1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
|
\section[GHC.Base]{Module @GHC.Base@}
The overall structure of the GHC Prelude is a bit tricky.
a) We want to avoid "orphan modules", i.e. ones with instance
decls that don't belong either to a tycon or a class
defined in the same module
b) We want to avoid giant modules
So the rough structure is as follows, in (linearised) dependency order
GHC.Prim Has no implementation. It defines built-in things, and
by importing it you bring them into scope.
The source file is GHC.Prim.hi-boot, which is just
copied to make GHC.Prim.hi
GHC.Base Classes: Eq, Ord, Functor, Monad
Types: list, (), Int, Bool, Ordering, Char, String
Data.Tuple Types: tuples, plus instances for GHC.Base classes
GHC.Show Class: Show, plus instances for GHC.Base/GHC.Tup types
GHC.Enum Class: Enum, plus instances for GHC.Base/GHC.Tup types
Data.Maybe Type: Maybe, plus instances for GHC.Base classes
GHC.List List functions
GHC.Num Class: Num, plus instances for Int
Type: Integer, plus instances for all classes so far (Eq, Ord, Num, Show)
Integer is needed here because it is mentioned in the signature
of 'fromInteger' in class Num
GHC.Real Classes: Real, Integral, Fractional, RealFrac
plus instances for Int, Integer
Types: Ratio, Rational
plus intances for classes so far
Rational is needed here because it is mentioned in the signature
of 'toRational' in class Real
GHC.ST The ST monad, instances and a few helper functions
Ix Classes: Ix, plus instances for Int, Bool, Char, Integer, Ordering, tuples
GHC.Arr Types: Array, MutableArray, MutableVar
Arrays are used by a function in GHC.Float
GHC.Float Classes: Floating, RealFloat
Types: Float, Double, plus instances of all classes so far
This module contains everything to do with floating point.
It is a big module (900 lines)
With a bit of luck, many modules can be compiled without ever reading GHC.Float.hi
Other Prelude modules are much easier with fewer complex dependencies.
\begin{code}
{-# OPTIONS_GHC -XNoImplicitPrelude #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}
{-# OPTIONS_HADDOCK hide #-}
-----------------------------------------------------------------------------
-- |
-- Module : GHC.Base
-- Copyright : (c) The University of Glasgow, 1992-2002
-- License : see libraries/base/LICENSE
--
-- Maintainer : cvs-ghc@haskell.org
-- Stability : internal
-- Portability : non-portable (GHC extensions)
--
-- Basic data types and classes.
--
-----------------------------------------------------------------------------
#include "MachDeps.h"
-- #hide
module GHC.Base
(
module GHC.Base,
module GHC.Bool,
module GHC.Classes,
module GHC.Generics,
module GHC.Ordering,
module GHC.Types,
module GHC.Prim, -- Re-export GHC.Prim and GHC.Err, to avoid lots
module GHC.Err -- of people having to import it explicitly
)
where
import GHC.Types
import GHC.Bool
import GHC.Classes
import GHC.Generics
import GHC.Ordering
import GHC.Prim
import {-# SOURCE #-} GHC.Err
-- These two are not strictly speaking required by this module, but they are
-- implicit dependencies whenever () or tuples are mentioned, so adding them
-- as imports here helps to get the dependencies right in the new build system.
import GHC.Tuple ()
import GHC.Unit ()
infixr 9 .
infixr 5 ++
infixl 1 >>, >>=
infixr 0 $
default () -- Double isn't available yet
\end{code}
%*********************************************************
%* *
\subsection{DEBUGGING STUFF}
%* (for use when compiling GHC.Base itself doesn't work)
%* *
%*********************************************************
\begin{code}
{-
data Bool = False | True
data Ordering = LT | EQ | GT
data Char = C# Char#
type String = [Char]
data Int = I# Int#
data () = ()
data [] a = MkNil
not True = False
(&&) True True = True
otherwise = True
build = error "urk"
foldr = error "urk"
unpackCString# :: Addr# -> [Char]
unpackFoldrCString# :: Addr# -> (Char -> a -> a) -> a -> a
unpackAppendCString# :: Addr# -> [Char] -> [Char]
unpackCStringUtf8# :: Addr# -> [Char]
unpackCString# a = error "urk"
unpackFoldrCString# a = error "urk"
unpackAppendCString# a = error "urk"
unpackCStringUtf8# a = error "urk"
-}
\end{code}
%*********************************************************
%* *
\subsection{Monadic classes @Functor@, @Monad@ }
%* *
%*********************************************************
\begin{code}
{- | The 'Functor' class is used for types that can be mapped over.
Instances of 'Functor' should satisfy the following laws:
> fmap id == id
> fmap (f . g) == fmap f . fmap g
The instances of 'Functor' for lists, 'Data.Maybe.Maybe' and 'System.IO.IO'
defined in the "Prelude" satisfy these laws.
-}
class Functor f where
fmap :: (a -> b) -> f a -> f b
{- | The 'Monad' class defines the basic operations over a /monad/,
a concept from a branch of mathematics known as /category theory/.
From the perspective of a Haskell programmer, however, it is best to
think of a monad as an /abstract datatype/ of actions.
Haskell's @do@ expressions provide a convenient syntax for writing
monadic expressions.
Minimal complete definition: '>>=' and 'return'.
Instances of 'Monad' should satisfy the following laws:
> return a >>= k == k a
> m >>= return == m
> m >>= (\x -> k x >>= h) == (m >>= k) >>= h
Instances of both 'Monad' and 'Functor' should additionally satisfy the law:
> fmap f xs == xs >>= return . f
The instances of 'Monad' for lists, 'Data.Maybe.Maybe' and 'System.IO.IO'
defined in the "Prelude" satisfy these laws.
-}
class Monad m where
-- | Sequentially compose two actions, passing any value produced
-- by the first as an argument to the second.
(>>=) :: forall a b. m a -> (a -> m b) -> m b
-- | Sequentially compose two actions, discarding any value produced
-- by the first, like sequencing operators (such as the semicolon)
-- in imperative languages.
(>>) :: forall a b. m a -> m b -> m b
-- Explicit for-alls so that we know what order to
-- give type arguments when desugaring
-- | Inject a value into the monadic type.
return :: a -> m a
-- | Fail with a message. This operation is not part of the
-- mathematical definition of a monad, but is invoked on pattern-match
-- failure in a @do@ expression.
fail :: String -> m a
m >> k = m >>= \_ -> k
fail s = error s
\end{code}
%*********************************************************
%* *
\subsection{The list type}
%* *
%*********************************************************
\begin{code}
-- do explicitly: deriving (Eq, Ord)
-- to avoid weird names like con2tag_[]#
instance (Eq a) => Eq [a] where
{-# SPECIALISE instance Eq [Char] #-}
[] == [] = True
(x:xs) == (y:ys) = x == y && xs == ys
_xs == _ys = False
instance (Ord a) => Ord [a] where
{-# SPECIALISE instance Ord [Char] #-}
compare [] [] = EQ
compare [] (_:_) = LT
compare (_:_) [] = GT
compare (x:xs) (y:ys) = case compare x y of
EQ -> compare xs ys
other -> other
instance Functor [] where
fmap = map
instance Monad [] where
m >>= k = foldr ((++) . k) [] m
m >> k = foldr ((++) . (\ _ -> k)) [] m
return x = [x]
fail _ = []
\end{code}
A few list functions that appear here because they are used here.
The rest of the prelude list functions are in GHC.List.
----------------------------------------------
-- foldr/build/augment
----------------------------------------------
\begin{code}
-- | 'foldr', applied to a binary operator, a starting value (typically
-- the right-identity of the operator), and a list, reduces the list
-- using the binary operator, from right to left:
--
-- > foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)
foldr :: (a -> b -> b) -> b -> [a] -> b
-- foldr _ z [] = z
-- foldr f z (x:xs) = f x (foldr f z xs)
{-# INLINE [0] foldr #-}
-- Inline only in the final stage, after the foldr/cons rule has had a chance
foldr k z xs = go xs
where
go [] = z
go (y:ys) = y `k` go ys
-- | A list producer that can be fused with 'foldr'.
-- This function is merely
--
-- > build g = g (:) []
--
-- but GHC's simplifier will transform an expression of the form
-- @'foldr' k z ('build' g)@, which may arise after inlining, to @g k z@,
-- which avoids producing an intermediate list.
build :: forall a. (forall b. (a -> b -> b) -> b -> b) -> [a]
{-# INLINE [1] build #-}
-- The INLINE is important, even though build is tiny,
-- because it prevents [] getting inlined in the version that
-- appears in the interface file. If [] *is* inlined, it
-- won't match with [] appearing in rules in an importing module.
--
-- The "1" says to inline in phase 1
build g = g (:) []
-- | A list producer that can be fused with 'foldr'.
-- This function is merely
--
-- > augment g xs = g (:) xs
--
-- but GHC's simplifier will transform an expression of the form
-- @'foldr' k z ('augment' g xs)@, which may arise after inlining, to
-- @g k ('foldr' k z xs)@, which avoids producing an intermediate list.
augment :: forall a. (forall b. (a->b->b) -> b -> b) -> [a] -> [a]
{-# INLINE [1] augment #-}
augment g xs = g (:) xs
{-# RULES
"fold/build" forall k z (g::forall b. (a->b->b) -> b -> b) .
foldr k z (build g) = g k z
"foldr/augment" forall k z xs (g::forall b. (a->b->b) -> b -> b) .
foldr k z (augment g xs) = g k (foldr k z xs)
"foldr/id" foldr (:) [] = \x -> x
"foldr/app" [1] forall ys. foldr (:) ys = \xs -> xs ++ ys
-- Only activate this from phase 1, because that's
-- when we disable the rule that expands (++) into foldr
-- The foldr/cons rule looks nice, but it can give disastrously
-- bloated code when commpiling
-- array (a,b) [(1,2), (2,2), (3,2), ...very long list... ]
-- i.e. when there are very very long literal lists
-- So I've disabled it for now. We could have special cases
-- for short lists, I suppose.
-- "foldr/cons" forall k z x xs. foldr k z (x:xs) = k x (foldr k z xs)
"foldr/single" forall k z x. foldr k z [x] = k x z
"foldr/nil" forall k z. foldr k z [] = z
"augment/build" forall (g::forall b. (a->b->b) -> b -> b)
(h::forall b. (a->b->b) -> b -> b) .
augment g (build h) = build (\c n -> g c (h c n))
"augment/nil" forall (g::forall b. (a->b->b) -> b -> b) .
augment g [] = build g
#-}
-- This rule is true, but not (I think) useful:
-- augment g (augment h t) = augment (\cn -> g c (h c n)) t
\end{code}
----------------------------------------------
-- map
----------------------------------------------
\begin{code}
-- | 'map' @f xs@ is the list obtained by applying @f@ to each element
-- of @xs@, i.e.,
--
-- > map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn]
-- > map f [x1, x2, ...] == [f x1, f x2, ...]
map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs
-- Note eta expanded
mapFB :: (elt -> lst -> lst) -> (a -> elt) -> a -> lst -> lst
{-# INLINE [0] mapFB #-}
mapFB c f x ys = c (f x) ys
-- The rules for map work like this.
--
-- Up to (but not including) phase 1, we use the "map" rule to
-- rewrite all saturated applications of map with its build/fold
-- form, hoping for fusion to happen.
-- In phase 1 and 0, we switch off that rule, inline build, and
-- switch on the "mapList" rule, which rewrites the foldr/mapFB
-- thing back into plain map.
--
-- It's important that these two rules aren't both active at once
-- (along with build's unfolding) else we'd get an infinite loop
-- in the rules. Hence the activation control below.
--
-- The "mapFB" rule optimises compositions of map.
--
-- This same pattern is followed by many other functions:
-- e.g. append, filter, iterate, repeat, etc.
{-# RULES
"map" [~1] forall f xs. map f xs = build (\c n -> foldr (mapFB c f) n xs)
"mapList" [1] forall f. foldr (mapFB (:) f) [] = map f
"mapFB" forall c f g. mapFB (mapFB c f) g = mapFB c (f.g)
#-}
\end{code}
----------------------------------------------
-- append
----------------------------------------------
\begin{code}
-- | Append two lists, i.e.,
--
-- > [x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn]
-- > [x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]
--
-- If the first list is not finite, the result is the first list.
(++) :: [a] -> [a] -> [a]
(++) [] ys = ys
(++) (x:xs) ys = x : xs ++ ys
{-# RULES
"++" [~1] forall xs ys. xs ++ ys = augment (\c n -> foldr c n xs) ys
#-}
\end{code}
%*********************************************************
%* *
\subsection{Type @Bool@}
%* *
%*********************************************************
\begin{code}
-- |The 'Bool' type is an enumeration. It is defined with 'False'
-- first so that the corresponding 'Prelude.Enum' instance will give
-- 'Prelude.fromEnum' 'False' the value zero, and
-- 'Prelude.fromEnum' 'True' the value 1.
-- The actual definition is in the ghc-prim package.
-- XXX These don't work:
-- deriving instance Eq Bool
-- deriving instance Ord Bool
-- <wired into compiler>:
-- Illegal binding of built-in syntax: con2tag_Bool#
instance Eq Bool where
True == True = True
False == False = True
_ == _ = False
instance Ord Bool where
compare False True = LT
compare True False = GT
compare _ _ = EQ
-- Read is in GHC.Read, Show in GHC.Show
-- |'otherwise' is defined as the value 'True'. It helps to make
-- guards more readable. eg.
--
-- > f x | x < 0 = ...
-- > | otherwise = ...
otherwise :: Bool
otherwise = True
\end{code}
%*********************************************************
%* *
\subsection{Type @Ordering@}
%* *
%*********************************************************
\begin{code}
-- | Represents an ordering relationship between two values: less
-- than, equal to, or greater than. An 'Ordering' is returned by
-- 'compare'.
-- XXX These don't work:
-- deriving instance Eq Ordering
-- deriving instance Ord Ordering
-- Illegal binding of built-in syntax: con2tag_Ordering#
instance Eq Ordering where
EQ == EQ = True
LT == LT = True
GT == GT = True
_ == _ = False
-- Read in GHC.Read, Show in GHC.Show
instance Ord Ordering where
LT <= _ = True
_ <= LT = False
EQ <= _ = True
_ <= EQ = False
GT <= GT = True
\end{code}
%*********************************************************
%* *
\subsection{Type @Char@ and @String@}
%* *
%*********************************************************
\begin{code}
-- | A 'String' is a list of characters. String constants in Haskell are values
-- of type 'String'.
--
type String = [Char]
{-| The character type 'Char' is an enumeration whose values represent
Unicode (or equivalently ISO\/IEC 10646) characters
(see <http://www.unicode.org/> for details).
This set extends the ISO 8859-1 (Latin-1) character set
(the first 256 charachers), which is itself an extension of the ASCII
character set (the first 128 characters).
A character literal in Haskell has type 'Char'.
To convert a 'Char' to or from the corresponding 'Int' value defined
by Unicode, use 'Prelude.toEnum' and 'Prelude.fromEnum' from the
'Prelude.Enum' class respectively (or equivalently 'ord' and 'chr').
-}
-- We don't use deriving for Eq and Ord, because for Ord the derived
-- instance defines only compare, which takes two primops. Then
-- '>' uses compare, and therefore takes two primops instead of one.
instance Eq Char where
(C# c1) == (C# c2) = c1 `eqChar#` c2
(C# c1) /= (C# c2) = c1 `neChar#` c2
instance Ord Char where
(C# c1) > (C# c2) = c1 `gtChar#` c2
(C# c1) >= (C# c2) = c1 `geChar#` c2
(C# c1) <= (C# c2) = c1 `leChar#` c2
(C# c1) < (C# c2) = c1 `ltChar#` c2
{-# RULES
"x# `eqChar#` x#" forall x#. x# `eqChar#` x# = True
"x# `neChar#` x#" forall x#. x# `neChar#` x# = False
"x# `gtChar#` x#" forall x#. x# `gtChar#` x# = False
"x# `geChar#` x#" forall x#. x# `geChar#` x# = True
"x# `leChar#` x#" forall x#. x# `leChar#` x# = True
"x# `ltChar#` x#" forall x#. x# `ltChar#` x# = False
#-}
-- | The 'Prelude.toEnum' method restricted to the type 'Data.Char.Char'.
chr :: Int -> Char
chr (I# i#) | int2Word# i# `leWord#` int2Word# 0x10FFFF# = C# (chr# i#)
| otherwise = error "Prelude.chr: bad argument"
unsafeChr :: Int -> Char
unsafeChr (I# i#) = C# (chr# i#)
-- | The 'Prelude.fromEnum' method restricted to the type 'Data.Char.Char'.
ord :: Char -> Int
ord (C# c#) = I# (ord# c#)
\end{code}
String equality is used when desugaring pattern-matches against strings.
\begin{code}
eqString :: String -> String -> Bool
eqString [] [] = True
eqString (c1:cs1) (c2:cs2) = c1 == c2 && cs1 `eqString` cs2
eqString _ _ = False
{-# RULES "eqString" (==) = eqString #-}
-- eqString also has a BuiltInRule in PrelRules.lhs:
-- eqString (unpackCString# (Lit s1)) (unpackCString# (Lit s2) = s1==s2
\end{code}
%*********************************************************
%* *
\subsection{Type @Int@}
%* *
%*********************************************************
\begin{code}
zeroInt, oneInt, twoInt, maxInt, minInt :: Int
zeroInt = I# 0#
oneInt = I# 1#
twoInt = I# 2#
{- Seems clumsy. Should perhaps put minInt and MaxInt directly into MachDeps.h -}
#if WORD_SIZE_IN_BITS == 31
minInt = I# (-0x40000000#)
maxInt = I# 0x3FFFFFFF#
#elif WORD_SIZE_IN_BITS == 32
minInt = I# (-0x80000000#)
maxInt = I# 0x7FFFFFFF#
#else
minInt = I# (-0x8000000000000000#)
maxInt = I# 0x7FFFFFFFFFFFFFFF#
#endif
instance Eq Int where
(==) = eqInt
(/=) = neInt
instance Ord Int where
compare = compareInt
(<) = ltInt
(<=) = leInt
(>=) = geInt
(>) = gtInt
compareInt :: Int -> Int -> Ordering
(I# x#) `compareInt` (I# y#) = compareInt# x# y#
compareInt# :: Int# -> Int# -> Ordering
compareInt# x# y#
| x# <# y# = LT
| x# ==# y# = EQ
| otherwise = GT
\end{code}
%*********************************************************
%* *
\subsection{The function type}
%* *
%*********************************************************
\begin{code}
-- | Identity function.
id :: a -> a
id x = x
-- | The call '(lazy e)' means the same as 'e', but 'lazy' has a
-- magical strictness property: it is lazy in its first argument,
-- even though its semantics is strict.
lazy :: a -> a
lazy x = x
-- Implementation note: its strictness and unfolding are over-ridden
-- by the definition in MkId.lhs; in both cases to nothing at all.
-- That way, 'lazy' does not get inlined, and the strictness analyser
-- sees it as lazy. Then the worker/wrapper phase inlines it.
-- Result: happiness
-- | The call '(inline f)' reduces to 'f', but 'inline' has a BuiltInRule
-- that tries to inline 'f' (if it has an unfolding) unconditionally
-- The 'NOINLINE' pragma arranges that inline only gets inlined (and
-- hence eliminated) late in compilation, after the rule has had
-- a god chance to fire.
inline :: a -> a
{-# NOINLINE[0] inline #-}
inline x = x
-- Assertion function. This simply ignores its boolean argument.
-- The compiler may rewrite it to @('assertError' line)@.
-- | If the first argument evaluates to 'True', then the result is the
-- second argument. Otherwise an 'AssertionFailed' exception is raised,
-- containing a 'String' with the source file and line number of the
-- call to 'assert'.
--
-- Assertions can normally be turned on or off with a compiler flag
-- (for GHC, assertions are normally on unless optimisation is turned on
-- with @-O@ or the @-fignore-asserts@
-- option is given). When assertions are turned off, the first
-- argument to 'assert' is ignored, and the second argument is
-- returned as the result.
-- SLPJ: in 5.04 etc 'assert' is in GHC.Prim,
-- but from Template Haskell onwards it's simply
-- defined here in Base.lhs
assert :: Bool -> a -> a
assert _pred r = r
breakpoint :: a -> a
breakpoint r = r
breakpointCond :: Bool -> a -> a
breakpointCond _ r = r
data Opaque = forall a. O a
-- | Constant function.
const :: a -> b -> a
const x _ = x
-- | Function composition.
{-# INLINE (.) #-}
(.) :: (b -> c) -> (a -> b) -> a -> c
(.) f g x = f (g x)
-- | @'flip' f@ takes its (first) two arguments in the reverse order of @f@.
flip :: (a -> b -> c) -> b -> a -> c
flip f x y = f y x
-- | Application operator. This operator is redundant, since ordinary
-- application @(f x)@ means the same as @(f '$' x)@. However, '$' has
-- low, right-associative binding precedence, so it sometimes allows
-- parentheses to be omitted; for example:
--
-- > f $ g $ h x = f (g (h x))
--
-- It is also useful in higher-order situations, such as @'map' ('$' 0) xs@,
-- or @'Data.List.zipWith' ('$') fs xs@.
{-# INLINE ($) #-}
($) :: (a -> b) -> a -> b
f $ x = f x
-- | @'until' p f@ yields the result of applying @f@ until @p@ holds.
until :: (a -> Bool) -> (a -> a) -> a -> a
until p f x | p x = x
| otherwise = until p f (f x)
-- | 'asTypeOf' is a type-restricted version of 'const'. It is usually
-- used as an infix operator, and its typing forces its first argument
-- (which is usually overloaded) to have the same type as the second.
asTypeOf :: a -> a -> a
asTypeOf = const
\end{code}
%*********************************************************
%* *
\subsection{@getTag@}
%* *
%*********************************************************
Returns the 'tag' of a constructor application; this function is used
by the deriving code for Eq, Ord and Enum.
The primitive dataToTag# requires an evaluated constructor application
as its argument, so we provide getTag as a wrapper that performs the
evaluation before calling dataToTag#. We could have dataToTag#
evaluate its argument, but we prefer to do it this way because (a)
dataToTag# can be an inline primop if it doesn't need to do any
evaluation, and (b) we want to expose the evaluation to the
simplifier, because it might be possible to eliminate the evaluation
in the case when the argument is already known to be evaluated.
\begin{code}
{-# INLINE getTag #-}
getTag :: a -> Int#
getTag x = x `seq` dataToTag# x
\end{code}
%*********************************************************
%* *
\subsection{Numeric primops}
%* *
%*********************************************************
\begin{code}
divInt# :: Int# -> Int# -> Int#
x# `divInt#` y#
-- Be careful NOT to overflow if we do any additional arithmetic
-- on the arguments... the following previous version of this
-- code has problems with overflow:
-- | (x# ># 0#) && (y# <# 0#) = ((x# -# y#) -# 1#) `quotInt#` y#
-- | (x# <# 0#) && (y# ># 0#) = ((x# -# y#) +# 1#) `quotInt#` y#
| (x# ># 0#) && (y# <# 0#) = ((x# -# 1#) `quotInt#` y#) -# 1#
| (x# <# 0#) && (y# ># 0#) = ((x# +# 1#) `quotInt#` y#) -# 1#
| otherwise = x# `quotInt#` y#
modInt# :: Int# -> Int# -> Int#
x# `modInt#` y#
| (x# ># 0#) && (y# <# 0#) ||
(x# <# 0#) && (y# ># 0#) = if r# /=# 0# then r# +# y# else 0#
| otherwise = r#
where
r# = x# `remInt#` y#
\end{code}
Definitions of the boxed PrimOps; these will be
used in the case of partial applications, etc.
\begin{code}
{-# INLINE eqInt #-}
{-# INLINE neInt #-}
{-# INLINE gtInt #-}
{-# INLINE geInt #-}
{-# INLINE ltInt #-}
{-# INLINE leInt #-}
{-# INLINE plusInt #-}
{-# INLINE minusInt #-}
{-# INLINE timesInt #-}
{-# INLINE quotInt #-}
{-# INLINE remInt #-}
{-# INLINE negateInt #-}
plusInt, minusInt, timesInt, quotInt, remInt, divInt, modInt, gcdInt :: Int -> Int -> Int
(I# x) `plusInt` (I# y) = I# (x +# y)
(I# x) `minusInt` (I# y) = I# (x -# y)
(I# x) `timesInt` (I# y) = I# (x *# y)
(I# x) `quotInt` (I# y) = I# (x `quotInt#` y)
(I# x) `remInt` (I# y) = I# (x `remInt#` y)
(I# x) `divInt` (I# y) = I# (x `divInt#` y)
(I# x) `modInt` (I# y) = I# (x `modInt#` y)
{-# RULES
"x# +# 0#" forall x#. x# +# 0# = x#
"0# +# x#" forall x#. 0# +# x# = x#
"x# -# 0#" forall x#. x# -# 0# = x#
"x# -# x#" forall x#. x# -# x# = 0#
"x# *# 0#" forall x#. x# *# 0# = 0#
"0# *# x#" forall x#. 0# *# x# = 0#
"x# *# 1#" forall x#. x# *# 1# = x#
"1# *# x#" forall x#. 1# *# x# = x#
#-}
gcdInt (I# a) (I# b) = g a b
where g 0# 0# = error "GHC.Base.gcdInt: gcd 0 0 is undefined"
g 0# _ = I# absB
g _ 0# = I# absA
g _ _ = I# (gcdInt# absA absB)
absInt x = if x <# 0# then negateInt# x else x
absA = absInt a
absB = absInt b
negateInt :: Int -> Int
negateInt (I# x) = I# (negateInt# x)
gtInt, geInt, eqInt, neInt, ltInt, leInt :: Int -> Int -> Bool
(I# x) `gtInt` (I# y) = x ># y
(I# x) `geInt` (I# y) = x >=# y
(I# x) `eqInt` (I# y) = x ==# y
(I# x) `neInt` (I# y) = x /=# y
(I# x) `ltInt` (I# y) = x <# y
(I# x) `leInt` (I# y) = x <=# y
{-# RULES
"x# ># x#" forall x#. x# ># x# = False
"x# >=# x#" forall x#. x# >=# x# = True
"x# ==# x#" forall x#. x# ==# x# = True
"x# /=# x#" forall x#. x# /=# x# = False
"x# <# x#" forall x#. x# <# x# = False
"x# <=# x#" forall x#. x# <=# x# = True
#-}
{-# RULES
"plusFloat x 0.0" forall x#. plusFloat# x# 0.0# = x#
"plusFloat 0.0 x" forall x#. plusFloat# 0.0# x# = x#
"minusFloat x 0.0" forall x#. minusFloat# x# 0.0# = x#
"minusFloat x x" forall x#. minusFloat# x# x# = 0.0#
"timesFloat x 0.0" forall x#. timesFloat# x# 0.0# = 0.0#
"timesFloat0.0 x" forall x#. timesFloat# 0.0# x# = 0.0#
"timesFloat x 1.0" forall x#. timesFloat# x# 1.0# = x#
"timesFloat 1.0 x" forall x#. timesFloat# 1.0# x# = x#
"divideFloat x 1.0" forall x#. divideFloat# x# 1.0# = x#
#-}
{-# RULES
"plusDouble x 0.0" forall x#. (+##) x# 0.0## = x#
"plusDouble 0.0 x" forall x#. (+##) 0.0## x# = x#
"minusDouble x 0.0" forall x#. (-##) x# 0.0## = x#
"timesDouble x 1.0" forall x#. (*##) x# 1.0## = x#
"timesDouble 1.0 x" forall x#. (*##) 1.0## x# = x#
"divideDouble x 1.0" forall x#. (/##) x# 1.0## = x#
#-}
{-
We'd like to have more rules, but for example:
This gives wrong answer (0) for NaN - NaN (should be NaN):
"minusDouble x x" forall x#. (-##) x# x# = 0.0##
This gives wrong answer (0) for 0 * NaN (should be NaN):
"timesDouble 0.0 x" forall x#. (*##) 0.0## x# = 0.0##
This gives wrong answer (0) for NaN * 0 (should be NaN):
"timesDouble x 0.0" forall x#. (*##) x# 0.0## = 0.0##
These are tested by num014.
-}
-- Wrappers for the shift operations. The uncheckedShift# family are
-- undefined when the amount being shifted by is greater than the size
-- in bits of Int#, so these wrappers perform a check and return
-- either zero or -1 appropriately.
--
-- Note that these wrappers still produce undefined results when the
-- second argument (the shift amount) is negative.
-- | Shift the argument left by the specified number of bits
-- (which must be non-negative).
shiftL# :: Word# -> Int# -> Word#
a `shiftL#` b | b >=# WORD_SIZE_IN_BITS# = int2Word# 0#
| otherwise = a `uncheckedShiftL#` b
-- | Shift the argument right by the specified number of bits
-- (which must be non-negative).
shiftRL# :: Word# -> Int# -> Word#
a `shiftRL#` b | b >=# WORD_SIZE_IN_BITS# = int2Word# 0#
| otherwise = a `uncheckedShiftRL#` b
-- | Shift the argument left by the specified number of bits
-- (which must be non-negative).
iShiftL# :: Int# -> Int# -> Int#
a `iShiftL#` b | b >=# WORD_SIZE_IN_BITS# = 0#
| otherwise = a `uncheckedIShiftL#` b
-- | Shift the argument right (signed) by the specified number of bits
-- (which must be non-negative).
iShiftRA# :: Int# -> Int# -> Int#
a `iShiftRA#` b | b >=# WORD_SIZE_IN_BITS# = if a <# 0# then (-1#) else 0#
| otherwise = a `uncheckedIShiftRA#` b
-- | Shift the argument right (unsigned) by the specified number of bits
-- (which must be non-negative).
iShiftRL# :: Int# -> Int# -> Int#
a `iShiftRL#` b | b >=# WORD_SIZE_IN_BITS# = 0#
| otherwise = a `uncheckedIShiftRL#` b
#if WORD_SIZE_IN_BITS == 32
{-# RULES
"narrow32Int#" forall x#. narrow32Int# x# = x#
"narrow32Word#" forall x#. narrow32Word# x# = x#
#-}
#endif
{-# RULES
"int2Word2Int" forall x#. int2Word# (word2Int# x#) = x#
"word2Int2Word" forall x#. word2Int# (int2Word# x#) = x#
#-}
\end{code}
%********************************************************
%* *
\subsection{Unpacking C strings}
%* *
%********************************************************
This code is needed for virtually all programs, since it's used for
unpacking the strings of error messages.
\begin{code}
unpackCString# :: Addr# -> [Char]
{-# NOINLINE unpackCString# #-}
-- There's really no point in inlining this, ever, cos
-- the loop doesn't specialise in an interesting
-- But it's pretty small, so there's a danger that
-- it'll be inlined at every literal, which is a waste
unpackCString# addr
= unpack 0#
where
unpack nh
| ch `eqChar#` '\0'# = []
| otherwise = C# ch : unpack (nh +# 1#)
where
ch = indexCharOffAddr# addr nh
unpackAppendCString# :: Addr# -> [Char] -> [Char]
{-# NOINLINE unpackAppendCString# #-}
-- See the NOINLINE note on unpackCString#
unpackAppendCString# addr rest
= unpack 0#
where
unpack nh
| ch `eqChar#` '\0'# = rest
| otherwise = C# ch : unpack (nh +# 1#)
where
ch = indexCharOffAddr# addr nh
unpackFoldrCString# :: Addr# -> (Char -> a -> a) -> a -> a
{-# NOINLINE [0] unpackFoldrCString# #-}
-- Unlike unpackCString#, there *is* some point in inlining unpackFoldrCString#,
-- because we get better code for the function call.
-- However, don't inline till right at the end;
-- usually the unpack-list rule turns it into unpackCStringList
-- It also has a BuiltInRule in PrelRules.lhs:
-- unpackFoldrCString# "foo" c (unpackFoldrCString# "baz" c n)
-- = unpackFoldrCString# "foobaz" c n
unpackFoldrCString# addr f z
= unpack 0#
where
unpack nh
| ch `eqChar#` '\0'# = z
| otherwise = C# ch `f` unpack (nh +# 1#)
where
ch = indexCharOffAddr# addr nh
unpackCStringUtf8# :: Addr# -> [Char]
unpackCStringUtf8# addr
= unpack 0#
where
unpack nh
| ch `eqChar#` '\0'# = []
| ch `leChar#` '\x7F'# = C# ch : unpack (nh +# 1#)
| ch `leChar#` '\xDF'# =
C# (chr# (((ord# ch -# 0xC0#) `uncheckedIShiftL#` 6#) +#
(ord# (indexCharOffAddr# addr (nh +# 1#)) -# 0x80#))) :
unpack (nh +# 2#)
| ch `leChar#` '\xEF'# =
C# (chr# (((ord# ch -# 0xE0#) `uncheckedIShiftL#` 12#) +#
((ord# (indexCharOffAddr# addr (nh +# 1#)) -# 0x80#) `uncheckedIShiftL#` 6#) +#
(ord# (indexCharOffAddr# addr (nh +# 2#)) -# 0x80#))) :
unpack (nh +# 3#)
| otherwise =
C# (chr# (((ord# ch -# 0xF0#) `uncheckedIShiftL#` 18#) +#
((ord# (indexCharOffAddr# addr (nh +# 1#)) -# 0x80#) `uncheckedIShiftL#` 12#) +#
((ord# (indexCharOffAddr# addr (nh +# 2#)) -# 0x80#) `uncheckedIShiftL#` 6#) +#
(ord# (indexCharOffAddr# addr (nh +# 3#)) -# 0x80#))) :
unpack (nh +# 4#)
where
ch = indexCharOffAddr# addr nh
unpackNBytes# :: Addr# -> Int# -> [Char]
unpackNBytes# _addr 0# = []
unpackNBytes# addr len# = unpack [] (len# -# 1#)
where
unpack acc i#
| i# <# 0# = acc
| otherwise =
case indexCharOffAddr# addr i# of
ch -> unpack (C# ch : acc) (i# -# 1#)
{-# RULES
"unpack" [~1] forall a . unpackCString# a = build (unpackFoldrCString# a)
"unpack-list" [1] forall a . unpackFoldrCString# a (:) [] = unpackCString# a
"unpack-append" forall a n . unpackFoldrCString# a (:) n = unpackAppendCString# a n
-- There's a built-in rule (in PrelRules.lhs) for
-- unpackFoldr "foo" c (unpackFoldr "baz" c n) = unpackFoldr "foobaz" c n
#-}
\end{code}
#ifdef __HADDOCK__
\begin{code}
-- | A special argument for the 'Control.Monad.ST.ST' type constructor,
-- indexing a state embedded in the 'Prelude.IO' monad by
-- 'Control.Monad.ST.stToIO'.
data RealWorld
\end{code}
#endif
|