1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
|
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE CPP
, NoImplicitPrelude
, MagicHash
, UnboxedTuples
#-}
{-# LANGUAGE CApiFFI #-}
-- We believe we could deorphan this module, by moving lots of things
-- around, but we haven't got there yet:
{-# OPTIONS_GHC -Wno-orphans #-}
{-# OPTIONS_HADDOCK hide #-}
-----------------------------------------------------------------------------
-- |
-- Module : GHC.Float
-- Copyright : (c) The University of Glasgow 1994-2002
-- Portions obtained from hbc (c) Lennart Augusstson
-- License : see libraries/base/LICENSE
--
-- Maintainer : cvs-ghc@haskell.org
-- Stability : internal
-- Portability : non-portable (GHC Extensions)
--
-- The types 'Float' and 'Double', and the classes 'Floating' and 'RealFloat'.
--
-----------------------------------------------------------------------------
#include "ieee-flpt.h"
module GHC.Float
( module GHC.Float
, Float(..), Double(..), Float#, Double#
, double2Int, int2Double, float2Int, int2Float
-- * Monomorphic equality operators
-- | See GHC.Classes#matching_overloaded_methods_in_rules
, eqFloat, eqDouble
) where
import Data.Maybe
import Data.Bits
import GHC.Base
import GHC.List
import GHC.Enum
import GHC.Show
import GHC.Num
import GHC.Real
import GHC.Arr
import GHC.Float.RealFracMethods
import GHC.Float.ConversionUtils
import GHC.Integer.Logarithms ( integerLogBase# )
import GHC.Integer.Logarithms.Internals
infixr 8 **
------------------------------------------------------------------------
-- Standard numeric classes
------------------------------------------------------------------------
-- | Trigonometric and hyperbolic functions and related functions.
class (Fractional a) => Floating a where
pi :: a
exp, log, sqrt :: a -> a
(**), logBase :: a -> a -> a
sin, cos, tan :: a -> a
asin, acos, atan :: a -> a
sinh, cosh, tanh :: a -> a
asinh, acosh, atanh :: a -> a
-- | @'log1p' x@ computes @'log' (1 + x)@, but provides more precise
-- results for small (absolute) values of @x@ if possible.
--
-- @since 4.9.0.0
log1p :: a -> a
-- | @'expm1' x@ computes @'exp' x - 1@, but provides more precise
-- results for small (absolute) values of @x@ if possible.
--
-- @since 4.9.0.0
expm1 :: a -> a
-- | @'log1pexp' x@ computes @'log' (1 + 'exp' x)@, but provides more
-- precise results if possible.
--
-- Examples:
--
-- * if @x@ is a large negative number, @'log' (1 + 'exp' x)@ will be
-- imprecise for the reasons given in 'log1p'.
--
-- * if @'exp' x@ is close to @-1@, @'log' (1 + 'exp' x)@ will be
-- imprecise for the reasons given in 'expm1'.
--
-- @since 4.9.0.0
log1pexp :: a -> a
-- | @'log1mexp' x@ computes @'log' (1 - 'exp' x)@, but provides more
-- precise results if possible.
--
-- Examples:
--
-- * if @x@ is a large negative number, @'log' (1 - 'exp' x)@ will be
-- imprecise for the reasons given in 'log1p'.
--
-- * if @'exp' x@ is close to @1@, @'log' (1 - 'exp' x)@ will be
-- imprecise for the reasons given in 'expm1'.
--
-- @since 4.9.0.0
log1mexp :: a -> a
{-# INLINE (**) #-}
{-# INLINE logBase #-}
{-# INLINE sqrt #-}
{-# INLINE tan #-}
{-# INLINE tanh #-}
x ** y = exp (log x * y)
logBase x y = log y / log x
sqrt x = x ** 0.5
tan x = sin x / cos x
tanh x = sinh x / cosh x
{-# INLINE log1p #-}
{-# INLINE expm1 #-}
{-# INLINE log1pexp #-}
{-# INLINE log1mexp #-}
log1p x = log (1 + x)
expm1 x = exp x - 1
log1pexp x = log1p (exp x)
log1mexp x = log1p (negate (exp x))
-- | Efficient, machine-independent access to the components of a
-- floating-point number.
class (RealFrac a, Floating a) => RealFloat a where
-- | a constant function, returning the radix of the representation
-- (often @2@)
floatRadix :: a -> Integer
-- | a constant function, returning the number of digits of
-- 'floatRadix' in the significand
floatDigits :: a -> Int
-- | a constant function, returning the lowest and highest values
-- the exponent may assume
floatRange :: a -> (Int,Int)
-- | The function 'decodeFloat' applied to a real floating-point
-- number returns the significand expressed as an 'Integer' and an
-- appropriately scaled exponent (an 'Int'). If @'decodeFloat' x@
-- yields @(m,n)@, then @x@ is equal in value to @m*b^^n@, where @b@
-- is the floating-point radix, and furthermore, either @m@ and @n@
-- are both zero or else @b^(d-1) <= 'abs' m < b^d@, where @d@ is
-- the value of @'floatDigits' x@.
-- In particular, @'decodeFloat' 0 = (0,0)@. If the type
-- contains a negative zero, also @'decodeFloat' (-0.0) = (0,0)@.
-- /The result of/ @'decodeFloat' x@ /is unspecified if either of/
-- @'isNaN' x@ /or/ @'isInfinite' x@ /is/ 'True'.
decodeFloat :: a -> (Integer,Int)
-- | 'encodeFloat' performs the inverse of 'decodeFloat' in the
-- sense that for finite @x@ with the exception of @-0.0@,
-- @'uncurry' 'encodeFloat' ('decodeFloat' x) = x@.
-- @'encodeFloat' m n@ is one of the two closest representable
-- floating-point numbers to @m*b^^n@ (or @±Infinity@ if overflow
-- occurs); usually the closer, but if @m@ contains too many bits,
-- the result may be rounded in the wrong direction.
encodeFloat :: Integer -> Int -> a
-- | 'exponent' corresponds to the second component of 'decodeFloat'.
-- @'exponent' 0 = 0@ and for finite nonzero @x@,
-- @'exponent' x = snd ('decodeFloat' x) + 'floatDigits' x@.
-- If @x@ is a finite floating-point number, it is equal in value to
-- @'significand' x * b ^^ 'exponent' x@, where @b@ is the
-- floating-point radix.
-- The behaviour is unspecified on infinite or @NaN@ values.
exponent :: a -> Int
-- | The first component of 'decodeFloat', scaled to lie in the open
-- interval (@-1@,@1@), either @0.0@ or of absolute value @>= 1\/b@,
-- where @b@ is the floating-point radix.
-- The behaviour is unspecified on infinite or @NaN@ values.
significand :: a -> a
-- | multiplies a floating-point number by an integer power of the radix
scaleFloat :: Int -> a -> a
-- | 'True' if the argument is an IEEE \"not-a-number\" (NaN) value
isNaN :: a -> Bool
-- | 'True' if the argument is an IEEE infinity or negative infinity
isInfinite :: a -> Bool
-- | 'True' if the argument is too small to be represented in
-- normalized format
isDenormalized :: a -> Bool
-- | 'True' if the argument is an IEEE negative zero
isNegativeZero :: a -> Bool
-- | 'True' if the argument is an IEEE floating point number
isIEEE :: a -> Bool
-- | a version of arctangent taking two real floating-point arguments.
-- For real floating @x@ and @y@, @'atan2' y x@ computes the angle
-- (from the positive x-axis) of the vector from the origin to the
-- point @(x,y)@. @'atan2' y x@ returns a value in the range [@-pi@,
-- @pi@]. It follows the Common Lisp semantics for the origin when
-- signed zeroes are supported. @'atan2' y 1@, with @y@ in a type
-- that is 'RealFloat', should return the same value as @'atan' y@.
-- A default definition of 'atan2' is provided, but implementors
-- can provide a more accurate implementation.
atan2 :: a -> a -> a
exponent x = if m == 0 then 0 else n + floatDigits x
where (m,n) = decodeFloat x
significand x = encodeFloat m (negate (floatDigits x))
where (m,_) = decodeFloat x
scaleFloat 0 x = x
scaleFloat k x
| isFix = x
| otherwise = encodeFloat m (n + clamp b k)
where (m,n) = decodeFloat x
(l,h) = floatRange x
d = floatDigits x
b = h - l + 4*d
-- n+k may overflow, which would lead
-- to wrong results, hence we clamp the
-- scaling parameter.
-- If n + k would be larger than h,
-- n + clamp b k must be too, simliar
-- for smaller than l - d.
-- Add a little extra to keep clear
-- from the boundary cases.
isFix = x == 0 || isNaN x || isInfinite x
atan2 y x
| x > 0 = atan (y/x)
| x == 0 && y > 0 = pi/2
| x < 0 && y > 0 = pi + atan (y/x)
|(x <= 0 && y < 0) ||
(x < 0 && isNegativeZero y) ||
(isNegativeZero x && isNegativeZero y)
= -atan2 (-y) x
| y == 0 && (x < 0 || isNegativeZero x)
= pi -- must be after the previous test on zero y
| x==0 && y==0 = y -- must be after the other double zero tests
| otherwise = x + y -- x or y is a NaN, return a NaN (via +)
------------------------------------------------------------------------
-- Float
------------------------------------------------------------------------
-- | @since 2.01
instance Num Float where
(+) x y = plusFloat x y
(-) x y = minusFloat x y
negate x = negateFloat x
(*) x y = timesFloat x y
abs x = fabsFloat x
signum x | x > 0 = 1
| x < 0 = negateFloat 1
| otherwise = x -- handles 0.0, (-0.0), and NaN
{-# INLINE fromInteger #-}
fromInteger i = F# (floatFromInteger i)
-- | @since 2.01
instance Real Float where
toRational (F# x#) =
case decodeFloat_Int# x# of
(# m#, e# #)
| isTrue# (e# >=# 0#) ->
(smallInteger m# `shiftLInteger` e#) :% 1
| isTrue# ((int2Word# m# `and#` 1##) `eqWord#` 0##) ->
case elimZerosInt# m# (negateInt# e#) of
(# n, d# #) -> n :% shiftLInteger 1 d#
| otherwise ->
smallInteger m# :% shiftLInteger 1 (negateInt# e#)
-- | @since 2.01
instance Fractional Float where
(/) x y = divideFloat x y
{-# INLINE fromRational #-}
fromRational (n:%d) = rationalToFloat n d
recip x = 1.0 / x
rationalToFloat :: Integer -> Integer -> Float
{-# NOINLINE [1] rationalToFloat #-}
rationalToFloat n 0
| n == 0 = 0/0
| n < 0 = (-1)/0
| otherwise = 1/0
rationalToFloat n d
| n == 0 = encodeFloat 0 0
| n < 0 = -(fromRat'' minEx mantDigs (-n) d)
| otherwise = fromRat'' minEx mantDigs n d
where
minEx = FLT_MIN_EXP
mantDigs = FLT_MANT_DIG
-- RULES for Integer and Int
{-# RULES
"properFraction/Float->Integer" properFraction = properFractionFloatInteger
"truncate/Float->Integer" truncate = truncateFloatInteger
"floor/Float->Integer" floor = floorFloatInteger
"ceiling/Float->Integer" ceiling = ceilingFloatInteger
"round/Float->Integer" round = roundFloatInteger
"properFraction/Float->Int" properFraction = properFractionFloatInt
"truncate/Float->Int" truncate = float2Int
"floor/Float->Int" floor = floorFloatInt
"ceiling/Float->Int" ceiling = ceilingFloatInt
"round/Float->Int" round = roundFloatInt
#-}
-- | @since 2.01
instance RealFrac Float where
-- ceiling, floor, and truncate are all small
{-# INLINE [1] ceiling #-}
{-# INLINE [1] floor #-}
{-# INLINE [1] truncate #-}
-- We assume that FLT_RADIX is 2 so that we can use more efficient code
#if FLT_RADIX != 2
#error FLT_RADIX must be 2
#endif
properFraction (F# x#)
= case decodeFloat_Int# x# of
(# m#, n# #) ->
let m = I# m#
n = I# n#
in
if n >= 0
then (fromIntegral m * (2 ^ n), 0.0)
else let i = if m >= 0 then m `shiftR` negate n
else negate (negate m `shiftR` negate n)
f = m - (i `shiftL` negate n)
in (fromIntegral i, encodeFloat (fromIntegral f) n)
truncate x = case properFraction x of
(n,_) -> n
round x = case properFraction x of
(n,r) -> let
m = if r < 0.0 then n - 1 else n + 1
half_down = abs r - 0.5
in
case (compare half_down 0.0) of
LT -> n
EQ -> if even n then n else m
GT -> m
ceiling x = case properFraction x of
(n,r) -> if r > 0.0 then n + 1 else n
floor x = case properFraction x of
(n,r) -> if r < 0.0 then n - 1 else n
-- | @since 2.01
instance Floating Float where
pi = 3.141592653589793238
exp x = expFloat x
log x = logFloat x
sqrt x = sqrtFloat x
sin x = sinFloat x
cos x = cosFloat x
tan x = tanFloat x
asin x = asinFloat x
acos x = acosFloat x
atan x = atanFloat x
sinh x = sinhFloat x
cosh x = coshFloat x
tanh x = tanhFloat x
(**) x y = powerFloat x y
logBase x y = log y / log x
asinh x = log (x + sqrt (1.0+x*x))
acosh x = log (x + (x+1.0) * sqrt ((x-1.0)/(x+1.0)))
atanh x = 0.5 * log ((1.0+x) / (1.0-x))
log1p = log1pFloat
expm1 = expm1Float
log1mexp a
| a <= log 2 = log (negate (expm1Float a))
| otherwise = log1pFloat (negate (exp a))
{-# INLINE log1mexp #-}
log1pexp a
| a <= 18 = log1pFloat (exp a)
| a <= 100 = a + exp (negate a)
| otherwise = a
{-# INLINE log1pexp #-}
-- | @since 2.01
instance RealFloat Float where
floatRadix _ = FLT_RADIX -- from float.h
floatDigits _ = FLT_MANT_DIG -- ditto
floatRange _ = (FLT_MIN_EXP, FLT_MAX_EXP) -- ditto
decodeFloat (F# f#) = case decodeFloat_Int# f# of
(# i, e #) -> (smallInteger i, I# e)
encodeFloat i (I# e) = F# (encodeFloatInteger i e)
exponent x = case decodeFloat x of
(m,n) -> if m == 0 then 0 else n + floatDigits x
significand x = case decodeFloat x of
(m,_) -> encodeFloat m (negate (floatDigits x))
scaleFloat 0 x = x
scaleFloat k x
| isFix = x
| otherwise = case decodeFloat x of
(m,n) -> encodeFloat m (n + clamp bf k)
where bf = FLT_MAX_EXP - (FLT_MIN_EXP) + 4*FLT_MANT_DIG
isFix = x == 0 || isFloatFinite x == 0
isNaN x = 0 /= isFloatNaN x
isInfinite x = 0 /= isFloatInfinite x
isDenormalized x = 0 /= isFloatDenormalized x
isNegativeZero x = 0 /= isFloatNegativeZero x
isIEEE _ = True
-- | @since 2.01
instance Show Float where
showsPrec x = showSignedFloat showFloat x
showList = showList__ (showsPrec 0)
------------------------------------------------------------------------
-- Double
------------------------------------------------------------------------
-- | @since 2.01
instance Num Double where
(+) x y = plusDouble x y
(-) x y = minusDouble x y
negate x = negateDouble x
(*) x y = timesDouble x y
abs x = fabsDouble x
signum x | x > 0 = 1
| x < 0 = negateDouble 1
| otherwise = x -- handles 0.0, (-0.0), and NaN
{-# INLINE fromInteger #-}
fromInteger i = D# (doubleFromInteger i)
-- | @since 2.01
instance Real Double where
toRational (D# x#) =
case decodeDoubleInteger x# of
(# m, e# #)
| isTrue# (e# >=# 0#) ->
shiftLInteger m e# :% 1
| isTrue# ((integerToWord m `and#` 1##) `eqWord#` 0##) ->
case elimZerosInteger m (negateInt# e#) of
(# n, d# #) -> n :% shiftLInteger 1 d#
| otherwise ->
m :% shiftLInteger 1 (negateInt# e#)
-- | @since 2.01
instance Fractional Double where
(/) x y = divideDouble x y
{-# INLINE fromRational #-}
fromRational (n:%d) = rationalToDouble n d
recip x = 1.0 / x
rationalToDouble :: Integer -> Integer -> Double
{-# NOINLINE [1] rationalToDouble #-}
rationalToDouble n 0
| n == 0 = 0/0
| n < 0 = (-1)/0
| otherwise = 1/0
rationalToDouble n d
| n == 0 = encodeFloat 0 0
| n < 0 = -(fromRat'' minEx mantDigs (-n) d)
| otherwise = fromRat'' minEx mantDigs n d
where
minEx = DBL_MIN_EXP
mantDigs = DBL_MANT_DIG
-- | @since 2.01
instance Floating Double where
pi = 3.141592653589793238
exp x = expDouble x
log x = logDouble x
sqrt x = sqrtDouble x
sin x = sinDouble x
cos x = cosDouble x
tan x = tanDouble x
asin x = asinDouble x
acos x = acosDouble x
atan x = atanDouble x
sinh x = sinhDouble x
cosh x = coshDouble x
tanh x = tanhDouble x
(**) x y = powerDouble x y
logBase x y = log y / log x
asinh x = log (x + sqrt (1.0+x*x))
acosh x = log (x + (x+1.0) * sqrt ((x-1.0)/(x+1.0)))
atanh x = 0.5 * log ((1.0+x) / (1.0-x))
log1p = log1pDouble
expm1 = expm1Double
log1mexp a
| a <= log 2 = log (negate (expm1Double a))
| otherwise = log1pDouble (negate (exp a))
{-# INLINE log1mexp #-}
log1pexp a
| a <= 18 = log1pDouble (exp a)
| a <= 100 = a + exp (negate a)
| otherwise = a
{-# INLINE log1pexp #-}
-- RULES for Integer and Int
{-# RULES
"properFraction/Double->Integer" properFraction = properFractionDoubleInteger
"truncate/Double->Integer" truncate = truncateDoubleInteger
"floor/Double->Integer" floor = floorDoubleInteger
"ceiling/Double->Integer" ceiling = ceilingDoubleInteger
"round/Double->Integer" round = roundDoubleInteger
"properFraction/Double->Int" properFraction = properFractionDoubleInt
"truncate/Double->Int" truncate = double2Int
"floor/Double->Int" floor = floorDoubleInt
"ceiling/Double->Int" ceiling = ceilingDoubleInt
"round/Double->Int" round = roundDoubleInt
#-}
-- | @since 2.01
instance RealFrac Double where
-- ceiling, floor, and truncate are all small
{-# INLINE [1] ceiling #-}
{-# INLINE [1] floor #-}
{-# INLINE [1] truncate #-}
properFraction x
= case (decodeFloat x) of { (m,n) ->
if n >= 0 then
(fromInteger m * 2 ^ n, 0.0)
else
case (quotRem m (2^(negate n))) of { (w,r) ->
(fromInteger w, encodeFloat r n)
}
}
truncate x = case properFraction x of
(n,_) -> n
round x = case properFraction x of
(n,r) -> let
m = if r < 0.0 then n - 1 else n + 1
half_down = abs r - 0.5
in
case (compare half_down 0.0) of
LT -> n
EQ -> if even n then n else m
GT -> m
ceiling x = case properFraction x of
(n,r) -> if r > 0.0 then n + 1 else n
floor x = case properFraction x of
(n,r) -> if r < 0.0 then n - 1 else n
-- | @since 2.01
instance RealFloat Double where
floatRadix _ = FLT_RADIX -- from float.h
floatDigits _ = DBL_MANT_DIG -- ditto
floatRange _ = (DBL_MIN_EXP, DBL_MAX_EXP) -- ditto
decodeFloat (D# x#)
= case decodeDoubleInteger x# of
(# i, j #) -> (i, I# j)
encodeFloat i (I# j) = D# (encodeDoubleInteger i j)
exponent x = case decodeFloat x of
(m,n) -> if m == 0 then 0 else n + floatDigits x
significand x = case decodeFloat x of
(m,_) -> encodeFloat m (negate (floatDigits x))
scaleFloat 0 x = x
scaleFloat k x
| isFix = x
| otherwise = case decodeFloat x of
(m,n) -> encodeFloat m (n + clamp bd k)
where bd = DBL_MAX_EXP - (DBL_MIN_EXP) + 4*DBL_MANT_DIG
isFix = x == 0 || isDoubleFinite x == 0
isNaN x = 0 /= isDoubleNaN x
isInfinite x = 0 /= isDoubleInfinite x
isDenormalized x = 0 /= isDoubleDenormalized x
isNegativeZero x = 0 /= isDoubleNegativeZero x
isIEEE _ = True
-- | @since 2.01
instance Show Double where
showsPrec x = showSignedFloat showFloat x
showList = showList__ (showsPrec 0)
------------------------------------------------------------------------
-- Enum instances
------------------------------------------------------------------------
{-
The @Enum@ instances for Floats and Doubles are slightly unusual.
The @toEnum@ function truncates numbers to Int. The definitions
of @enumFrom@ and @enumFromThen@ allow floats to be used in arithmetic
series: [0,0.1 .. 1.0]. However, roundoff errors make these somewhat
dubious. This example may have either 10 or 11 elements, depending on
how 0.1 is represented.
NOTE: The instances for Float and Double do not make use of the default
methods for @enumFromTo@ and @enumFromThenTo@, as these rely on there being
a `non-lossy' conversion to and from Ints. Instead we make use of the
1.2 default methods (back in the days when Enum had Ord as a superclass)
for these (@numericEnumFromTo@ and @numericEnumFromThenTo@ below.)
-}
-- | @since 2.01
instance Enum Float where
succ x = x + 1
pred x = x - 1
toEnum = int2Float
fromEnum = fromInteger . truncate -- may overflow
enumFrom = numericEnumFrom
enumFromTo = numericEnumFromTo
enumFromThen = numericEnumFromThen
enumFromThenTo = numericEnumFromThenTo
-- | @since 2.01
instance Enum Double where
succ x = x + 1
pred x = x - 1
toEnum = int2Double
fromEnum = fromInteger . truncate -- may overflow
enumFrom = numericEnumFrom
enumFromTo = numericEnumFromTo
enumFromThen = numericEnumFromThen
enumFromThenTo = numericEnumFromThenTo
------------------------------------------------------------------------
-- Printing floating point
------------------------------------------------------------------------
-- | Show a signed 'RealFloat' value to full precision
-- using standard decimal notation for arguments whose absolute value lies
-- between @0.1@ and @9,999,999@, and scientific notation otherwise.
showFloat :: (RealFloat a) => a -> ShowS
showFloat x = showString (formatRealFloat FFGeneric Nothing x)
-- These are the format types. This type is not exported.
data FFFormat = FFExponent | FFFixed | FFGeneric
-- This is just a compatibility stub, as the "alt" argument formerly
-- didn't exist.
formatRealFloat :: (RealFloat a) => FFFormat -> Maybe Int -> a -> String
formatRealFloat fmt decs x = formatRealFloatAlt fmt decs False x
formatRealFloatAlt :: (RealFloat a) => FFFormat -> Maybe Int -> Bool -> a
-> String
formatRealFloatAlt fmt decs alt x
| isNaN x = "NaN"
| isInfinite x = if x < 0 then "-Infinity" else "Infinity"
| x < 0 || isNegativeZero x = '-':doFmt fmt (floatToDigits (toInteger base) (-x))
| otherwise = doFmt fmt (floatToDigits (toInteger base) x)
where
base = 10
doFmt format (is, e) =
let ds = map intToDigit is in
case format of
FFGeneric ->
doFmt (if e < 0 || e > 7 then FFExponent else FFFixed)
(is,e)
FFExponent ->
case decs of
Nothing ->
let show_e' = show (e-1) in
case ds of
"0" -> "0.0e0"
[d] -> d : ".0e" ++ show_e'
(d:ds') -> d : '.' : ds' ++ "e" ++ show_e'
[] -> errorWithoutStackTrace "formatRealFloat/doFmt/FFExponent: []"
Just dec ->
let dec' = max dec 1 in
case is of
[0] -> '0' :'.' : take dec' (repeat '0') ++ "e0"
_ ->
let
(ei,is') = roundTo base (dec'+1) is
(d:ds') = map intToDigit (if ei > 0 then init is' else is')
in
d:'.':ds' ++ 'e':show (e-1+ei)
FFFixed ->
let
mk0 ls = case ls of { "" -> "0" ; _ -> ls}
in
case decs of
Nothing
| e <= 0 -> "0." ++ replicate (-e) '0' ++ ds
| otherwise ->
let
f 0 s rs = mk0 (reverse s) ++ '.':mk0 rs
f n s "" = f (n-1) ('0':s) ""
f n s (r:rs) = f (n-1) (r:s) rs
in
f e "" ds
Just dec ->
let dec' = max dec 0 in
if e >= 0 then
let
(ei,is') = roundTo base (dec' + e) is
(ls,rs) = splitAt (e+ei) (map intToDigit is')
in
mk0 ls ++ (if null rs && not alt then "" else '.':rs)
else
let
(ei,is') = roundTo base dec' (replicate (-e) 0 ++ is)
d:ds' = map intToDigit (if ei > 0 then is' else 0:is')
in
d : (if null ds' && not alt then "" else '.':ds')
roundTo :: Int -> Int -> [Int] -> (Int,[Int])
roundTo base d is =
case f d True is of
x@(0,_) -> x
(1,xs) -> (1, 1:xs)
_ -> errorWithoutStackTrace "roundTo: bad Value"
where
b2 = base `quot` 2
f n _ [] = (0, replicate n 0)
f 0 e (x:xs) | x == b2 && e && all (== 0) xs = (0, []) -- Round to even when at exactly half the base
| otherwise = (if x >= b2 then 1 else 0, [])
f n _ (i:xs)
| i' == base = (1,0:ds)
| otherwise = (0,i':ds)
where
(c,ds) = f (n-1) (even i) xs
i' = c + i
-- Based on "Printing Floating-Point Numbers Quickly and Accurately"
-- by R.G. Burger and R.K. Dybvig in PLDI 96.
-- This version uses a much slower logarithm estimator. It should be improved.
-- | 'floatToDigits' takes a base and a non-negative 'RealFloat' number,
-- and returns a list of digits and an exponent.
-- In particular, if @x>=0@, and
--
-- > floatToDigits base x = ([d1,d2,...,dn], e)
--
-- then
--
-- (1) @n >= 1@
--
-- (2) @x = 0.d1d2...dn * (base**e)@
--
-- (3) @0 <= di <= base-1@
floatToDigits :: (RealFloat a) => Integer -> a -> ([Int], Int)
floatToDigits _ 0 = ([0], 0)
floatToDigits base x =
let
(f0, e0) = decodeFloat x
(minExp0, _) = floatRange x
p = floatDigits x
b = floatRadix x
minExp = minExp0 - p -- the real minimum exponent
-- Haskell requires that f be adjusted so denormalized numbers
-- will have an impossibly low exponent. Adjust for this.
(f, e) =
let n = minExp - e0 in
if n > 0 then (f0 `quot` (expt b n), e0+n) else (f0, e0)
(r, s, mUp, mDn) =
if e >= 0 then
let be = expt b e in
if f == expt b (p-1) then
(f*be*b*2, 2*b, be*b, be) -- according to Burger and Dybvig
else
(f*be*2, 2, be, be)
else
if e > minExp && f == expt b (p-1) then
(f*b*2, expt b (-e+1)*2, b, 1)
else
(f*2, expt b (-e)*2, 1, 1)
k :: Int
k =
let
k0 :: Int
k0 =
if b == 2 && base == 10 then
-- logBase 10 2 is very slightly larger than 8651/28738
-- (about 5.3558e-10), so if log x >= 0, the approximation
-- k1 is too small, hence we add one and need one fixup step less.
-- If log x < 0, the approximation errs rather on the high side.
-- That is usually more than compensated for by ignoring the
-- fractional part of logBase 2 x, but when x is a power of 1/2
-- or slightly larger and the exponent is a multiple of the
-- denominator of the rational approximation to logBase 10 2,
-- k1 is larger than logBase 10 x. If k1 > 1 + logBase 10 x,
-- we get a leading zero-digit we don't want.
-- With the approximation 3/10, this happened for
-- 0.5^1030, 0.5^1040, ..., 0.5^1070 and values close above.
-- The approximation 8651/28738 guarantees k1 < 1 + logBase 10 x
-- for IEEE-ish floating point types with exponent fields
-- <= 17 bits and mantissae of several thousand bits, earlier
-- convergents to logBase 10 2 would fail for long double.
-- Using quot instead of div is a little faster and requires
-- fewer fixup steps for negative lx.
let lx = p - 1 + e0
k1 = (lx * 8651) `quot` 28738
in if lx >= 0 then k1 + 1 else k1
else
-- f :: Integer, log :: Float -> Float,
-- ceiling :: Float -> Int
ceiling ((log (fromInteger (f+1) :: Float) +
fromIntegral e * log (fromInteger b)) /
log (fromInteger base))
--WAS: fromInt e * log (fromInteger b))
fixup n =
if n >= 0 then
if r + mUp <= expt base n * s then n else fixup (n+1)
else
if expt base (-n) * (r + mUp) <= s then n else fixup (n+1)
in
fixup k0
gen ds rn sN mUpN mDnN =
let
(dn, rn') = (rn * base) `quotRem` sN
mUpN' = mUpN * base
mDnN' = mDnN * base
in
case (rn' < mDnN', rn' + mUpN' > sN) of
(True, False) -> dn : ds
(False, True) -> dn+1 : ds
(True, True) -> if rn' * 2 < sN then dn : ds else dn+1 : ds
(False, False) -> gen (dn:ds) rn' sN mUpN' mDnN'
rds =
if k >= 0 then
gen [] r (s * expt base k) mUp mDn
else
let bk = expt base (-k) in
gen [] (r * bk) s (mUp * bk) (mDn * bk)
in
(map fromIntegral (reverse rds), k)
------------------------------------------------------------------------
-- Converting from a Rational to a RealFloa
------------------------------------------------------------------------
{-
[In response to a request for documentation of how fromRational works,
Joe Fasel writes:] A quite reasonable request! This code was added to
the Prelude just before the 1.2 release, when Lennart, working with an
early version of hbi, noticed that (read . show) was not the identity
for floating-point numbers. (There was a one-bit error about half the
time.) The original version of the conversion function was in fact
simply a floating-point divide, as you suggest above. The new version
is, I grant you, somewhat denser.
Unfortunately, Joe's code doesn't work! Here's an example:
main = putStr (shows (1.82173691287639817263897126389712638972163e-300::Double) "\n")
This program prints
0.0000000000000000
instead of
1.8217369128763981e-300
Here's Joe's code:
\begin{pseudocode}
fromRat :: (RealFloat a) => Rational -> a
fromRat x = x'
where x' = f e
-- If the exponent of the nearest floating-point number to x
-- is e, then the significand is the integer nearest xb^(-e),
-- where b is the floating-point radix. We start with a good
-- guess for e, and if it is correct, the exponent of the
-- floating-point number we construct will again be e. If
-- not, one more iteration is needed.
f e = if e' == e then y else f e'
where y = encodeFloat (round (x * (1 % b)^^e)) e
(_,e') = decodeFloat y
b = floatRadix x'
-- We obtain a trial exponent by doing a floating-point
-- division of x's numerator by its denominator. The
-- result of this division may not itself be the ultimate
-- result, because of an accumulation of three rounding
-- errors.
(s,e) = decodeFloat (fromInteger (numerator x) `asTypeOf` x'
/ fromInteger (denominator x))
\end{pseudocode}
Now, here's Lennart's code (which works):
-}
-- | Converts a 'Rational' value into any type in class 'RealFloat'.
{-# RULES
"fromRat/Float" fromRat = (fromRational :: Rational -> Float)
"fromRat/Double" fromRat = (fromRational :: Rational -> Double)
#-}
{-# NOINLINE [1] fromRat #-}
fromRat :: (RealFloat a) => Rational -> a
-- Deal with special cases first, delegating the real work to fromRat'
fromRat (n :% 0) | n > 0 = 1/0 -- +Infinity
| n < 0 = -1/0 -- -Infinity
| otherwise = 0/0 -- NaN
fromRat (n :% d) | n > 0 = fromRat' (n :% d)
| n < 0 = - fromRat' ((-n) :% d)
| otherwise = encodeFloat 0 0 -- Zero
-- Conversion process:
-- Scale the rational number by the RealFloat base until
-- it lies in the range of the mantissa (as used by decodeFloat/encodeFloat).
-- Then round the rational to an Integer and encode it with the exponent
-- that we got from the scaling.
-- To speed up the scaling process we compute the log2 of the number to get
-- a first guess of the exponent.
fromRat' :: (RealFloat a) => Rational -> a
-- Invariant: argument is strictly positive
fromRat' x = r
where b = floatRadix r
p = floatDigits r
(minExp0, _) = floatRange r
minExp = minExp0 - p -- the real minimum exponent
xMax = toRational (expt b p)
p0 = (integerLogBase b (numerator x) - integerLogBase b (denominator x) - p) `max` minExp
-- if x = n/d and ln = integerLogBase b n, ld = integerLogBase b d,
-- then b^(ln-ld-1) < x < b^(ln-ld+1)
f = if p0 < 0 then 1 :% expt b (-p0) else expt b p0 :% 1
x0 = x / f
-- if ln - ld >= minExp0, then b^(p-1) < x0 < b^(p+1), so there's at most
-- one scaling step needed, otherwise, x0 < b^p and no scaling is needed
(x', p') = if x0 >= xMax then (x0 / toRational b, p0+1) else (x0, p0)
r = encodeFloat (round x') p'
-- Exponentiation with a cache for the most common numbers.
minExpt, maxExpt :: Int
minExpt = 0
maxExpt = 1100
expt :: Integer -> Int -> Integer
expt base n =
if base == 2 && n >= minExpt && n <= maxExpt then
expts!n
else
if base == 10 && n <= maxExpt10 then
expts10!n
else
base^n
expts :: Array Int Integer
expts = array (minExpt,maxExpt) [(n,2^n) | n <- [minExpt .. maxExpt]]
maxExpt10 :: Int
maxExpt10 = 324
expts10 :: Array Int Integer
expts10 = array (minExpt,maxExpt10) [(n,10^n) | n <- [minExpt .. maxExpt10]]
-- Compute the (floor of the) log of i in base b.
-- Simplest way would be just divide i by b until it's smaller then b, but that would
-- be very slow! We are just slightly more clever, except for base 2, where
-- we take advantage of the representation of Integers.
-- The general case could be improved by a lookup table for
-- approximating the result by integerLog2 i / integerLog2 b.
integerLogBase :: Integer -> Integer -> Int
integerLogBase b i
| i < b = 0
| b == 2 = I# (integerLog2# i)
| otherwise = I# (integerLogBase# b i)
{-
Unfortunately, the old conversion code was awfully slow due to
a) a slow integer logarithm
b) repeated calculation of gcd's
For the case of Rational's coming from a Float or Double via toRational,
we can exploit the fact that the denominator is a power of two, which for
these brings a huge speedup since we need only shift and add instead
of division.
The below is an adaption of fromRat' for the conversion to
Float or Double exploiting the known floatRadix and avoiding
divisions as much as possible.
-}
{-# SPECIALISE fromRat'' :: Int -> Int -> Integer -> Integer -> Float,
Int -> Int -> Integer -> Integer -> Double #-}
fromRat'' :: RealFloat a => Int -> Int -> Integer -> Integer -> a
-- Invariant: n and d strictly positive
fromRat'' minEx@(I# me#) mantDigs@(I# md#) n d =
case integerLog2IsPowerOf2# d of
(# ld#, pw# #)
| isTrue# (pw# ==# 0#) ->
case integerLog2# n of
ln# | isTrue# (ln# >=# (ld# +# me# -# 1#)) ->
-- this means n/d >= 2^(minEx-1), i.e. we are guaranteed to get
-- a normalised number, round to mantDigs bits
if isTrue# (ln# <# md#)
then encodeFloat n (I# (negateInt# ld#))
else let n' = n `shiftR` (I# (ln# +# 1# -# md#))
n'' = case roundingMode# n (ln# -# md#) of
0# -> n'
2# -> n' + 1
_ -> case fromInteger n' .&. (1 :: Int) of
0 -> n'
_ -> n' + 1
in encodeFloat n'' (I# (ln# -# ld# +# 1# -# md#))
| otherwise ->
-- n/d < 2^(minEx-1), a denorm or rounded to 2^(minEx-1)
-- the exponent for encoding is always minEx-mantDigs
-- so we must shift right by (minEx-mantDigs) - (-ld)
case ld# +# (me# -# md#) of
ld'# | isTrue# (ld'# <=# 0#) -> -- we would shift left, so we don't shift
encodeFloat n (I# ((me# -# md#) -# ld'#))
| isTrue# (ld'# <=# ln#) ->
let n' = n `shiftR` (I# ld'#)
in case roundingMode# n (ld'# -# 1#) of
0# -> encodeFloat n' (minEx - mantDigs)
1# -> if fromInteger n' .&. (1 :: Int) == 0
then encodeFloat n' (minEx-mantDigs)
else encodeFloat (n' + 1) (minEx-mantDigs)
_ -> encodeFloat (n' + 1) (minEx-mantDigs)
| isTrue# (ld'# ># (ln# +# 1#)) -> encodeFloat 0 0 -- result of shift < 0.5
| otherwise -> -- first bit of n shifted to 0.5 place
case integerLog2IsPowerOf2# n of
(# _, 0# #) -> encodeFloat 0 0 -- round to even
(# _, _ #) -> encodeFloat 1 (minEx - mantDigs)
| otherwise ->
let ln = I# (integerLog2# n)
ld = I# ld#
-- 2^(ln-ld-1) < n/d < 2^(ln-ld+1)
p0 = max minEx (ln - ld)
(n', d')
| p0 < mantDigs = (n `shiftL` (mantDigs - p0), d)
| p0 == mantDigs = (n, d)
| otherwise = (n, d `shiftL` (p0 - mantDigs))
-- if ln-ld < minEx, then n'/d' < 2^mantDigs, else
-- 2^(mantDigs-1) < n'/d' < 2^(mantDigs+1) and we
-- may need one scaling step
scale p a b
| (b `shiftL` mantDigs) <= a = (p+1, a, b `shiftL` 1)
| otherwise = (p, a, b)
(p', n'', d'') = scale (p0-mantDigs) n' d'
-- n''/d'' < 2^mantDigs and p' == minEx-mantDigs or n''/d'' >= 2^(mantDigs-1)
rdq = case n'' `quotRem` d'' of
(q,r) -> case compare (r `shiftL` 1) d'' of
LT -> q
EQ -> if fromInteger q .&. (1 :: Int) == 0
then q else q+1
GT -> q+1
in encodeFloat rdq p'
------------------------------------------------------------------------
-- Floating point numeric primops
------------------------------------------------------------------------
-- Definitions of the boxed PrimOps; these will be
-- used in the case of partial applications, etc.
plusFloat, minusFloat, timesFloat, divideFloat :: Float -> Float -> Float
plusFloat (F# x) (F# y) = F# (plusFloat# x y)
minusFloat (F# x) (F# y) = F# (minusFloat# x y)
timesFloat (F# x) (F# y) = F# (timesFloat# x y)
divideFloat (F# x) (F# y) = F# (divideFloat# x y)
negateFloat :: Float -> Float
negateFloat (F# x) = F# (negateFloat# x)
gtFloat, geFloat, ltFloat, leFloat :: Float -> Float -> Bool
gtFloat (F# x) (F# y) = isTrue# (gtFloat# x y)
geFloat (F# x) (F# y) = isTrue# (geFloat# x y)
ltFloat (F# x) (F# y) = isTrue# (ltFloat# x y)
leFloat (F# x) (F# y) = isTrue# (leFloat# x y)
expFloat, logFloat, sqrtFloat, fabsFloat :: Float -> Float
sinFloat, cosFloat, tanFloat :: Float -> Float
asinFloat, acosFloat, atanFloat :: Float -> Float
sinhFloat, coshFloat, tanhFloat :: Float -> Float
expFloat (F# x) = F# (expFloat# x)
logFloat (F# x) = F# (logFloat# x)
sqrtFloat (F# x) = F# (sqrtFloat# x)
fabsFloat (F# x) = F# (fabsFloat# x)
sinFloat (F# x) = F# (sinFloat# x)
cosFloat (F# x) = F# (cosFloat# x)
tanFloat (F# x) = F# (tanFloat# x)
asinFloat (F# x) = F# (asinFloat# x)
acosFloat (F# x) = F# (acosFloat# x)
atanFloat (F# x) = F# (atanFloat# x)
sinhFloat (F# x) = F# (sinhFloat# x)
coshFloat (F# x) = F# (coshFloat# x)
tanhFloat (F# x) = F# (tanhFloat# x)
powerFloat :: Float -> Float -> Float
powerFloat (F# x) (F# y) = F# (powerFloat# x y)
-- definitions of the boxed PrimOps; these will be
-- used in the case of partial applications, etc.
plusDouble, minusDouble, timesDouble, divideDouble :: Double -> Double -> Double
plusDouble (D# x) (D# y) = D# (x +## y)
minusDouble (D# x) (D# y) = D# (x -## y)
timesDouble (D# x) (D# y) = D# (x *## y)
divideDouble (D# x) (D# y) = D# (x /## y)
negateDouble :: Double -> Double
negateDouble (D# x) = D# (negateDouble# x)
gtDouble, geDouble, leDouble, ltDouble :: Double -> Double -> Bool
gtDouble (D# x) (D# y) = isTrue# (x >## y)
geDouble (D# x) (D# y) = isTrue# (x >=## y)
ltDouble (D# x) (D# y) = isTrue# (x <## y)
leDouble (D# x) (D# y) = isTrue# (x <=## y)
double2Float :: Double -> Float
double2Float (D# x) = F# (double2Float# x)
float2Double :: Float -> Double
float2Double (F# x) = D# (float2Double# x)
expDouble, logDouble, sqrtDouble, fabsDouble :: Double -> Double
sinDouble, cosDouble, tanDouble :: Double -> Double
asinDouble, acosDouble, atanDouble :: Double -> Double
sinhDouble, coshDouble, tanhDouble :: Double -> Double
expDouble (D# x) = D# (expDouble# x)
logDouble (D# x) = D# (logDouble# x)
sqrtDouble (D# x) = D# (sqrtDouble# x)
fabsDouble (D# x) = D# (fabsDouble# x)
sinDouble (D# x) = D# (sinDouble# x)
cosDouble (D# x) = D# (cosDouble# x)
tanDouble (D# x) = D# (tanDouble# x)
asinDouble (D# x) = D# (asinDouble# x)
acosDouble (D# x) = D# (acosDouble# x)
atanDouble (D# x) = D# (atanDouble# x)
sinhDouble (D# x) = D# (sinhDouble# x)
coshDouble (D# x) = D# (coshDouble# x)
tanhDouble (D# x) = D# (tanhDouble# x)
powerDouble :: Double -> Double -> Double
powerDouble (D# x) (D# y) = D# (x **## y)
foreign import ccall unsafe "isFloatNaN" isFloatNaN :: Float -> Int
foreign import ccall unsafe "isFloatInfinite" isFloatInfinite :: Float -> Int
foreign import ccall unsafe "isFloatDenormalized" isFloatDenormalized :: Float -> Int
foreign import ccall unsafe "isFloatNegativeZero" isFloatNegativeZero :: Float -> Int
foreign import ccall unsafe "isFloatFinite" isFloatFinite :: Float -> Int
foreign import ccall unsafe "isDoubleNaN" isDoubleNaN :: Double -> Int
foreign import ccall unsafe "isDoubleInfinite" isDoubleInfinite :: Double -> Int
foreign import ccall unsafe "isDoubleDenormalized" isDoubleDenormalized :: Double -> Int
foreign import ccall unsafe "isDoubleNegativeZero" isDoubleNegativeZero :: Double -> Int
foreign import ccall unsafe "isDoubleFinite" isDoubleFinite :: Double -> Int
------------------------------------------------------------------------
-- libm imports for extended floating
------------------------------------------------------------------------
foreign import capi unsafe "math.h log1p" log1pDouble :: Double -> Double
foreign import capi unsafe "math.h expm1" expm1Double :: Double -> Double
foreign import capi unsafe "math.h log1pf" log1pFloat :: Float -> Float
foreign import capi unsafe "math.h expm1f" expm1Float :: Float -> Float
------------------------------------------------------------------------
-- Coercion rules
------------------------------------------------------------------------
word2Double :: Word -> Double
word2Double (W# w) = D# (word2Double# w)
word2Float :: Word -> Float
word2Float (W# w) = F# (word2Float# w)
{-# RULES
"fromIntegral/Int->Float" fromIntegral = int2Float
"fromIntegral/Int->Double" fromIntegral = int2Double
"fromIntegral/Word->Float" fromIntegral = word2Float
"fromIntegral/Word->Double" fromIntegral = word2Double
"realToFrac/Float->Float" realToFrac = id :: Float -> Float
"realToFrac/Float->Double" realToFrac = float2Double
"realToFrac/Double->Float" realToFrac = double2Float
"realToFrac/Double->Double" realToFrac = id :: Double -> Double
"realToFrac/Int->Double" realToFrac = int2Double -- See Note [realToFrac int-to-float]
"realToFrac/Int->Float" realToFrac = int2Float -- ..ditto
#-}
{-
Note [realToFrac int-to-float]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Don found that the RULES for realToFrac/Int->Double and simliarly
Float made a huge difference to some stream-fusion programs. Here's
an example
import Data.Array.Vector
n = 40000000
main = do
let c = replicateU n (2::Double)
a = mapU realToFrac (enumFromToU 0 (n-1) ) :: UArr Double
print (sumU (zipWithU (*) c a))
Without the RULE we get this loop body:
case $wtoRational sc_sY4 of ww_aM7 { (# ww1_aM9, ww2_aMa #) ->
case $wfromRat ww1_aM9 ww2_aMa of tpl_X1P { D# ipv_sW3 ->
Main.$s$wfold
(+# sc_sY4 1)
(+# wild_X1i 1)
(+## sc2_sY6 (*## 2.0 ipv_sW3))
And with the rule:
Main.$s$wfold
(+# sc_sXT 1)
(+# wild_X1h 1)
(+## sc2_sXV (*## 2.0 (int2Double# sc_sXT)))
The running time of the program goes from 120 seconds to 0.198 seconds
with the native backend, and 0.143 seconds with the C backend.
A few more details in Trac #2251, and the patch message
"Add RULES for realToFrac from Int".
-}
-- Utils
showSignedFloat :: (RealFloat a)
=> (a -> ShowS) -- ^ a function that can show unsigned values
-> Int -- ^ the precedence of the enclosing context
-> a -- ^ the value to show
-> ShowS
showSignedFloat showPos p x
| x < 0 || isNegativeZero x
= showParen (p > 6) (showChar '-' . showPos (-x))
| otherwise = showPos x
{-
We need to prevent over/underflow of the exponent in encodeFloat when
called from scaleFloat, hence we clamp the scaling parameter.
We must have a large enough range to cover the maximum difference of
exponents returned by decodeFloat.
-}
clamp :: Int -> Int -> Int
clamp bd k = max (-bd) (min bd k)
|