2,b2,c2,d2,e2) =
                (a1 `mappend` a2, b1 `mappend` b2, c1 `mappend` c2,
                 d1 `mappend` d2, e1 `mappend` e2)

-- lexicographical ordering
instance Monoid Ordering where
        mempty         = EQ
        LT `mappend` _ = LT
        EQ `mappend` y = y
        GT `mappend` _ = GT

-- | Lift a semigroup into 'Maybe' forming a 'Monoid' according to
-- <http://en.wikipedia.org/wiki/Monoid>: \"Any semigroup @S@ may be
-- turned into a monoid simply by adjoining an element @e@ not in @S@
-- and defining @e*e = e@ and @e*s = s = s*e@ for all @s ∈ S@.\" Since
-- there is no \"Semigroup\" typeclass providing just 'mappend', we
-- use 'Monoid' instead.
instance Monoid a => Monoid (Maybe a) where
  mempty = Nothing
  Nothing `mappend` m = m
  m `mappend` Nothing = m
  Just m1 `mappend` Just m2 = Just (m1 `mappend` m2)

instance Monoid a => Applicative ((,) a) where
    pure x = (mempty, x)
    (u, f) <*> (v, x) = (u `mappend` v, f x)

instance Monoid a => Monad ((,) a) where
    (u, a) >>= k = case k a of (v, b) -> (u `mappend` v, b)

instance Monoid a => Monoid (IO a) where
    mempty = pure mempty
    mappend = liftA2 mappend

{- | The 'Functor' class is used for types that can be mapped over.
Instances of 'Functor' should satisfy the following laws:

> fmap id  ==  id
> fmap (f . g)  ==  fmap f . fmap g

The instances of 'Functor' for lists, 'Data.Maybe.Maybe' and 'System.IO.IO'
satisfy these laws.
-}

class  Functor f  where
    fmap        :: (a -> b) -> f a -> f b

    -- | Replace all locations in the input with the same value.
    -- The default definition is @'fmap' . 'const'@, but this may be
    -- overridden with a more efficient version.
    (<$)        :: a -> f b -> f a
    (<$)        =  fmap . const

-- | A functor with application, providing operations to
--
-- * embed pure expressions ('pure'), and
--
-- * sequence computations and combine their results ('<*>').
--
-- A minimal complete definition must include implementations of these
-- functions satisfying the following laws:
--
-- [/identity/]
--
--      @'pure' 'id' '<*>' v = v@
--
-- [/composition/]
--
--      @'pure' (.) '<*>' u '<*>' v '<*>' w = u '<*>' (v '<*>' w)@
--
-- [/homomorphism/]
--
--      @'pure' f '<*>' 'pure' x = 'pure' (f x)@
--
-- [/interchange/]
--
--      @u '<*>' 'pure' y = 'pure' ('$' y) '<*>' u@
--
-- The other methods have the following default definitions, which may
-- be overridden with equivalent specialized implementations:
--
--   * @u '*>' v = 'pure' ('const' 'id') '<*>' u '<*>' v@
--
--   * @u '<*' v = 'pure' 'const' '<*>' u '<*>' v@
--
-- As a consequence of these laws, the 'Functor' instance for @f@ will satisfy
--
--   * @'fmap' f x = 'pure' f '<*>' x@
--
-- If @f@ is also a 'Monad', it should satisfy
--
--   * @'pure' = 'return'@
--
--   * @('<*>') = 'ap'@
--
-- (which implies that 'pure' and '<*>' satisfy the applicative functor laws).

class Functor f => Applicative f where
    -- | Lift a value.
    pure :: a -> f a

    -- | Sequential application.
    (<*>) :: f (a -> b) -> f a -> f b

    -- | Sequence actions, discarding the value of the first argument.
    (*>) :: f a -> f b -> f b
    a1 *> a2 = (id <$ a1) <*> a2
    -- This is essentially the same as liftA2 (const id), but if the
    -- Functor instance has an optimized (<$), we want to use that instead.

    -- | Sequence actions, discarding the value of the second argument.
    (<*) :: f a -> f b -> f a
    (<*) = liftA2 const

-- | A variant of '<*>' with the arguments reversed.
(<**>) :: Applicative f => f a -> f (a -> b) -> f b
(<**>) = liftA2 (flip ($))

-- | Lift a function to actions.
-- This function may be used as a value for `fmap` in a `Functor` instance.
liftA :: Applicative f => (a -> b) -> f a -> f b
liftA f a = pure f <*> a
-- Caution: since this may be used for `fmap`, we can't use the obvious
-- definition of liftA = fmap.

-- | Lift a binary function to actions.
liftA2 :: Applicative f => (a -> b -> c) -> f a -> f b -> f c
liftA2 f a b = fmap f a <*> b

-- | Lift a ternary function to actions.
liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d
liftA3 f a b c = fmap f a <*> b <*> c


{-# INLINEABLE liftA #-}
{-# SPECIALISE liftA :: (a1->r) -> IO a1 -> IO r #-}
{-# SPECIALISE liftA :: (a1->r) -> Maybe a1 -> Maybe r #-}
{-# INLINEABLE liftA2 #-}
{-# SPECIALISE liftA2 :: (a1->a2->r) -> IO a1 -> IO a2 -> IO r #-}
{-# SPECIALISE liftA2 :: (a1->a2->r) -> Maybe a1 -> Maybe a2 -> Maybe r #-}
{-# INLINEABLE liftA3 #-}
{-# SPECIALISE liftA3 :: (a1->a2->a3->r) -> IO a1 -> IO a2 -> IO a3 -> IO r #-}
{-# SPECIALISE liftA3 :: (a1->a2->a3->r) ->
                                Maybe a1 -> Maybe a2 -> Maybe a3 -> Maybe r #-}

-- | The 'join' function is the conventional monad join operator. It
-- is used to remove one level of monadic structure, projecting its
-- bound argument into the outer level.
join              :: (Monad m) => m (m a) -> m a
join x            =  x >>= id

{- | The 'Monad' class defines the basic operations over a /monad/,
a concept from a branch of mathematics known as /category theory/.
From the perspective of a Haskell programmer, however, it is best to
think of a monad as an /abstract datatype/ of actions.
Haskell's @do@ expressions provide a convenient syntax for writing
monadic expressions.

Instances of 'Monad' should satisfy the following laws:

* @'return' a '>>=' k  =  k a@
* @m '>>=' 'return'  =  m@
* @m '>>=' (\x -> k x '>>=' h)  =  (m '>>=' k) '>>=' h@

Furthermore, the 'Monad' and 'Applicative' operations should relate as follows:

* @'pure' = 'return'@
* @('<*>') = 'ap'@

The above laws imply:

* @'fmap' f xs  =  xs '>>=' 'return' . f@
* @('>>') = ('*>')@

and that 'pure' and ('<*>') satisfy the applicative functor laws.

The instances of 'Monad' for lists, 'Data.Maybe.Maybe' and 'System.IO.IO'
defined in the "Prelude" satisfy these laws.
-}
class Applicative m => Monad m where
    -- | Sequentially compose two actions, passing any value produced
    -- by the first as an argument to the second.
    (>>=)       :: forall a b. m a -> (a -> m b) -> m b

    -- | Sequentially compose two actions, discarding any value produced
    -- by the first, like sequencing operators (such as the semicolon)
    -- in imperative languages.
    (>>)        :: forall a b. m a -> m b -> m b
    m >> k = m >>= \_ -> k -- See Note [Recursive bindings for Applicative/Monad]
    {-# INLINE (>>) #-}

    -- | Inject a value into the monadic type.
    return      :: a -> m a
    return      = pure

    -- | Fail with a message.  This operation is not part of the
    -- mathematical definition of a monad, but is invoked on pattern-match
    -- failure in a @do@ expression.
    --
    -- As part of the MonadFail proposal (MFP), this function is moved
    -- to its own class 'MonadFail' (see "Control.Monad.Fail" for more
    -- details). The definition here will be removed in a future
    -- release.
    fail        :: String -> m a
    fail s      = errorWithoutStackTrace s

{- Note [Recursive bindings for Applicative/Monad]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The original Applicative/Monad proposal stated that after
implementation, the designated implementation of (>>) would become

  (>>) :: forall a b. m a -> m b -> m b
  (>>) = (*>)

by default. You might be inclined to change this to reflect the stated
proposal, but you really shouldn't! Why? Because people tend to define
such instances the /other/ way around: in particular, it is perfectly
legitimate to define an instance of Applicative (*>) in terms of (>>),
which would lead to an infinite loop for the default implementation of
Monad! And people do this in the wild.

This turned into a nasty bug that was tricky to track down, and rather
than eliminate it everywhere upstream, it's easier to just retain the
original default.

-}

-- | Same as '>>=', but with the arguments interchanged.
{-# SPECIALISE (=<<) :: (a -> [b]) -> [a] -> [b] #-}
(=<<)           :: Monad m => (a -> m b) -> m a -> m b
f =<< x         = x >>= f

-- | Conditional execution of 'Applicative' expressions. For example,
--
-- > when debug (putStrLn "Debugging")
--
-- will output the string @Debugging@ if the Boolean value @debug@
-- is 'True', and otherwise do nothing.
when      :: (Applicative f) => Bool -> f () -> f ()
{-# INLINEABLE when #-}
{-# SPECIALISE when :: Bool -> IO () -> IO () #-}
{-# SPECIALISE when :: Bool -> Maybe () -> Maybe () #-}
when p s  = if p then s else pure ()

-- | Evaluate each action in the sequence from left to right,
-- and collect the results.
sequence :: Monad m => [m a] -> m [a]
{-# INLINE sequence #-}
sequence = mapM id
-- Note: [sequence and mapM]

-- | @'mapM' f@ is equivalent to @'sequence' . 'map' f@.
mapM :: Monad m => (a -> m b) -> [a] -> m [b]
{-# INLINE mapM #-}
mapM f as = foldr k (return []) as
            where
              k a r = do { x <- f a; xs <- r; return (x:xs) }

{-
Note: [sequence and mapM]
~~~~~~~~~~~~~~~~~~~~~~~~~
Originally, we defined

mapM f = sequence . map f

This relied on list fusion to produce efficient code for mapM, and led to
excessive allocation in cryptarithm2. Defining

sequence = mapM id

relies only on inlining a tiny function (id) and beta reduction, which tends to
be a more reliable aspect of simplification. Indeed, this does not lead to
similar problems in nofib.
-}

-- | Promote a function to a monad.
liftM   :: (Monad m) => (a1 -> r) -> m a1 -> m r
liftM f m1              = do { x1 <- m1; return (f x1) }

-- | Promote a function to a monad, scanning the monadic arguments from
-- left to right.  For example,
--
-- >    liftM2 (+) [0,1] [0,2] = [0,2,1,3]
-- >    liftM2 (+) (Just 1) Nothing = Nothing
--
liftM2  :: (Monad m) => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r
liftM2 f m1 m2          = do { x1 <- m1; x2 <- m2; return (f x1 x2) }

-- | Promote a function to a monad, scanning the monadic arguments from
-- left to right (cf. 'liftM2').
liftM3  :: (Monad m) => (a1 -> a2 -> a3 -> r) -> m a1 -> m a2 -> m a3 -> m r
liftM3 f m1 m2 m3       = do { x1 <- m1; x2 <- m2; x3 <- m3; return (f x1 x2 x3) }

-- | Promote a function to a monad, scanning the monadic arguments from
-- left to right (cf. 'liftM2').
liftM4  :: (Monad m) => (a1 -> a2 -> a3 -> a4 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m r
liftM4 f m1 m2 m3 m4    = do { x1 <- m1; x2 <- m2; x3 <- m3; x4 <- m4; return (f x1 x2 x3 x4) }

-- | Promote a function to a monad, scanning the monadic arguments from
-- left to right (cf. 'liftM2').
liftM5  :: (Monad m) => (a1 -> a2 -> a3 -> a4 -> a5 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m a5 -> m r
liftM5 f m1 m2 m3 m4 m5 = do { x1 <- m1; x2 <- m2; x3 <- m3; x4 <- m4; x5 <- m5; return (f x1 x2 x3 x4 x5) }

{-# INLINEABLE liftM #-}
{-# SPECIALISE liftM :: (a1->r) -> IO a1 -> IO r #-}
{-# SPECIALISE liftM :: (a1->r) -> Maybe a1 -> Maybe r #-}
{-# INLINEABLE liftM2 #-}
{-# SPECIALISE liftM2 :: (a1->a2->r) -> IO a1 -> IO a2 -> IO r #-}
{-# SPECIALISE liftM2 :: (a1->a2->r) -> Maybe a1 -> Maybe a2 -> Maybe r #-}
{-# INLINEABLE liftM3 #-}
{-# SPECIALISE liftM3 :: (a1->a2->a3->r) -> IO a1 -> IO a2 -> IO a3 -> IO r #-}
{-# SPECIALISE liftM3 :: (a1->a2->a3->r) -> Maybe a1 -> Maybe a2 -> Maybe a3 -> Maybe r #-}
{-# INLINEABLE liftM4 #-}
{-# SPECIALISE liftM4 :: (a1->a2->a3->a4->r) -> IO a1 -> IO a2 -> IO a3 -> IO a4 -> IO r #-}
{-# SPECIALISE liftM4 :: (a1->a2->a3->a4->r) -> Maybe a1 -> Maybe a2 -> Maybe a3 -> Maybe a4 -> Maybe r #-}
{-# INLINEABLE liftM5 #-}
{-# SPECIALISE liftM5 :: (a1->a2->a3->a4->a5->r) -> IO a1 -> IO a2 -> IO a3 -> IO a4 -> IO a5 -> IO r #-}
{-# SPECIALISE liftM5 :: (a1->a2->a3->a4->a5->r) -> Maybe a1 -> Maybe a2 -> Maybe a3 -> Maybe a4 -> Maybe a5 -> Maybe r #-}

{- | In many situations, the 'liftM' operations can be replaced by uses of
'ap', which promotes function application.

>       return f `ap` x1 `ap` ... `ap` xn

is equivalent to

>       liftMn f x1 x2 ... xn

-}

ap                :: (Monad m) => m (a -> b) -> m a -> m b
ap m1 m2          = do { x1 <- m1; x2 <- m2; return (x1 x2) }
-- Since many Applicative instances define (<*>) = ap, we
-- cannot define ap = (<*>)
{-# INLINEABLE ap #-}
{-# SPECIALISE ap :: IO (a -> b) -> IO a -> IO b #-}
{-# SPECIALISE ap :: Maybe (a -> b) -> Maybe a -> Maybe b #-}

-- instances for Prelude types

instance Functor ((->) r) where
    fmap = (.)

instance Applicative ((->) a) where
    pure = const
    (<*>) f g x = f x (g x)

instance Monad ((->) r) where
    f >>= k = \ r -> k (f r) r

instance Functor ((,) a) where
    fmap f (x,y) = (x, f y)


instance  Functor Maybe  where
    fmap _ Nothing       = Nothing
    fmap f (Just a)      = Just (f a)

instance Applicative Maybe where
    pure = Just

    Just f  <*> m       = fmap f m
    Nothing <*> _m      = Nothing

    Just _m1 *> m2      = m2
    Nothing  *> _m2     = Nothing

instance  Monad Maybe  where
    (Just x) >>= k      = k x
    Nothing  >>= _      = Nothing

    (>>) = (*>)

    fail _              = Nothing

-- -----------------------------------------------------------------------------
-- The Alternative class definition

infixl 3 <|>

-- | A monoid on applicative functors.
--
-- If defined, 'some' and 'many' should be the least solutions
-- of the equations:
--
-- * @some v = (:) '<$>' v '<*>' many v@
--
-- * @many v = some v '<|>' 'pure' []@
class Applicative f => Alternative f where
    -- | The identity of '<|>'
    empty :: f a
    -- | An associative binary operation
    (<|>) :: f a -> f a -> f a

    -- | One or more.
    some :: f a -> f [a]
    some v = some_v
      where
        many_v = some_v <|> pure []
        some_v = (fmap (:) v) <*> many_v

    -- | Zero or more.
    many :: f a -> f [a]
    many v = many_v
      where
        many_v = some_v <|> pure []
        some_v = (fmap (:) v) <*> many_v


instance Alternative Maybe where
    empty = Nothing
    Nothing <|> r = r
    l       <|> _ = l

-- -----------------------------------------------------------------------------
-- The MonadPlus class definition

-- | Monads that also support choice and failure.
class (Alternative m, Monad m) => MonadPlus m where
   -- | the identity of 'mplus'.  It should also satisfy the equations
   --
   -- > mzero >>= f  =  mzero
   -- > v >> mzero   =  mzero
   --
   mzero :: m a
   mzero = empty

   -- | an associative operation
   mplus :: m a -> m a -> m a
   mplus = (<|>)

instance MonadPlus Maybe

----------------------------------------------
-- The list type

instance Functor [] where
    {-# INLINE fmap #-}
    fmap = map

-- See Note: [List comprehensions and inlining]
instance Applicative [] where
    {-# INLINE pure #-}
    pure x    = [x]
    {-# INLINE (<*>) #-}
    fs <*> xs = [f x | f <- fs, x <- xs]
    {-# INLINE (*>) #-}
    xs *> ys  = [y | _ <- xs, y <- ys]

-- See Note: [List comprehensions and inlining]
instance Monad []  where
    {-# INLINE (>>=) #-}
    xs >>= f             = [y | x <- xs, y <- f x]
    {-# INLINE (>>) #-}
    (>>) = (*>)
    {-# INLINE fail #-}
    fail _              = []

instance Alternative [] where
    empty = []
    (<|>) = (++)

instance MonadPlus []

{-
A few list functions that appear here because they are used here.
The rest of the prelude list functions are in GHC.List.
-}

----------------------------------------------
--      foldr/build/augment
----------------------------------------------

-- | 'foldr', applied to a binary operator, a starting value (typically
-- the right-identity of the operator), and a list, reduces the list
-- using the binary operator, from right to left:
--
-- > foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)

foldr            :: (a -> b -> b) -> b -> [a] -> b
-- foldr _ z []     =  z
-- foldr f z (x:xs) =  f x (foldr f z xs)
{-# INLINE [0] foldr #-}
-- Inline only in the final stage, after the foldr/cons rule has had a chance
-- Also note that we inline it when it has *two* parameters, which are the
-- ones we are keen about specialising!
foldr k z = go
          where
            go []     = z
            go (y:ys) = y `k` go ys

-- | A list producer that can be fused with 'foldr'.
-- This function is merely
--
-- >    build g = g (:) []
--
-- but GHC's simplifier will transform an expression of the form
-- @'foldr' k z ('build' g)@, which may arise after inlining, to @g k z@,
-- which avoids producing an intermediate list.

build   :: forall a. (forall b. (a -> b -> b) -> b -> b) -> [a]
{-# INLINE [1] build #-}
        -- The INLINE is important, even though build is tiny,
        -- because it prevents [] getting inlined in the version that
        -- appears in the interface file.  If [] *is* inlined, it
        -- won't match with [] appearing in rules in an importing module.
        --
        -- The "1" says to inline in phase 1

build g = g (:) []

-- | A list producer that can be fused with 'foldr'.
-- This function is merely
--
-- >    augment g xs = g (:) xs
--
-- but GHC's simplifier will transform an expression of the form
-- @'foldr' k z ('augment' g xs)@, which may arise after inlining, to
-- @g k ('foldr' k z xs)@, which avoids producing an intermediate list.

augment :: forall a. (forall b. (a->b->b) -> b -> b) -> [a] -> [a]
{-# INLINE [1] augment #-}
augment g xs = g (:) xs

{-# RULES
"fold/build"    forall k z (g::forall b. (a->b->b) -> b -> b) .
                foldr k z (build g) = g k z

"foldr/augment" forall k z xs (g::forall b. (a->b->b) -> b -> b) .
                foldr k z (augment g xs) = g k (foldr k z xs)

"foldr/id"                        foldr (:) [] = \x  -> x
"foldr/app"     [1] forall ys. foldr (:) ys = \xs -> xs ++ ys
        -- Only activate this from phase 1, because that's
        -- when we disable the rule that expands (++) into foldr

-- The foldr/cons rule looks nice, but it can give disastrously
-- bloated code when commpiling
--      array (a,b) [(1,2), (2,2), (3,2), ...very long list... ]
-- i.e. when there are very very long literal lists
-- So I've disabled it for now. We could have special cases
-- for short lists, I suppose.
-- "foldr/cons" forall k z x xs. foldr k z (x:xs) = k x (foldr k z xs)

"foldr/single"  forall k z x. foldr k z [x] = k x z
"foldr/nil"     forall k z.   foldr k z []  = z

"foldr/cons/build" forall k z x (g::forall b. (a->b->b) -> b -> b) .
                           foldr k z (x:build g) = k x (g k z)

"augment/build" forall (g::forall b. (a->b->b) -> b -> b)
                       (h::forall b. (a->b->b) -> b -> b) .
                       augment g (build h) = build (\c n -> g c (h c n))
"augment/nil"   forall (g::forall b. (a->b->b) -> b -> b) .
                        augment g [] = build g
 #-}

-- This rule is true, but not (I think) useful:
--      augment g (augment h t) = augment (\cn -> g c (h c n)) t

----------------------------------------------
--              map
----------------------------------------------

-- | 'map' @f xs@ is the list obtained by applying @f@ to each element
-- of @xs@, i.e.,
--
-- > map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn]
-- > map f [x1, x2, ...] == [f x1, f x2, ...]

map :: (a -> b) -> [a] -> [b]
{-# NOINLINE [0] map #-}
  -- We want the RULEs "map" and "map/coerce" to fire first.
  -- map is recursive, so won't inline anyway,
  -- but saying so is more explicit, and silences warnings
map _ []     = []
map f (x:xs) = f x : map f xs

-- Note eta expanded
mapFB ::  (elt -> lst -> lst) -> (a -> elt) -> a -> lst -> lst
{-# INLINE [0] mapFB #-}
mapFB c f = \x ys -> c (f x) ys

-- The rules for map work like this.
--
-- Up to (but not including) phase 1, we use the "map" rule to
-- rewrite all saturated applications of map with its build/fold
-- form, hoping for fusion to happen.
-- In phase 1 and 0, we switch off that rule, inline build, and
-- switch on the "mapList" rule, which rewrites the foldr/mapFB
-- thing back into plain map.
--
-- It's important that these two rules aren't both active at once
-- (along with build's unfolding) else we'd get an infinite loop
-- in the rules.  Hence the activation control below.
--
-- The "mapFB" rule optimises compositions of map.
--
-- This same pattern is followed by many other functions:
-- e.g. append, filter, iterate, repeat, etc.

{-# RULES
"map"       [~1] forall f xs.   map f xs                = build (\c n -> foldr (mapFB c f) n xs)
"mapList"   [1]  forall f.      foldr (mapFB (:) f) []  = map f
"mapFB"     forall c f g.       mapFB (mapFB c f) g     = mapFB c (f.g)
  #-}

-- See Breitner, Eisenberg, Peyton Jones, and Weirich, "Safe Zero-cost
-- Coercions for Haskell", section 6.5:
--   http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/coercible.pdf

{-# RULES "map/coerce" [1] map coerce = coerce #-}


----------------------------------------------
--              append
----------------------------------------------

-- | Append two lists, i.e.,
--
-- > [x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn]
-- > [x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]
--
-- If the first list is not finite, the result is the first list.

(++) :: [a] -> [a] -> [a]
{-# NOINLINE [1] (++) #-}    -- We want the RULE to fire first.
                             -- It's recursive, so won't inline anyway,
                             -- but saying so is more explicit
(++) []     ys = ys
(++) (x:xs) ys = x : xs ++ ys

{-# RULES
"++"    [~1] forall xs ys. xs ++ ys = augment (\c n -> foldr c n xs) ys
  #-}


-- |'otherwise' is defined as the value 'True'.  It helps to make
-- guards more readable.  eg.
--
-- >  f x | x < 0     = ...
-- >      | otherwise = ...
otherwise               :: Bool
otherwise               =  True

----------------------------------------------
-- Type Char and String
----------------------------------------------

-- | A 'String' is a list of characters.  String constants in Haskell are values
-- of type 'String'.
--
type String = [Char]

unsafeChr :: Int -> Char
unsafeChr (I# i#) = C# (chr# i#)

-- | The 'Prelude.fromEnum' method restricted to the type 'Data.Char.Char'.
ord :: Char -> Int
ord (C# c#) = I# (ord# c#)

-- | This 'String' equality predicate is used when desugaring
-- pattern-matches against strings.
eqString :: String -> String -> Bool
eqString []       []       = True
eqString (c1:cs1) (c2:cs2) = c1 == c2 && cs1 `eqString` cs2
eqString _        _        = False

{-# RULES "eqString" (==) = eqString #-}
-- eqString also has a BuiltInRule in PrelRules.lhs:
--      eqString (unpackCString# (Lit s1)) (unpackCString# (Lit s2) = s1==s2


----------------------------------------------
-- 'Int' related definitions
----------------------------------------------

maxInt, minInt :: Int

{- Seems clumsy. Should perhaps put minInt and MaxInt directly into MachDeps.h -}
#if WORD_SIZE_IN_BITS == 31
minInt  = I# (-0x40000000#)
maxInt  = I# 0x3FFFFFFF#
#elif WORD_SIZE_IN_BITS == 32
minInt  = I# (-0x80000000#)
maxInt  = I# 0x7FFFFFFF#
#else
minInt  = I# (-0x8000000000000000#)
maxInt  = I# 0x7FFFFFFFFFFFFFFF#
#endif

----------------------------------------------
-- The function type
----------------------------------------------

-- | Identity function.
id                      :: a -> a
id x                    =  x

-- Assertion function.  This simply ignores its boolean argument.
-- The compiler may rewrite it to @('assertError' line)@.

-- | If the first argument evaluates to 'True', then the result is the
-- second argument.  Otherwise an 'AssertionFailed' exception is raised,
-- containing a 'String' with the source file and line number of the
-- call to 'assert'.
--
-- Assertions can normally be turned on or off with a compiler flag
-- (for GHC, assertions are normally on unless optimisation is turned on
-- with @-O@ or the @-fignore-asserts@
-- option is given).  When assertions are turned off, the first
-- argument to 'assert' is ignored, and the second argument is
-- returned as the result.

--      SLPJ: in 5.04 etc 'assert' is in GHC.Prim,
--      but from Template Haskell onwards it's simply
--      defined here in Base.lhs
assert :: Bool -> a -> a
assert _pred r = r

breakpoint :: a -> a
breakpoint r = r

breakpointCond :: Bool -> a -> a
breakpointCond _ r = r

data Opaque = forall a. O a

-- | @const x@ is a unary function which evaluates to @x@ for all inputs.
--
-- For instance,
--
-- >>> map (const 42) [0..3]
-- [42,42,42,42]
const                   :: a -> b -> a
const x _               =  x

-- | Function composition.
{-# INLINE (.) #-}
-- Make sure it has TWO args only on the left, so that it inlines
-- when applied to two functions, even if there is no final argument
(.)    :: (b -> c) -> (a -> b) -> a -> c
(.) f g = \x -> f (g x)

-- | @'flip' f@ takes its (first) two arguments in the reverse order of @f@.
flip                    :: (a -> b -> c) -> b -> a -> c
flip f x y              =  f y x

-- | Application operator.  This operator is redundant, since ordinary
-- application @(f x)@ means the same as @(f '$' x)@. However, '$' has
-- low, right-associative binding precedence, so it sometimes allows
-- parentheses to be omitted; for example:
--
-- >     f $ g $ h x  =  f (g (h x))
--
-- It is also useful in higher-order situations, such as @'map' ('$' 0) xs@,
-- or @'Data.List.zipWith' ('$') fs xs@.
{-# INLINE ($) #-}
($)                     :: (a -> b) -> a -> b
f $ x                   =  f x

-- | Strict (call-by-value) application operator. It takes a function and an
-- argument, evaluates the argument to weak head normal form (WHNF), then calls
-- the function with that value.

($!)                    :: (a -> b) -> a -> b
f $! x                  = let !vx = x in f vx  -- see #2273

-- | @'until' p f@ yields the result of applying @f@ until @p@ holds.
until                   :: (a -> Bool) -> (a -> a) -> a -> a
until p f = go
  where
    go x | p x          = x
         | otherwise    = go (f x)

-- | 'asTypeOf' is a type-restricted version of 'const'.  It is usually
-- used as an infix operator, and its typing forces its first argument
-- (which is usually overloaded) to have the same type as the second.
asTypeOf                :: a -> a -> a
asTypeOf                =  const

----------------------------------------------
-- Functor/Applicative/Monad instances for IO
----------------------------------------------

instance  Functor IO where
   fmap f x = x >>= (pure . f)

instance Applicative IO where
    {-# INLINE pure #-}
    {-# INLINE (*>) #-}
    pure   = returnIO
    m *> k = m >>= \ _ -> k
    (<*>)  = ap

instance  Monad IO  where
    {-# INLINE (>>)   #-}
    {-# INLINE (>>=)  #-}
    (>>)      = (*>)
    (>>=)     = bindIO
    fail s    = failIO s

instance Alternative IO where
    empty = failIO "mzero"
    (<|>) = mplusIO

instance MonadPlus IO

returnIO :: a -> IO a
returnIO x = IO (\ s -> (# s, x #))

bindIO :: IO a -> (a -> IO b) -> IO b
bindIO (IO m) k = IO (\ s -> case m s of (# new_s, a #) -> unIO (k a) new_s)

thenIO :: IO a -> IO b -> IO b
thenIO (IO m) k = IO (\ s -> case m s of (# new_s, _ #) -> unIO k new_s)

unIO :: IO a -> (State# RealWorld -> (# State# RealWorld, a #))
unIO (IO a) = a

{- |
Returns the 'tag' of a constructor application; this function is used
by the deriving code for Eq, Ord and Enum.

The primitive dataToTag# requires an evaluated constructor application
as its argument, so we provide getTag as a wrapper that performs the
evaluation before calling dataToTag#.  We could have dataToTag#
evaluate its argument, but we prefer to do it this way because (a)
dataToTag# can be an inline primop if it doesn't need to do any
evaluation, and (b) we want to expose the evaluation to the
simplifier, because it might be possible to eliminate the evaluation
in the case when the argument is already known to be evaluated.
-}
{-# INLINE getTag #-}
getTag :: a -> Int#
getTag !x = dataToTag# x

----------------------------------------------
-- Numeric primops
----------------------------------------------

-- Definitions of the boxed PrimOps; these will be
-- used in the case of partial applications, etc.

{-# INLINE quotInt #-}
{-# INLINE remInt #-}

quotInt, remInt, divInt, modInt :: Int -> Int -> Int
(I# x) `quotInt`  (I# y) = I# (x `quotInt#` y)
(I# x) `remInt`   (I# y) = I# (x `remInt#`  y)
(I# x) `divInt`   (I# y) = I# (x `divInt#`  y)
(I# x) `modInt`   (I# y) = I# (x `modInt#`  y)

quotRemInt :: Int -> Int -> (Int, Int)
(I# x) `quotRemInt` (I# y) = case x `quotRemInt#` y of
                             (# q, r #) ->
                                 (I# q, I# r)

divModInt :: Int -> Int -> (Int, Int)
(I# x) `divModInt` (I# y) = case x `divModInt#` y of
                            (# q, r #) -> (I# q, I# r)

divModInt# :: Int# -> Int# -> (# Int#, Int# #)
x# `divModInt#` y#
 | isTrue# (x# ># 0#) && isTrue# (y# <# 0#) =
                                    case (x# -# 1#) `quotRemInt#` y# of
                                      (# q, r #) -> (# q -# 1#, r +# y# +# 1# #)
 | isTrue# (x# <# 0#) && isTrue# (y# ># 0#) =
                                    case (x# +# 1#) `quotRemInt#` y# of
                                      (# q, r #) -> (# q -# 1#, r +# y# -# 1# #)
 | otherwise                                =
                                    x# `quotRemInt#` y#

-- Wrappers for the shift operations.  The uncheckedShift# family are
-- undefined when the amount being shifted by is greater than the size
-- in bits of Int#, so these wrappers perform a check and return
-- either zero or -1 appropriately.
--
-- Note that these wrappers still produce undefined results when the
-- second argument (the shift amount) is negative.

-- | Shift the argument left by the specified number of bits
-- (which must be non-negative).
shiftL# :: Word# -> Int# -> Word#
a `shiftL#` b   | isTrue# (b >=# WORD_SIZE_IN_BITS#) = 0##
                | otherwise                          = a `uncheckedShiftL#` b

-- | Shift the argument right by the specified number of bits
-- (which must be non-negative).
-- The "RL" means "right, logical" (as opposed to RA for arithmetic)
-- (although an arithmetic right shift wouldn't make sense for Word#)
shiftRL# :: Word# -> Int# -> Word#
a `shiftRL#` b  | isTrue# (b >=# WORD_SIZE_IN_BITS#) = 0##
                | otherwise                          = a `uncheckedShiftRL#` b

-- | Shift the argument left by the specified number of bits
-- (which must be non-negative).
iShiftL# :: Int# -> Int# -> Int#
a `iShiftL#` b  | isTrue# (b >=# WORD_SIZE_IN_BITS#) = 0#
                | otherwise                          = a `uncheckedIShiftL#` b

-- | Shift the argument right (signed) by the specified number of bits
-- (which must be non-negative).
-- The "RA" means "right, arithmetic" (as opposed to RL for logical)
iShiftRA# :: Int# -> Int# -> Int#
a `iShiftRA#` b | isTrue# (b >=# WORD_SIZE_IN_BITS#) = if isTrue# (a <# 0#)
                                                          then (-1#)
                                                          else 0#
                | otherwise                          = a `uncheckedIShiftRA#` b

-- | Shift the argument right (unsigned) by the specified number of bits
-- (which must be non-negative).
-- The "RL" means "right, logical" (as opposed to RA for arithmetic)
iShiftRL# :: Int# -> Int# -> Int#
a `iShiftRL#` b | isTrue# (b >=# WORD_SIZE_IN_BITS#) = 0#
                | otherwise                          = a `uncheckedIShiftRL#` b

-- Rules for C strings (the functions themselves are now in GHC.CString)
{-# RULES
"unpack"       [~1] forall a   . unpackCString# a             = build (unpackFoldrCString# a)
"unpack-list"  [1]  forall a   . unpackFoldrCString# a (:) [] = unpackCString# a
"unpack-append"     forall a n . unpackFoldrCString# a (:) n  = unpackAppendCString# a n

-- There's a built-in rule (in PrelRules.lhs) for
--      unpackFoldr "foo" c (unpackFoldr "baz" c n)  =  unpackFoldr "foobaz" c n

  #-}