summaryrefslogtreecommitdiff
path: root/libraries/base/GHC/Enum.lhs
blob: 4591bc891eeeea1bdc764f6a812934c0629959cc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
\begin{code}
{-# OPTIONS -fno-implicit-prelude #-}
-----------------------------------------------------------------------------
-- |
-- Module      :  GHC.Enum
-- Copyright   :  (c) The University of Glasgow, 1992-2002
-- License     :  see libraries/base/LICENSE
-- 
-- Maintainer  :  cvs-ghc@haskell.org
-- Stability   :  internal
-- Portability :  non-portable (GHC extensions)
--
-- The 'Enum' and 'Bounded' classes.
-- 
-----------------------------------------------------------------------------

module GHC.Enum(
	Bounded(..), Enum(..),
	boundedEnumFrom, boundedEnumFromThen,

	-- Instances for Bounded and Enum: (), Char, Int

   ) where

import {-# SOURCE #-} GHC.Err ( error )
import GHC.Base
import Data.Tuple	()		-- for dependencies
default ()		-- Double isn't available yet
\end{code}


%*********************************************************
%*							*
\subsection{Class declarations}
%*							*
%*********************************************************

\begin{code}
-- | The 'Bounded' class is used to name the upper and lower limits of a
-- type.  'Ord' is not a superclass of 'Bounded' since types that are not
-- totally ordered may also have upper and lower bounds.
--
-- The 'Bounded' class may be derived for any enumeration type;
-- 'minBound' is the first constructor listed in the @data@ declaration
-- and 'maxBound' is the last.
-- 'Bounded' may also be derived for single-constructor datatypes whose
-- constituent types are in 'Bounded'.

class  Bounded a  where
    minBound, maxBound :: a

-- | Class 'Enum' defines operations on sequentially ordered types.
--
-- The @enumFrom@... methods are used in Haskell's translation of
-- arithmetic sequences.
--
-- Instances of 'Enum' may be derived for any enumeration type (types
-- whose constructors have no fields).  The nullary constructors are
-- assumed to be numbered left-to-right by 'fromEnum' from @0@ through @n-1@.
-- See Chapter 10 of the /Haskell Report/ for more details.
--  
-- For any type that is an instance of class 'Bounded' as well as 'Enum',
-- the following should hold:
--
-- * The calls @'succ' 'maxBound'@ and @'pred' 'minBound'@ should result in
--   a runtime error.
-- 
-- * 'fromEnum' and 'toEnum' should give a runtime error if the 
--   result value is not representable in the result type.
--   For example, @'toEnum' 7 :: 'Bool'@ is an error.
--
-- * 'enumFrom' and 'enumFromThen' should be defined with an implicit bound,
--   thus:
--
-- >	enumFrom     x   = enumFromTo     x maxBound
-- >	enumFromThen x y = enumFromThenTo x y bound
-- >	  where
-- >	    bound | fromEnum y >= fromEnum x = maxBound
-- >	          | otherwise                = minBound
--
class  Enum a	where
    -- | the successor of a value.  For numeric types, 'succ' adds 1.
    succ		:: a -> a
    -- | the predecessor of a value.  For numeric types, 'pred' subtracts 1.
    pred		:: a -> a
    -- | Convert from an 'Int'.
    toEnum              :: Int -> a
    -- | Convert to an 'Int'.
    -- It is implementation-dependent what 'fromEnum' returns when
    -- applied to a value that is too large to fit in an 'Int'.
    fromEnum            :: a -> Int

    -- | Used in Haskell's translation of @[n..]@.
    enumFrom		:: a -> [a]
    -- | Used in Haskell's translation of @[n,n'..]@.
    enumFromThen	:: a -> a -> [a]
    -- | Used in Haskell's translation of @[n..m]@.
    enumFromTo		:: a -> a -> [a]
    -- | Used in Haskell's translation of @[n,n'..m]@.
    enumFromThenTo	:: a -> a -> a -> [a]

    succ		   = toEnum . (`plusInt` oneInt)  . fromEnum
    pred		   = toEnum . (`minusInt` oneInt) . fromEnum
    enumFrom x       	   = map toEnum [fromEnum x ..]
    enumFromThen x y 	   = map toEnum [fromEnum x, fromEnum y ..]
    enumFromTo x y         = map toEnum [fromEnum x .. fromEnum y]
    enumFromThenTo x1 x2 y = map toEnum [fromEnum x1, fromEnum x2 .. fromEnum y]

-- Default methods for bounded enumerations
boundedEnumFrom :: (Enum a, Bounded a) => a -> [a]
boundedEnumFrom n = map toEnum [fromEnum n .. fromEnum (maxBound `asTypeOf` n)]

boundedEnumFromThen :: (Enum a, Bounded a) => a -> a -> [a]
boundedEnumFromThen n1 n2 
  | i_n2 >= i_n1  = map toEnum [i_n1, i_n2 .. fromEnum (maxBound `asTypeOf` n1)]
  | otherwise     = map toEnum [i_n1, i_n2 .. fromEnum (minBound `asTypeOf` n1)]
  where
    i_n1 = fromEnum n1
    i_n2 = fromEnum n2
\end{code}


%*********************************************************
%*							*
\subsection{Tuples}
%*							*
%*********************************************************

\begin{code}
instance Bounded () where
    minBound = ()
    maxBound = ()

instance Enum () where
    succ _      = error "Prelude.Enum.().succ: bad argument"
    pred _      = error "Prelude.Enum.().pred: bad argument"

    toEnum x | x == zeroInt = ()
             | otherwise    = error "Prelude.Enum.().toEnum: bad argument"

    fromEnum () = zeroInt
    enumFrom () 	= [()]
    enumFromThen () () 	= let many = ():many in many
    enumFromTo () () 	= [()]
    enumFromThenTo () () () = let many = ():many in many
\end{code}

\begin{code}
instance (Bounded a, Bounded b) => Bounded (a,b) where
   minBound = (minBound, minBound)
   maxBound = (maxBound, maxBound)

instance (Bounded a, Bounded b, Bounded c) => Bounded (a,b,c) where
   minBound = (minBound, minBound, minBound)
   maxBound = (maxBound, maxBound, maxBound)

instance (Bounded a, Bounded b, Bounded c, Bounded d) => Bounded (a,b,c,d) where
   minBound = (minBound, minBound, minBound, minBound)
   maxBound = (maxBound, maxBound, maxBound, maxBound)
\end{code}


%*********************************************************
%*							*
\subsection{Type @Bool@}
%*							*
%*********************************************************

\begin{code}
instance Bounded Bool where
  minBound = False
  maxBound = True

instance Enum Bool where
  succ False = True
  succ True  = error "Prelude.Enum.Bool.succ: bad argument"

  pred True  = False
  pred False  = error "Prelude.Enum.Bool.pred: bad argument"

  toEnum n | n == zeroInt = False
	   | n == oneInt  = True
	   | otherwise    = error "Prelude.Enum.Bool.toEnum: bad argument"

  fromEnum False = zeroInt
  fromEnum True  = oneInt

  -- Use defaults for the rest
  enumFrom     = boundedEnumFrom
  enumFromThen = boundedEnumFromThen
\end{code}

%*********************************************************
%*							*
\subsection{Type @Ordering@}
%*							*
%*********************************************************

\begin{code}
instance Bounded Ordering where
  minBound = LT
  maxBound = GT

instance Enum Ordering where
  succ LT = EQ
  succ EQ = GT
  succ GT = error "Prelude.Enum.Ordering.succ: bad argument"

  pred GT = EQ
  pred EQ = LT
  pred LT = error "Prelude.Enum.Ordering.pred: bad argument"

  toEnum n | n == zeroInt = LT
	   | n == oneInt  = EQ
	   | n == twoInt  = GT
  toEnum _ = error "Prelude.Enum.Ordering.toEnum: bad argument"

  fromEnum LT = zeroInt
  fromEnum EQ = oneInt
  fromEnum GT = twoInt

  -- Use defaults for the rest
  enumFrom     = boundedEnumFrom
  enumFromThen = boundedEnumFromThen
\end{code}

%*********************************************************
%*							*
\subsection{Type @Char@}
%*							*
%*********************************************************

\begin{code}
instance  Bounded Char  where
    minBound =  '\0'
    maxBound =  '\x10FFFF'

instance  Enum Char  where
    succ (C# c#)
       | not (ord# c# ==# 0x10FFFF#) = C# (chr# (ord# c# +# 1#))
       | otherwise	        = error ("Prelude.Enum.Char.succ: bad argument")
    pred (C# c#)
       | not (ord# c# ==# 0#)   = C# (chr# (ord# c# -# 1#))
       | otherwise	        = error ("Prelude.Enum.Char.pred: bad argument")

    toEnum   = chr
    fromEnum = ord

    {-# INLINE enumFrom #-}
    enumFrom (C# x) = eftChar (ord# x) 0x10FFFF#
	-- Blarg: technically I guess enumFrom isn't strict!

    {-# INLINE enumFromTo #-}
    enumFromTo (C# x) (C# y) = eftChar (ord# x) (ord# y)
    
    {-# INLINE enumFromThen #-}
    enumFromThen (C# x1) (C# x2) = efdChar (ord# x1) (ord# x2)
    
    {-# INLINE enumFromThenTo #-}
    enumFromThenTo (C# x1) (C# x2) (C# y) = efdtChar (ord# x1) (ord# x2) (ord# y)

{-# RULES
"eftChar"	[~1] forall x y.	eftChar x y	  = build (\c n -> eftCharFB c n x y)
"efdChar"	[~1] forall x1 x2.	efdChar x1 x2	  = build (\ c n -> efdCharFB c n x1 x2)
"efdtChar"	[~1] forall x1 x2 l.	efdtChar x1 x2 l  = build (\ c n -> efdtCharFB c n x1 x2 l)
"eftCharList"	[1]  eftCharFB  (:) [] = eftChar
"efdCharList"	[1]  efdCharFB  (:) [] = efdChar
"efdtCharList"	[1]  efdtCharFB (:) [] = efdtChar
 #-}


-- We can do better than for Ints because we don't
-- have hassles about arithmetic overflow at maxBound
{-# INLINE [0] eftCharFB #-}
eftCharFB c n x y = go x
		 where
		    go x | x ># y    = n
			 | otherwise = C# (chr# x) `c` go (x +# 1#)

eftChar x y | x ># y    = [] 
	        | otherwise = C# (chr# x) : eftChar (x +# 1#) y


-- For enumFromThenTo we give up on inlining
{-# NOINLINE [0] efdCharFB #-}
efdCharFB c n x1 x2
  | delta >=# 0# = go_up_char_fb c n x1 delta 0x10FFFF#
  | otherwise    = go_dn_char_fb c n x1 delta 0#
  where
    delta = x2 -# x1

efdChar x1 x2
  | delta >=# 0# = go_up_char_list x1 delta 0x10FFFF#
  | otherwise    = go_dn_char_list x1 delta 0#
  where
    delta = x2 -# x1

{-# NOINLINE [0] efdtCharFB #-}
efdtCharFB c n x1 x2 lim
  | delta >=# 0# = go_up_char_fb c n x1 delta lim
  | otherwise    = go_dn_char_fb c n x1 delta lim
  where
    delta = x2 -# x1

efdtChar x1 x2 lim
  | delta >=# 0# = go_up_char_list x1 delta lim
  | otherwise    = go_dn_char_list x1 delta lim
  where
    delta = x2 -# x1

go_up_char_fb c n x delta lim
  = go_up x
  where
    go_up x | x ># lim  = n
	    | otherwise	= C# (chr# x) `c` go_up (x +# delta)

go_dn_char_fb c n x delta lim
  = go_dn x
  where
    go_dn x | x <# lim  = n
	    | otherwise	= C# (chr# x) `c` go_dn (x +# delta)

go_up_char_list x delta lim
  = go_up x
  where
    go_up x | x ># lim  = []
	    | otherwise	= C# (chr# x) : go_up (x +# delta)

go_dn_char_list x delta lim
  = go_dn x
  where
    go_dn x | x <# lim  = []
	    | otherwise	= C# (chr# x) : go_dn (x +# delta)
\end{code}


%*********************************************************
%*							*
\subsection{Type @Int@}
%*							*
%*********************************************************

Be careful about these instances.  
	(a) remember that you have to count down as well as up e.g. [13,12..0]
	(b) be careful of Int overflow
	(c) remember that Int is bounded, so [1..] terminates at maxInt

Also NB that the Num class isn't available in this module.
	
\begin{code}
instance  Bounded Int where
    minBound =  minInt
    maxBound =  maxInt

instance  Enum Int  where
    succ x  
       | x == maxBound  = error "Prelude.Enum.succ{Int}: tried to take `succ' of maxBound"
       | otherwise      = x `plusInt` oneInt
    pred x
       | x == minBound  = error "Prelude.Enum.pred{Int}: tried to take `pred' of minBound"
       | otherwise      = x `minusInt` oneInt

    toEnum   x = x
    fromEnum x = x

    {-# INLINE enumFrom #-}
    enumFrom (I# x) = eftInt x maxInt#
        where I# maxInt# = maxInt
	-- Blarg: technically I guess enumFrom isn't strict!

    {-# INLINE enumFromTo #-}
    enumFromTo (I# x) (I# y) = eftInt x y

    {-# INLINE enumFromThen #-}
    enumFromThen (I# x1) (I# x2) = efdInt x1 x2

    {-# INLINE enumFromThenTo #-}
    enumFromThenTo (I# x1) (I# x2) (I# y) = efdtInt x1 x2 y


-----------------------------------------------------
-- eftInt and eftIntFB deal with [a..b], which is the 
-- most common form, so we take a lot of care
-- In particular, we have rules for deforestation

{-# RULES
"eftInt"	[~1] forall x y. eftInt x y = build (\ c n -> eftIntFB c n x y)
"eftIntList"	[1] eftIntFB  (:) [] = eftInt
 #-}

eftInt :: Int# -> Int# -> [Int]
-- [x1..x2]
eftInt x y | x ># y    = []
	   | otherwise = go x
	       where
		 go x = I# x : if x ==# y then [] else go (x +# 1#)

{-# INLINE [0] eftIntFB #-}
eftIntFB :: (Int -> r -> r) -> r -> Int# -> Int# -> r
eftIntFB c n x y | x ># y    = n	
		 | otherwise = go x
		 where
		   go x = I# x `c` if x ==# y then n else go (x +# 1#)
			-- Watch out for y=maxBound; hence ==, not >
	-- Be very careful not to have more than one "c"
	-- so that when eftInfFB is inlined we can inline
	-- whatver is bound to "c"


-----------------------------------------------------
-- efdInt and efdtInt deal with [a,b..] and [a,b..c], which are much less common
-- so we are less elaborate.  The code is more complicated anyway, because
-- of worries about Int overflow, so we don't both with rules and deforestation

efdInt :: Int# -> Int# -> [Int]
-- [x1,x2..maxInt]
efdInt x1 x2 
  | x2 >=# x1 = case maxInt of I# y -> efdtIntUp x1 x2 y
  | otherwise = case minInt of I# y -> efdtIntDn x1 x2 y

efdtInt :: Int# -> Int# -> Int# -> [Int]
-- [x1,x2..y]
efdtInt x1 x2 y
  | x2 >=# x1  = efdtIntUp x1 x2 y
  | otherwise  = efdtIntDn x1 x2 y

efdtIntUp :: Int# -> Int# -> Int# -> [Int]
efdtIntUp x1 x2 y	-- Be careful about overflow!
  | y <# x2    = if y <# x1 then [] else [I# x1]
  | otherwise 
  = 	-- Common case: x1 < x2 <= y
    let 
	delta = x2 -# x1	
	y' = y -# delta	
	-- NB: x1 <= y'; hence y' is representable

	-- Invariant: x <= y; and x+delta won't overflow
        go_up x | x ># y'  = [I# x]
	        | otherwise = I# x : go_up (x +# delta)
    in 
    I# x1 : go_up x2
  		 	
efdtIntDn :: Int# -> Int# -> Int# -> [Int]
efdtIntDn x1 x2 y	-- x2 < x1
  | y ># x2    = if y ># x1 then [] else [I# x1]
  | otherwise 
  = 	-- Common case: x1 > x2 >= y
    let 
	delta = x2 -# x1	
	y' = y -# delta	
	-- NB: x1 <= y'; hence y' is representable

	-- Invariant: x >= y; and x+delta won't overflow
        go_dn x | x <# y'  = [I# x]
	        | otherwise = I# x : go_dn (x +# delta)
    in 
    I# x1 : go_dn x2
\end{code}