1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
|
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE Trustworthy #-}
{-# OPTIONS_HADDOCK not-home #-}
-----------------------------------------------------------------------------
-- |
-- Module : GHC.Enum
-- Copyright : (c) The University of Glasgow, 1992-2002
-- License : see libraries/base/LICENSE
--
-- Maintainer : cvs-ghc@haskell.org
-- Stability : internal
-- Portability : non-portable (GHC extensions)
--
-- The 'Enum' and 'Bounded' classes.
--
-----------------------------------------------------------------------------
#include "MachDeps.h"
module GHC.Enum(
Bounded(..), Enum(..),
boundedEnumFrom, boundedEnumFromThen,
toEnumError, fromEnumError, succError, predError,
-- Instances for Bounded and Enum: (), Char, Int
) where
import GHC.Base hiding ( many )
import GHC.Char
import GHC.Num.Integer
import GHC.Num
import GHC.Show
import GHC.Tuple (Solo (..))
default () -- Double isn't available yet
-- | The 'Bounded' class is used to name the upper and lower limits of a
-- type. 'Ord' is not a superclass of 'Bounded' since types that are not
-- totally ordered may also have upper and lower bounds.
--
-- The 'Bounded' class may be derived for any enumeration type;
-- 'minBound' is the first constructor listed in the @data@ declaration
-- and 'maxBound' is the last.
-- 'Bounded' may also be derived for single-constructor datatypes whose
-- constituent types are in 'Bounded'.
class Bounded a where
minBound, maxBound :: a
-- | Class 'Enum' defines operations on sequentially ordered types.
--
-- The @enumFrom@... methods are used in Haskell's translation of
-- arithmetic sequences.
--
-- Instances of 'Enum' may be derived for any enumeration type (types
-- whose constructors have no fields). The nullary constructors are
-- assumed to be numbered left-to-right by 'fromEnum' from @0@ through @n-1@.
-- See Chapter 10 of the /Haskell Report/ for more details.
--
-- For any type that is an instance of class 'Bounded' as well as 'Enum',
-- the following should hold:
--
-- * The calls @'succ' 'maxBound'@ and @'pred' 'minBound'@ should result in
-- a runtime error.
--
-- * 'fromEnum' and 'toEnum' should give a runtime error if the
-- result value is not representable in the result type.
-- For example, @'toEnum' 7 :: 'Bool'@ is an error.
--
-- * 'enumFrom' and 'enumFromThen' should be defined with an implicit bound,
-- thus:
--
-- > enumFrom x = enumFromTo x maxBound
-- > enumFromThen x y = enumFromThenTo x y bound
-- > where
-- > bound | fromEnum y >= fromEnum x = maxBound
-- > | otherwise = minBound
--
class Enum a where
-- | the successor of a value. For numeric types, 'succ' adds 1.
succ :: a -> a
-- | the predecessor of a value. For numeric types, 'pred' subtracts 1.
pred :: a -> a
-- | Convert from an 'Int'.
toEnum :: Int -> a
-- | Convert to an 'Int'.
-- It is implementation-dependent what 'fromEnum' returns when
-- applied to a value that is too large to fit in an 'Int'.
fromEnum :: a -> Int
-- | Used in Haskell's translation of @[n..]@ with @[n..] = enumFrom n@,
-- a possible implementation being @enumFrom n = n : enumFrom (succ n)@.
-- For example:
--
-- * @enumFrom 4 :: [Integer] = [4,5,6,7,...]@
-- * @enumFrom 6 :: [Int] = [6,7,8,9,...,maxBound :: Int]@
enumFrom :: a -> [a]
-- | Used in Haskell's translation of @[n,n'..]@
-- with @[n,n'..] = enumFromThen n n'@, a possible implementation being
-- @enumFromThen n n' = n : n' : worker (f x) (f x n')@,
-- @worker s v = v : worker s (s v)@, @x = fromEnum n' - fromEnum n@ and
-- @f n y
-- | n > 0 = f (n - 1) (succ y)
-- | n < 0 = f (n + 1) (pred y)
-- | otherwise = y@
-- For example:
--
-- * @enumFromThen 4 6 :: [Integer] = [4,6,8,10...]@
-- * @enumFromThen 6 2 :: [Int] = [6,2,-2,-6,...,minBound :: Int]@
enumFromThen :: a -> a -> [a]
-- | Used in Haskell's translation of @[n..m]@ with
-- @[n..m] = enumFromTo n m@, a possible implementation being
-- @enumFromTo n m
-- | n <= m = n : enumFromTo (succ n) m
-- | otherwise = []@.
-- For example:
--
-- * @enumFromTo 6 10 :: [Int] = [6,7,8,9,10]@
-- * @enumFromTo 42 1 :: [Integer] = []@
enumFromTo :: a -> a -> [a]
-- | Used in Haskell's translation of @[n,n'..m]@ with
-- @[n,n'..m] = enumFromThenTo n n' m@, a possible implementation
-- being @enumFromThenTo n n' m = worker (f x) (c x) n m@,
-- @x = fromEnum n' - fromEnum n@, @c x = bool (>=) (<=) (x > 0)@
-- @f n y
-- | n > 0 = f (n - 1) (succ y)
-- | n < 0 = f (n + 1) (pred y)
-- | otherwise = y@ and
-- @worker s c v m
-- | c v m = v : worker s c (s v) m
-- | otherwise = []@
-- For example:
--
-- * @enumFromThenTo 4 2 -6 :: [Integer] = [4,2,0,-2,-4,-6]@
-- * @enumFromThenTo 6 8 2 :: [Int] = []@
enumFromThenTo :: a -> a -> a -> [a]
succ = toEnum . (+ 1) . fromEnum
pred = toEnum . (subtract 1) . fromEnum
-- See Note [Stable Unfolding for list producers]
{-# INLINABLE enumFrom #-}
enumFrom x = map toEnum [fromEnum x ..]
-- See Note [Stable Unfolding for list producers]
{-# INLINABLE enumFromThen #-}
enumFromThen x y = map toEnum [fromEnum x, fromEnum y ..]
-- See Note [Stable Unfolding for list producers]
{-# INLINABLE enumFromTo #-}
enumFromTo x y = map toEnum [fromEnum x .. fromEnum y]
-- See Note [Stable Unfolding for list producers]
{-# INLINABLE enumFromThenTo #-}
enumFromThenTo x1 x2 y = map toEnum [fromEnum x1, fromEnum x2 .. fromEnum y]
-- See Note [Inline Enum method helpers]
{-# INLINE boundedEnumFrom #-}
-- Default methods for bounded enumerations
boundedEnumFrom :: (Enum a, Bounded a) => a -> [a]
boundedEnumFrom n = map toEnum [fromEnum n .. fromEnum (maxBound `asTypeOf` n)]
-- See Note [Inline Enum method helpers]
{-# INLINE boundedEnumFromThen #-}
boundedEnumFromThen :: (Enum a, Bounded a) => a -> a -> [a]
boundedEnumFromThen n1 n2
| i_n2 >= i_n1 = map toEnum [i_n1, i_n2 .. fromEnum (maxBound `asTypeOf` n1)]
| otherwise = map toEnum [i_n1, i_n2 .. fromEnum (minBound `asTypeOf` n1)]
where
i_n1 = fromEnum n1
i_n2 = fromEnum n2
{- Note [Stable Unfolding for list producers]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The INLINABLE/INLINE pragmas ensure that we export stable (unoptimised)
unfoldings in the interface file so we can do list fusion at usage sites.
Related tickets: #15185, #8763, #18178.
Note [Inline Enum method helpers]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The overloaded `numericEnumFrom` functions are used to abbreviate Enum
instances. We call them "method helpers". For example, in GHC.Float:
numericEnumFromTo :: (Ord a, Fractional a) => a -> a -> [a]
mnumericEnumFromTo = ...blah...
instance Enum Double where
...
enumFromTo = numericEnumFromTo
Similarly with the overloaded `boundedEnumFrom` functions. E.g. in GHC.Word
boundedEnumFrom :: (Enum a, Bounded a) => a -> [a]
boundedEnumFrom n = map toEnum [fromEnum n .. fromEnum (maxBound `asTypeOf` n)]
instance Enum Word8 where
...
enumFrom = boundedEnumFrom
In both cases, it is super-important to specialise these overloaded
helper function (`numericEnumFromTo`, `boundedEnumFrom` etc) to the
particular type of the instance, else every use of that instance will
be inefficient.
Moreover (see Note [Stable Unfolding for list producers]) the helper
function is a list producer, so we want it to have a stable unfolding
to support fusion.
So we attach an INLINE pragma to them.
Alternatives might be
* An `INLINABLE` pragma on `numericEnumFromTo`, relying on the
specialiser to create a specialised version. But (a) if the
instance method is marked INLINE we may get spurious INLINE
loop-breaker warnings (#21343), and (b) specialision gains no extra
sharing, because there is just one call at each type.
* Using `inline` at the call site
enumFromTo = inline numericEnumFromTo
But that means remembering to do this in multiple places.
-}
------------------------------------------------------------------------
-- Helper functions
------------------------------------------------------------------------
{-# NOINLINE toEnumError #-}
toEnumError :: (Show a) => String -> Int -> (a,a) -> b
toEnumError inst_ty i bnds =
errorWithoutStackTrace $ "Enum.toEnum{" ++ inst_ty ++ "}: tag (" ++
show i ++
") is outside of bounds " ++
show bnds
{-# NOINLINE fromEnumError #-}
fromEnumError :: (Show a) => String -> a -> b
fromEnumError inst_ty x =
errorWithoutStackTrace $ "Enum.fromEnum{" ++ inst_ty ++ "}: value (" ++
show x ++
") is outside of Int's bounds " ++
show (minBound::Int, maxBound::Int)
{-# NOINLINE succError #-}
succError :: String -> a
succError inst_ty =
errorWithoutStackTrace $ "Enum.succ{" ++ inst_ty ++ "}: tried to take `succ' of maxBound"
{-# NOINLINE predError #-}
predError :: String -> a
predError inst_ty =
errorWithoutStackTrace $ "Enum.pred{" ++ inst_ty ++ "}: tried to take `pred' of minBound"
------------------------------------------------------------------------
-- Tuples
------------------------------------------------------------------------
-- | @since 2.01
deriving instance Bounded ()
-- | @since 2.01
instance Enum () where
succ _ = errorWithoutStackTrace "Prelude.Enum.().succ: bad argument"
pred _ = errorWithoutStackTrace "Prelude.Enum.().pred: bad argument"
toEnum x | x == 0 = ()
| otherwise = errorWithoutStackTrace "Prelude.Enum.().toEnum: bad argument"
fromEnum () = 0
enumFrom () = [()]
enumFromThen () () = let many = ():many in many
enumFromTo () () = [()]
enumFromThenTo () () () = let many = ():many in many
instance Enum a => Enum (Solo a) where
succ (Solo a) = Solo (succ a)
pred (Solo a) = Solo (pred a)
toEnum x = Solo (toEnum x)
fromEnum (Solo x) = fromEnum x
enumFrom (Solo x) = [Solo a | a <- enumFrom x]
enumFromThen (Solo x) (Solo y) =
[Solo a | a <- enumFromThen x y]
enumFromTo (Solo x) (Solo y) =
[Solo a | a <- enumFromTo x y]
enumFromThenTo (Solo x) (Solo y) (Solo z) =
[Solo a | a <- enumFromThenTo x y z]
deriving instance Bounded a => Bounded (Solo a)
-- Report requires instances up to 15
-- | @since 2.01
deriving instance (Bounded a, Bounded b)
=> Bounded (a,b)
-- | @since 2.01
deriving instance (Bounded a, Bounded b, Bounded c)
=> Bounded (a,b,c)
-- | @since 2.01
deriving instance (Bounded a, Bounded b, Bounded c, Bounded d)
=> Bounded (a,b,c,d)
-- | @since 2.01
deriving instance (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e)
=> Bounded (a,b,c,d,e)
-- | @since 2.01
deriving instance (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e,
Bounded f)
=> Bounded (a,b,c,d,e,f)
-- | @since 2.01
deriving instance (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e,
Bounded f, Bounded g)
=> Bounded (a,b,c,d,e,f,g)
-- | @since 2.01
deriving instance (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e,
Bounded f, Bounded g, Bounded h)
=> Bounded (a,b,c,d,e,f,g,h)
-- | @since 2.01
deriving instance (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e,
Bounded f, Bounded g, Bounded h, Bounded i)
=> Bounded (a,b,c,d,e,f,g,h,i)
-- | @since 2.01
deriving instance (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e,
Bounded f, Bounded g, Bounded h, Bounded i, Bounded j)
=> Bounded (a,b,c,d,e,f,g,h,i,j)
-- | @since 2.01
deriving instance (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e,
Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k)
=> Bounded (a,b,c,d,e,f,g,h,i,j,k)
-- | @since 2.01
deriving instance (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e,
Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k,
Bounded l)
=> Bounded (a,b,c,d,e,f,g,h,i,j,k,l)
-- | @since 2.01
deriving instance (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e,
Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k,
Bounded l, Bounded m)
=> Bounded (a,b,c,d,e,f,g,h,i,j,k,l,m)
-- | @since 2.01
deriving instance (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e,
Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k,
Bounded l, Bounded m, Bounded n)
=> Bounded (a,b,c,d,e,f,g,h,i,j,k,l,m,n)
-- | @since 2.01
deriving instance (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e,
Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k,
Bounded l, Bounded m, Bounded n, Bounded o)
=> Bounded (a,b,c,d,e,f,g,h,i,j,k,l,m,n,o)
------------------------------------------------------------------------
-- Bool
------------------------------------------------------------------------
-- | @since 2.01
deriving instance Bounded Bool
-- | @since 2.01
instance Enum Bool where
succ False = True
succ True = errorWithoutStackTrace "Prelude.Enum.Bool.succ: bad argument"
pred True = False
pred False = errorWithoutStackTrace "Prelude.Enum.Bool.pred: bad argument"
toEnum n | n == 0 = False
| n == 1 = True
| otherwise = errorWithoutStackTrace "Prelude.Enum.Bool.toEnum: bad argument"
fromEnum False = 0
fromEnum True = 1
-- Use defaults for the rest
enumFrom = boundedEnumFrom
enumFromThen = boundedEnumFromThen
------------------------------------------------------------------------
-- Ordering
------------------------------------------------------------------------
-- | @since 2.01
deriving instance Bounded Ordering
-- | @since 2.01
instance Enum Ordering where
succ LT = EQ
succ EQ = GT
succ GT = errorWithoutStackTrace "Prelude.Enum.Ordering.succ: bad argument"
pred GT = EQ
pred EQ = LT
pred LT = errorWithoutStackTrace "Prelude.Enum.Ordering.pred: bad argument"
toEnum n | n == 0 = LT
| n == 1 = EQ
| n == 2 = GT
toEnum _ = errorWithoutStackTrace "Prelude.Enum.Ordering.toEnum: bad argument"
fromEnum LT = 0
fromEnum EQ = 1
fromEnum GT = 2
-- Use defaults for the rest
enumFrom = boundedEnumFrom
enumFromThen = boundedEnumFromThen
------------------------------------------------------------------------
-- Char
------------------------------------------------------------------------
-- | @since 2.01
instance Bounded Char where
minBound = '\0'
maxBound = '\x10FFFF'
-- | @since 2.01
instance Enum Char where
succ (C# c#)
| isTrue# (ord# c# /=# 0x10FFFF#) = C# (chr# (ord# c# +# 1#))
| otherwise = errorWithoutStackTrace ("Prelude.Enum.Char.succ: bad argument")
pred (C# c#)
| isTrue# (ord# c# /=# 0#) = C# (chr# (ord# c# -# 1#))
| otherwise = errorWithoutStackTrace ("Prelude.Enum.Char.pred: bad argument")
toEnum = chr
fromEnum = ord
-- See Note [Stable Unfolding for list producers]
{-# INLINE enumFrom #-}
enumFrom (C# x) = eftChar (ord# x) 0x10FFFF#
-- Blarg: technically I guess enumFrom isn't strict!
-- See Note [Stable Unfolding for list producers]
{-# INLINE enumFromTo #-}
enumFromTo (C# x) (C# y) = eftChar (ord# x) (ord# y)
-- See Note [Stable Unfolding for list producers]
{-# INLINE enumFromThen #-}
enumFromThen (C# x1) (C# x2) = efdChar (ord# x1) (ord# x2)
-- See Note [Stable Unfolding for list producers]
{-# INLINE enumFromThenTo #-}
enumFromThenTo (C# x1) (C# x2) (C# y) = efdtChar (ord# x1) (ord# x2) (ord# y)
-- See Note [How the Enum rules work]
{-# RULES
"eftChar" [~1] forall x y. eftChar x y = build (\c n -> eftCharFB c n x y)
"efdChar" [~1] forall x1 x2. efdChar x1 x2 = build (\ c n -> efdCharFB c n x1 x2)
"efdtChar" [~1] forall x1 x2 l. efdtChar x1 x2 l = build (\ c n -> efdtCharFB c n x1 x2 l)
"eftCharList" [1] eftCharFB (:) [] = eftChar
"efdCharList" [1] efdCharFB (:) [] = efdChar
"efdtCharList" [1] efdtCharFB (:) [] = efdtChar
#-}
-- We can do better than for Ints because we don't
-- have hassles about arithmetic overflow at maxBound
{-# INLINE [0] eftCharFB #-} -- See Note [Inline FB functions] in GHC.List
eftCharFB :: (Char -> a -> a) -> a -> Int# -> Int# -> a
eftCharFB c n x0 y = go x0
where
go x | isTrue# (x ># y) = n
| otherwise = C# (chr# x) `c` go (x +# 1#)
{-# NOINLINE [1] eftChar #-} -- Inline after rule "eftChar" is inactive
eftChar :: Int# -> Int# -> String
eftChar x y | isTrue# (x ># y ) = []
| otherwise = C# (chr# x) : eftChar (x +# 1#) y
-- For enumFromThenTo we give up on inlining
{-# INLINE [0] efdCharFB #-} -- See Note [Inline FB functions] in GHC.List
efdCharFB :: (Char -> a -> a) -> a -> Int# -> Int# -> a
efdCharFB c n x1 x2
| isTrue# (delta >=# 0#) = go_up_char_fb c n x1 delta 0x10FFFF#
| otherwise = go_dn_char_fb c n x1 delta 0#
where
!delta = x2 -# x1
{-# NOINLINE [1] efdChar #-} -- Inline after rule "efdChar" is inactive
efdChar :: Int# -> Int# -> String
efdChar x1 x2
| isTrue# (delta >=# 0#) = go_up_char_list x1 delta 0x10FFFF#
| otherwise = go_dn_char_list x1 delta 0#
where
!delta = x2 -# x1
{-# INLINE [0] efdtCharFB #-} -- See Note [Inline FB functions] in GHC.List
efdtCharFB :: (Char -> a -> a) -> a -> Int# -> Int# -> Int# -> a
efdtCharFB c n x1 x2 lim
| isTrue# (delta >=# 0#) = go_up_char_fb c n x1 delta lim
| otherwise = go_dn_char_fb c n x1 delta lim
where
!delta = x2 -# x1
{-# NOINLINE [1] efdtChar #-} -- Inline after rule "efdtChar" is inactive
efdtChar :: Int# -> Int# -> Int# -> String
efdtChar x1 x2 lim
| isTrue# (delta >=# 0#) = go_up_char_list x1 delta lim
| otherwise = go_dn_char_list x1 delta lim
where
!delta = x2 -# x1
go_up_char_fb :: (Char -> a -> a) -> a -> Int# -> Int# -> Int# -> a
go_up_char_fb c n x0 delta lim
= go_up x0
where
go_up x | isTrue# (x ># lim) = n
| otherwise = C# (chr# x) `c` go_up (x +# delta)
go_dn_char_fb :: (Char -> a -> a) -> a -> Int# -> Int# -> Int# -> a
go_dn_char_fb c n x0 delta lim
= go_dn x0
where
go_dn x | isTrue# (x <# lim) = n
| otherwise = C# (chr# x) `c` go_dn (x +# delta)
go_up_char_list :: Int# -> Int# -> Int# -> String
go_up_char_list x0 delta lim
= go_up x0
where
go_up x | isTrue# (x ># lim) = []
| otherwise = C# (chr# x) : go_up (x +# delta)
go_dn_char_list :: Int# -> Int# -> Int# -> String
go_dn_char_list x0 delta lim
= go_dn x0
where
go_dn x | isTrue# (x <# lim) = []
| otherwise = C# (chr# x) : go_dn (x +# delta)
------------------------------------------------------------------------
-- Int
------------------------------------------------------------------------
{-
Be careful about these instances.
(a) remember that you have to count down as well as up e.g. [13,12..0]
(b) be careful of Int overflow
(c) remember that Int is bounded, so [1..] terminates at maxInt
-}
-- | @since 2.01
instance Bounded Int where
minBound = minInt
maxBound = maxInt
-- | @since 2.01
instance Enum Int where
succ x
| x == maxBound = errorWithoutStackTrace "Prelude.Enum.succ{Int}: tried to take `succ' of maxBound"
| otherwise = x + 1
pred x
| x == minBound = errorWithoutStackTrace "Prelude.Enum.pred{Int}: tried to take `pred' of minBound"
| otherwise = x - 1
toEnum x = x
fromEnum x = x
-- See Note [Stable Unfolding for list producers]
{-# INLINE enumFrom #-}
enumFrom (I# x) = eftInt x maxInt#
where !(I# maxInt#) = maxInt
-- Blarg: technically I guess enumFrom isn't strict!
-- See Note [Stable Unfolding for list producers]
{-# INLINE enumFromTo #-}
enumFromTo (I# x) (I# y) = eftInt x y
-- See Note [Stable Unfolding for list producers]
{-# INLINE enumFromThen #-}
enumFromThen (I# x1) (I# x2) = efdInt x1 x2
-- See Note [Stable Unfolding for list producers]
{-# INLINE enumFromThenTo #-}
enumFromThenTo (I# x1) (I# x2) (I# y) = efdtInt x1 x2 y
-----------------------------------------------------
-- eftInt and eftIntFB deal with [a..b], which is the
-- most common form, so we take a lot of care
-- In particular, we have rules for deforestation
{-# RULES
"eftInt" [~1] forall x y. eftInt x y = build (\ c n -> eftIntFB c n x y)
"eftIntList" [1] eftIntFB (:) [] = eftInt
#-}
{- Note [How the Enum rules work]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Phase 2: eftInt ---> build . eftIntFB
* Phase 1: inline build; eftIntFB (:) --> eftInt
* Phase 0: optionally inline eftInt
-}
{-# NOINLINE [1] eftInt #-}
eftInt :: Int# -> Int# -> [Int]
-- [x1..x2]
eftInt x0 y | isTrue# (x0 ># y) = []
| otherwise = go x0
where
go x = I# x : if isTrue# (x ==# y)
then []
else go (x +# 1#)
{-# INLINE [0] eftIntFB #-} -- See Note [Inline FB functions] in GHC.List
eftIntFB :: (Int -> r -> r) -> r -> Int# -> Int# -> r
eftIntFB c n x0 y | isTrue# (x0 ># y) = n
| otherwise = go x0
where
go x = I# x `c` if isTrue# (x ==# y)
then n
else go (x +# 1#)
-- Watch out for y=maxBound; hence ==, not >
-- Be very careful not to have more than one "c"
-- so that when eftInfFB is inlined we can inline
-- whatever is bound to "c"
-----------------------------------------------------
-- efdInt and efdtInt deal with [a,b..] and [a,b..c].
-- The code is more complicated because of worries about Int overflow.
-- See Note [How the Enum rules work]
{-# RULES
"efdtInt" [~1] forall x1 x2 y.
efdtInt x1 x2 y = build (\ c n -> efdtIntFB c n x1 x2 y)
"efdtIntUpList" [1] efdtIntFB (:) [] = efdtInt
#-}
efdInt :: Int# -> Int# -> [Int]
-- [x1,x2..maxInt]
efdInt x1 x2
| isTrue# (x2 >=# x1) = case maxInt of I# y -> efdtIntUp x1 x2 y
| otherwise = case minInt of I# y -> efdtIntDn x1 x2 y
{-# NOINLINE [1] efdtInt #-}
efdtInt :: Int# -> Int# -> Int# -> [Int]
-- [x1,x2..y]
efdtInt x1 x2 y
| isTrue# (x2 >=# x1) = efdtIntUp x1 x2 y
| otherwise = efdtIntDn x1 x2 y
{-# INLINE [0] efdtIntFB #-} -- See Note [Inline FB functions] in GHC.List
efdtIntFB :: (Int -> r -> r) -> r -> Int# -> Int# -> Int# -> r
efdtIntFB c n x1 x2 y
| isTrue# (x2 >=# x1) = efdtIntUpFB c n x1 x2 y
| otherwise = efdtIntDnFB c n x1 x2 y
-- Requires x2 >= x1
efdtIntUp :: Int# -> Int# -> Int# -> [Int]
efdtIntUp x1 x2 y -- Be careful about overflow!
| isTrue# (y <# x2) = if isTrue# (y <# x1) then [] else [I# x1]
| otherwise = -- Common case: x1 <= x2 <= y
let !delta = x2 -# x1 -- >= 0
!y' = y -# delta -- x1 <= y' <= y; hence y' is representable
-- Invariant: x <= y
-- Note that: z <= y' => z + delta won't overflow
-- so we are guaranteed not to overflow if/when we recurse
go_up x | isTrue# (x ># y') = [I# x]
| otherwise = I# x : go_up (x +# delta)
in I# x1 : go_up x2
-- Requires x2 >= x1
{-# INLINE [0] efdtIntUpFB #-} -- See Note [Inline FB functions] in GHC.List
efdtIntUpFB :: (Int -> r -> r) -> r -> Int# -> Int# -> Int# -> r
efdtIntUpFB c n x1 x2 y -- Be careful about overflow!
| isTrue# (y <# x2) = if isTrue# (y <# x1) then n else I# x1 `c` n
| otherwise = -- Common case: x1 <= x2 <= y
let !delta = x2 -# x1 -- >= 0
!y' = y -# delta -- x1 <= y' <= y; hence y' is representable
-- Invariant: x <= y
-- Note that: z <= y' => z + delta won't overflow
-- so we are guaranteed not to overflow if/when we recurse
go_up x | isTrue# (x ># y') = I# x `c` n
| otherwise = I# x `c` go_up (x +# delta)
in I# x1 `c` go_up x2
-- Requires x2 <= x1
efdtIntDn :: Int# -> Int# -> Int# -> [Int]
efdtIntDn x1 x2 y -- Be careful about underflow!
| isTrue# (y ># x2) = if isTrue# (y ># x1) then [] else [I# x1]
| otherwise = -- Common case: x1 >= x2 >= y
let !delta = x2 -# x1 -- <= 0
!y' = y -# delta -- y <= y' <= x1; hence y' is representable
-- Invariant: x >= y
-- Note that: z >= y' => z + delta won't underflow
-- so we are guaranteed not to underflow if/when we recurse
go_dn x | isTrue# (x <# y') = [I# x]
| otherwise = I# x : go_dn (x +# delta)
in I# x1 : go_dn x2
-- Requires x2 <= x1
{-# INLINE [0] efdtIntDnFB #-} -- See Note [Inline FB functions] in GHC.List
efdtIntDnFB :: (Int -> r -> r) -> r -> Int# -> Int# -> Int# -> r
efdtIntDnFB c n x1 x2 y -- Be careful about underflow!
| isTrue# (y ># x2) = if isTrue# (y ># x1) then n else I# x1 `c` n
| otherwise = -- Common case: x1 >= x2 >= y
let !delta = x2 -# x1 -- <= 0
!y' = y -# delta -- y <= y' <= x1; hence y' is representable
-- Invariant: x >= y
-- Note that: z >= y' => z + delta won't underflow
-- so we are guaranteed not to underflow if/when we recurse
go_dn x | isTrue# (x <# y') = I# x `c` n
| otherwise = I# x `c` go_dn (x +# delta)
in I# x1 `c` go_dn x2
------------------------------------------------------------------------
-- Word
------------------------------------------------------------------------
-- | @since 2.01
instance Bounded Word where
minBound = 0
-- use unboxed literals for maxBound, because GHC doesn't optimise
-- (fromInteger 0xffffffff :: Word).
#if WORD_SIZE_IN_BITS == 32
maxBound = W# 0xFFFFFFFF##
#elif WORD_SIZE_IN_BITS == 64
maxBound = W# 0xFFFFFFFFFFFFFFFF##
#else
#error Unhandled value for WORD_SIZE_IN_BITS
#endif
-- | @since 2.01
instance Enum Word where
succ x
| x /= maxBound = x + 1
| otherwise = succError "Word"
pred x
| x /= minBound = x - 1
| otherwise = predError "Word"
toEnum i@(I# i#)
| i >= 0 = W# (int2Word# i#)
| otherwise = toEnumError "Word" i (minBound::Word, maxBound::Word)
fromEnum x@(W# x#)
| x <= maxIntWord = I# (word2Int# x#)
| otherwise = fromEnumError "Word" x
{-# INLINE enumFrom #-}
enumFrom (W# x#) = eftWord x# maxWord#
where !(W# maxWord#) = maxBound
-- Blarg: technically I guess enumFrom isn't strict!
{-# INLINE enumFromTo #-}
enumFromTo (W# x) (W# y) = eftWord x y
{-# INLINE enumFromThen #-}
enumFromThen (W# x1) (W# x2) = efdWord x1 x2
{-# INLINE enumFromThenTo #-}
enumFromThenTo (W# x1) (W# x2) (W# y) = efdtWord x1 x2 y
maxIntWord :: Word
-- The biggest word representable as an Int
maxIntWord = W# (case maxInt of I# i -> int2Word# i)
-----------------------------------------------------
-- eftWord and eftWordFB deal with [a..b], which is the
-- most common form, so we take a lot of care
-- In particular, we have rules for deforestation
{-# RULES
"eftWord" [~1] forall x y. eftWord x y = build (\ c n -> eftWordFB c n x y)
"eftWordList" [1] eftWordFB (:) [] = eftWord
#-}
-- The Enum rules for Word work much the same way that they do for Int.
-- See Note [How the Enum rules work].
{-# NOINLINE [1] eftWord #-}
eftWord :: Word# -> Word# -> [Word]
-- [x1..x2]
eftWord x0 y | isTrue# (x0 `gtWord#` y) = []
| otherwise = go x0
where
go x = W# x : if isTrue# (x `eqWord#` y)
then []
else go (x `plusWord#` 1##)
{-# INLINE [0] eftWordFB #-} -- See Note [Inline FB functions] in GHC.List
eftWordFB :: (Word -> r -> r) -> r -> Word# -> Word# -> r
eftWordFB c n x0 y | isTrue# (x0 `gtWord#` y) = n
| otherwise = go x0
where
go x = W# x `c` if isTrue# (x `eqWord#` y)
then n
else go (x `plusWord#` 1##)
-- Watch out for y=maxBound; hence ==, not >
-- Be very careful not to have more than one "c"
-- so that when eftInfFB is inlined we can inline
-- whatever is bound to "c"
-----------------------------------------------------
-- efdWord and efdtWord deal with [a,b..] and [a,b..c].
-- The code is more complicated because of worries about Word overflow.
-- See Note [How the Enum rules work]
{-# RULES
"efdtWord" [~1] forall x1 x2 y.
efdtWord x1 x2 y = build (\ c n -> efdtWordFB c n x1 x2 y)
"efdtWordUpList" [1] efdtWordFB (:) [] = efdtWord
#-}
efdWord :: Word# -> Word# -> [Word]
-- [x1,x2..maxWord]
efdWord x1 x2
| isTrue# (x2 `geWord#` x1) = case maxBound of W# y -> efdtWordUp x1 x2 y
| otherwise = case minBound of W# y -> efdtWordDn x1 x2 y
{-# NOINLINE [1] efdtWord #-}
efdtWord :: Word# -> Word# -> Word# -> [Word]
-- [x1,x2..y]
efdtWord x1 x2 y
| isTrue# (x2 `geWord#` x1) = efdtWordUp x1 x2 y
| otherwise = efdtWordDn x1 x2 y
{-# INLINE [0] efdtWordFB #-} -- See Note [Inline FB functions] in GHC.List
efdtWordFB :: (Word -> r -> r) -> r -> Word# -> Word# -> Word# -> r
efdtWordFB c n x1 x2 y
| isTrue# (x2 `geWord#` x1) = efdtWordUpFB c n x1 x2 y
| otherwise = efdtWordDnFB c n x1 x2 y
-- Requires x2 >= x1
efdtWordUp :: Word# -> Word# -> Word# -> [Word]
efdtWordUp x1 x2 y -- Be careful about overflow!
| isTrue# (y `ltWord#` x2) = if isTrue# (y `ltWord#` x1) then [] else [W# x1]
| otherwise = -- Common case: x1 <= x2 <= y
let !delta = x2 `minusWord#` x1 -- >= 0
!y' = y `minusWord#` delta -- x1 <= y' <= y; hence y' is representable
-- Invariant: x <= y
-- Note that: z <= y' => z + delta won't overflow
-- so we are guaranteed not to overflow if/when we recurse
go_up x | isTrue# (x `gtWord#` y') = [W# x]
| otherwise = W# x : go_up (x `plusWord#` delta)
in W# x1 : go_up x2
-- Requires x2 >= x1
{-# INLINE [0] efdtWordUpFB #-} -- See Note [Inline FB functions] in GHC.List
efdtWordUpFB :: (Word -> r -> r) -> r -> Word# -> Word# -> Word# -> r
efdtWordUpFB c n x1 x2 y -- Be careful about overflow!
| isTrue# (y `ltWord#` x2) = if isTrue# (y `ltWord#` x1) then n else W# x1 `c` n
| otherwise = -- Common case: x1 <= x2 <= y
let !delta = x2 `minusWord#` x1 -- >= 0
!y' = y `minusWord#` delta -- x1 <= y' <= y; hence y' is representable
-- Invariant: x <= y
-- Note that: z <= y' => z + delta won't overflow
-- so we are guaranteed not to overflow if/when we recurse
go_up x | isTrue# (x `gtWord#` y') = W# x `c` n
| otherwise = W# x `c` go_up (x `plusWord#` delta)
in W# x1 `c` go_up x2
-- Requires x2 <= x1
efdtWordDn :: Word# -> Word# -> Word# -> [Word]
efdtWordDn x1 x2 y -- Be careful about underflow!
| isTrue# (y `gtWord#` x2) = if isTrue# (y `gtWord#` x1) then [] else [W# x1]
| otherwise = -- Common case: x1 >= x2 >= y
let !delta = x2 `minusWord#` x1 -- <= 0
!y' = y `minusWord#` delta -- y <= y' <= x1; hence y' is representable
-- Invariant: x >= y
-- Note that: z >= y' => z + delta won't underflow
-- so we are guaranteed not to underflow if/when we recurse
go_dn x | isTrue# (x `ltWord#` y') = [W# x]
| otherwise = W# x : go_dn (x `plusWord#` delta)
in W# x1 : go_dn x2
-- Requires x2 <= x1
{-# INLINE [0] efdtWordDnFB #-} -- See Note [Inline FB functions] in GHC.List
efdtWordDnFB :: (Word -> r -> r) -> r -> Word# -> Word# -> Word# -> r
efdtWordDnFB c n x1 x2 y -- Be careful about underflow!
| isTrue# (y `gtWord#` x2) = if isTrue# (y `gtWord#` x1) then n else W# x1 `c` n
| otherwise = -- Common case: x1 >= x2 >= y
let !delta = x2 `minusWord#` x1 -- <= 0
!y' = y `minusWord#` delta -- y <= y' <= x1; hence y' is representable
-- Invariant: x >= y
-- Note that: z >= y' => z + delta won't underflow
-- so we are guaranteed not to underflow if/when we recurse
go_dn x | isTrue# (x `ltWord#` y') = W# x `c` n
| otherwise = W# x `c` go_dn (x `plusWord#` delta)
in W# x1 `c` go_dn x2
------------------------------------------------------------------------
-- Integer
------------------------------------------------------------------------
-- | @since 2.01
instance Enum Integer where
succ x = x + 1
pred x = x - 1
toEnum (I# n) = IS n
fromEnum n = integerToInt n
-- See Note [Stable Unfolding for list producers]
{-# INLINE enumFrom #-}
enumFrom x = enumDeltaInteger x 1
-- See Note [Stable Unfolding for list producers]
{-# INLINE enumFromThen #-}
enumFromThen x y = enumDeltaInteger x (y-x)
-- See Note [Stable Unfolding for list producers]
{-# INLINE enumFromTo #-}
enumFromTo x lim = enumDeltaToInteger x 1 lim
-- See Note [Stable Unfolding for list producers]
{-# INLINE enumFromThenTo #-}
enumFromThenTo x y lim = enumDeltaToInteger x (y-x) lim
-- See Note [How the Enum rules work]
{-# RULES
"enumDeltaInteger" [~1] forall x y. enumDeltaInteger x y = build (\c _ -> enumDeltaIntegerFB c x y)
"efdtInteger" [~1] forall x d l. enumDeltaToInteger x d l = build (\c n -> enumDeltaToIntegerFB c n x d l)
"efdtInteger1" [~1] forall x l. enumDeltaToInteger x 1 l = build (\c n -> enumDeltaToInteger1FB c n x l)
"enumDeltaToInteger1FB" [1] forall c n x. enumDeltaToIntegerFB c n x 1 = enumDeltaToInteger1FB c n x
"enumDeltaInteger" [1] enumDeltaIntegerFB (:) = enumDeltaInteger
"enumDeltaToInteger" [1] enumDeltaToIntegerFB (:) [] = enumDeltaToInteger
"enumDeltaToInteger1" [1] enumDeltaToInteger1FB (:) [] = enumDeltaToInteger1
#-}
{- Note [Enum Integer rules for literal 1]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The "1" rules above specialise for the common case where delta = 1,
so that we can avoid the delta>=0 test in enumDeltaToIntegerFB.
Then enumDeltaToInteger1FB is nice and small and can be inlined,
which would allow the constructor to be inlined and good things to happen.
We match on the literal "1" both in phase 2 (rule "efdtInteger1") and
phase 1 (rule "enumDeltaToInteger1FB"), just for belt and braces
We do not do it for Int this way because hand-tuned code already exists, and
the special case varies more from the general case, due to the issue of overflows.
-}
{-# INLINE [0] enumDeltaIntegerFB #-}
-- See Note [Inline FB functions] in GHC.List
enumDeltaIntegerFB :: (Integer -> b -> b) -> Integer -> Integer -> b
enumDeltaIntegerFB c x0 d = go x0
where go x = x `seq` (x `c` go (x+d))
{-# NOINLINE [1] enumDeltaInteger #-} -- Inline after rule "enumDeltaInteger" is inactive
enumDeltaInteger :: Integer -> Integer -> [Integer]
enumDeltaInteger x d = x `seq` (x : enumDeltaInteger (x+d) d)
-- strict accumulator, so
-- head (drop 1000000 [1 .. ]
-- works
{-# INLINE [0] enumDeltaToIntegerFB #-}
-- See Note [Inline FB functions] in GHC.List
-- Don't inline this until RULE "enumDeltaToInteger" has had a chance to fire
enumDeltaToIntegerFB :: (Integer -> a -> a) -> a
-> Integer -> Integer -> Integer -> a
enumDeltaToIntegerFB c n x delta lim
| delta >= 0 = up_fb c n x delta lim
| otherwise = dn_fb c n x delta lim
{-# INLINE [0] enumDeltaToInteger1FB #-}
-- See Note [Inline FB functions] in GHC.List
-- Don't inline this until RULE "enumDeltaToInteger" has had a chance to fire
enumDeltaToInteger1FB :: (Integer -> a -> a) -> a
-> Integer -> Integer -> a
enumDeltaToInteger1FB c n x0 lim = go (x0 :: Integer)
where
go x | x > lim = n
| otherwise = x `c` go (x+1)
{-# NOINLINE [1] enumDeltaToInteger #-} -- Inline after rule "efdtInteger" is inactive
enumDeltaToInteger :: Integer -> Integer -> Integer -> [Integer]
enumDeltaToInteger x delta lim
| delta >= 0 = up_list x delta lim
| otherwise = dn_list x delta lim
{-# NOINLINE [1] enumDeltaToInteger1 #-} -- Inline after rule "efdtInteger1" is inactive
enumDeltaToInteger1 :: Integer -> Integer -> [Integer]
-- Special case for Delta = 1
enumDeltaToInteger1 x0 lim = go (x0 :: Integer)
where
go x | x > lim = []
| otherwise = x : go (x+1)
up_fb :: (Integer -> a -> a) -> a -> Integer -> Integer -> Integer -> a
up_fb c n x0 delta lim = go (x0 :: Integer)
where
go x | x > lim = n
| otherwise = x `c` go (x+delta)
dn_fb :: (Integer -> a -> a) -> a -> Integer -> Integer -> Integer -> a
dn_fb c n x0 delta lim = go (x0 :: Integer)
where
go x | x < lim = n
| otherwise = x `c` go (x+delta)
up_list :: Integer -> Integer -> Integer -> [Integer]
up_list x0 delta lim = go (x0 :: Integer)
where
go x | x > lim = []
| otherwise = x : go (x+delta)
dn_list :: Integer -> Integer -> Integer -> [Integer]
dn_list x0 delta lim = go (x0 :: Integer)
where
go x | x < lim = []
| otherwise = x : go (x+delta)
------------------------------------------------------------------------
-- Natural
------------------------------------------------------------------------
-- | @since 4.8.0.0
instance Enum Natural where
succ n = n + 1
pred n = n - 1
toEnum i@(I# i#)
| i >= 0 = naturalFromWord# (int2Word# i#)
| otherwise = errorWithoutStackTrace "toEnum: unexpected negative Int"
fromEnum (NS w) | i >= 0 = i
where
i = I# (word2Int# w)
fromEnum _ = errorWithoutStackTrace "fromEnum: out of Int range"
-- See Note [Stable Unfolding for list producers]
{-# INLINE enumFrom #-}
enumFrom x = enumDeltaNatural x 1
-- See Note [Stable Unfolding for list producers]
{-# INLINE enumFromThen #-}
enumFromThen x y
| x <= y = enumDeltaNatural x (y-x)
| otherwise = enumNegDeltaToNatural x (x-y) 0
-- See Note [Stable Unfolding for list producers]
{-# INLINE enumFromTo #-}
enumFromTo x lim = enumDeltaToNatural x 1 lim
-- See Note [Stable Unfolding for list producers]
{-# INLINE enumFromThenTo #-}
enumFromThenTo x y lim
| x <= y = enumDeltaToNatural x (y-x) lim
| otherwise = enumNegDeltaToNatural x (x-y) lim
-- Helpers for 'Enum Natural'; TODO: optimise & make fusion work
enumDeltaNatural :: Natural -> Natural -> [Natural]
enumDeltaNatural !x d = x : enumDeltaNatural (x+d) d
-- Inline to specialize
{-# INLINE enumDeltaToNatural #-}
enumDeltaToNatural :: Natural -> Natural -> Natural -> [Natural]
enumDeltaToNatural x0 delta lim = go x0
where
go x | x > lim = []
| otherwise = x : go (x+delta)
-- Inline to specialize
{-# INLINE enumNegDeltaToNatural #-}
enumNegDeltaToNatural :: Natural -> Natural -> Natural -> [Natural]
enumNegDeltaToNatural x0 ndelta lim = go x0
where
go x | x < lim = []
| x >= ndelta = x : go (x-ndelta)
| otherwise = [x]
-- Instances from GHC.Types
-- | @since 4.16.0.0
deriving instance Bounded Levity
-- | @since 4.16.0.0
deriving instance Enum Levity
-- | @since 4.10.0.0
deriving instance Bounded VecCount
-- | @since 4.10.0.0
deriving instance Enum VecCount
-- | @since 4.10.0.0
deriving instance Bounded VecElem
-- | @since 4.10.0.0
deriving instance Enum VecElem
|