1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
|
\begin{code}
{-# OPTIONS -fno-implicit-prelude #-}
-----------------------------------------------------------------------------
-- |
-- Module : GHC.Float
-- Copyright : (c) The University of Glasgow 1994-2002
-- License : see libraries/base/LICENSE
--
-- Maintainer : cvs-ghc@haskell.org
-- Stability : internal
-- Portability : non-portable (GHC Extensions)
--
-- The types 'Float' and 'Double', and the classes 'Floating' and 'RealFloat'.
--
-----------------------------------------------------------------------------
#include "ieee-flpt.h"
module GHC.Float( module GHC.Float, Float#, Double# ) where
import Data.Maybe
import GHC.Base
import GHC.List
import GHC.Enum
import GHC.Show
import GHC.Num
import GHC.Real
import GHC.Arr
infixr 8 **
\end{code}
%*********************************************************
%* *
\subsection{Standard numeric classes}
%* *
%*********************************************************
\begin{code}
-- | Trigonometric and hyperbolic functions and related functions.
--
-- Minimal complete definition:
-- 'pi', 'exp', 'log', 'sin', 'cos', 'sinh', 'cosh'
-- 'asin', 'acos', 'atan', 'asinh', 'acosh' and 'atanh'
class (Fractional a) => Floating a where
pi :: a
exp, log, sqrt :: a -> a
(**), logBase :: a -> a -> a
sin, cos, tan :: a -> a
asin, acos, atan :: a -> a
sinh, cosh, tanh :: a -> a
asinh, acosh, atanh :: a -> a
x ** y = exp (log x * y)
logBase x y = log y / log x
sqrt x = x ** 0.5
tan x = sin x / cos x
tanh x = sinh x / cosh x
-- | Efficient, machine-independent access to the components of a
-- floating-point number.
--
-- Minimal complete definition:
-- all except 'exponent', 'significand', 'scaleFloat' and 'atan2'
class (RealFrac a, Floating a) => RealFloat a where
-- | a constant function, returning the radix of the representation
-- (often @2@)
floatRadix :: a -> Integer
-- | a constant function, returning the number of digits of
-- 'floatRadix' in the significand
floatDigits :: a -> Int
-- | a constant function, returning the lowest and highest values
-- the exponent may assume
floatRange :: a -> (Int,Int)
-- | The function 'decodeFloat' applied to a real floating-point
-- number returns the significand expressed as an 'Integer' and an
-- appropriately scaled exponent (an 'Int'). If @'decodeFloat' x@
-- yields @(m,n)@, then @x@ is equal in value to @m*b^^n@, where @b@
-- is the floating-point radix, and furthermore, either @m@ and @n@
-- are both zero or else @b^(d-1) <= m < b^d@, where @d@ is the value
-- of @'floatDigits' x@. In particular, @'decodeFloat' 0 = (0,0)@.
decodeFloat :: a -> (Integer,Int)
-- | 'encodeFloat' performs the inverse of 'decodeFloat'
encodeFloat :: Integer -> Int -> a
-- | the second component of 'decodeFloat'.
exponent :: a -> Int
-- | the first component of 'decodeFloat', scaled to lie in the open
-- interval (@-1@,@1@)
significand :: a -> a
-- | multiplies a floating-point number by an integer power of the radix
scaleFloat :: Int -> a -> a
-- | 'True' if the argument is an IEEE \"not-a-number\" (NaN) value
isNaN :: a -> Bool
-- | 'True' if the argument is an IEEE infinity or negative infinity
isInfinite :: a -> Bool
-- | 'True' if the argument is too small to be represented in
-- normalized format
isDenormalized :: a -> Bool
-- | 'True' if the argument is an IEEE negative zero
isNegativeZero :: a -> Bool
-- | 'True' if the argument is an IEEE floating point number
isIEEE :: a -> Bool
-- | a version of arctangent taking two real floating-point arguments.
-- For real floating @x@ and @y@, @'atan2' y x@ computes the angle
-- (from the positive x-axis) of the vector from the origin to the
-- point @(x,y)@. @'atan2' y x@ returns a value in the range [@-pi@,
-- @pi@]. It follows the Common Lisp semantics for the origin when
-- signed zeroes are supported. @'atan2' y 1@, with @y@ in a type
-- that is 'RealFloat', should return the same value as @'atan' y@.
-- A default definition of 'atan2' is provided, but implementors
-- can provide a more accurate implementation.
atan2 :: a -> a -> a
exponent x = if m == 0 then 0 else n + floatDigits x
where (m,n) = decodeFloat x
significand x = encodeFloat m (negate (floatDigits x))
where (m,_) = decodeFloat x
scaleFloat k x = encodeFloat m (n+k)
where (m,n) = decodeFloat x
atan2 y x
| x > 0 = atan (y/x)
| x == 0 && y > 0 = pi/2
| x < 0 && y > 0 = pi + atan (y/x)
|(x <= 0 && y < 0) ||
(x < 0 && isNegativeZero y) ||
(isNegativeZero x && isNegativeZero y)
= -atan2 (-y) x
| y == 0 && (x < 0 || isNegativeZero x)
= pi -- must be after the previous test on zero y
| x==0 && y==0 = y -- must be after the other double zero tests
| otherwise = x + y -- x or y is a NaN, return a NaN (via +)
\end{code}
%*********************************************************
%* *
\subsection{Type @Integer@, @Float@, @Double@}
%* *
%*********************************************************
\begin{code}
-- | Single-precision floating point numbers.
-- It is desirable that this type be at least equal in range and precision
-- to the IEEE single-precision type.
data Float = F# Float#
-- | Double-precision floating point numbers.
-- It is desirable that this type be at least equal in range and precision
-- to the IEEE double-precision type.
data Double = D# Double#
\end{code}
%*********************************************************
%* *
\subsection{Type @Float@}
%* *
%*********************************************************
\begin{code}
instance Eq Float where
(F# x) == (F# y) = x `eqFloat#` y
instance Ord Float where
(F# x) `compare` (F# y) | x `ltFloat#` y = LT
| x `eqFloat#` y = EQ
| otherwise = GT
(F# x) < (F# y) = x `ltFloat#` y
(F# x) <= (F# y) = x `leFloat#` y
(F# x) >= (F# y) = x `geFloat#` y
(F# x) > (F# y) = x `gtFloat#` y
instance Num Float where
(+) x y = plusFloat x y
(-) x y = minusFloat x y
negate x = negateFloat x
(*) x y = timesFloat x y
abs x | x >= 0.0 = x
| otherwise = negateFloat x
signum x | x == 0.0 = 0
| x > 0.0 = 1
| otherwise = negate 1
{-# INLINE fromInteger #-}
fromInteger n = encodeFloat n 0
-- It's important that encodeFloat inlines here, and that
-- fromInteger in turn inlines,
-- so that if fromInteger is applied to an (S# i) the right thing happens
instance Real Float where
toRational x = (m%1)*(b%1)^^n
where (m,n) = decodeFloat x
b = floatRadix x
instance Fractional Float where
(/) x y = divideFloat x y
fromRational x = fromRat x
recip x = 1.0 / x
{-# RULES "truncate/Float->Int" truncate = float2Int #-}
instance RealFrac Float where
{-# SPECIALIZE properFraction :: Float -> (Int, Float) #-}
{-# SPECIALIZE round :: Float -> Int #-}
{-# SPECIALIZE properFraction :: Float -> (Integer, Float) #-}
{-# SPECIALIZE round :: Float -> Integer #-}
-- ceiling, floor, and truncate are all small
{-# INLINE ceiling #-}
{-# INLINE floor #-}
{-# INLINE truncate #-}
properFraction x
= case (decodeFloat x) of { (m,n) ->
let b = floatRadix x in
if n >= 0 then
(fromInteger m * fromInteger b ^ n, 0.0)
else
case (quotRem m (b^(negate n))) of { (w,r) ->
(fromInteger w, encodeFloat r n)
}
}
truncate x = case properFraction x of
(n,_) -> n
round x = case properFraction x of
(n,r) -> let
m = if r < 0.0 then n - 1 else n + 1
half_down = abs r - 0.5
in
case (compare half_down 0.0) of
LT -> n
EQ -> if even n then n else m
GT -> m
ceiling x = case properFraction x of
(n,r) -> if r > 0.0 then n + 1 else n
floor x = case properFraction x of
(n,r) -> if r < 0.0 then n - 1 else n
instance Floating Float where
pi = 3.141592653589793238
exp x = expFloat x
log x = logFloat x
sqrt x = sqrtFloat x
sin x = sinFloat x
cos x = cosFloat x
tan x = tanFloat x
asin x = asinFloat x
acos x = acosFloat x
atan x = atanFloat x
sinh x = sinhFloat x
cosh x = coshFloat x
tanh x = tanhFloat x
(**) x y = powerFloat x y
logBase x y = log y / log x
asinh x = log (x + sqrt (1.0+x*x))
acosh x = log (x + (x+1.0) * sqrt ((x-1.0)/(x+1.0)))
atanh x = log ((x+1.0) / sqrt (1.0-x*x))
instance RealFloat Float where
floatRadix _ = FLT_RADIX -- from float.h
floatDigits _ = FLT_MANT_DIG -- ditto
floatRange _ = (FLT_MIN_EXP, FLT_MAX_EXP) -- ditto
decodeFloat (F# f#)
= case decodeFloat# f# of
(# exp#, s#, d# #) -> (J# s# d#, I# exp#)
encodeFloat (S# i) j = int_encodeFloat# i j
encodeFloat (J# s# d#) e = encodeFloat# s# d# e
exponent x = case decodeFloat x of
(m,n) -> if m == 0 then 0 else n + floatDigits x
significand x = case decodeFloat x of
(m,_) -> encodeFloat m (negate (floatDigits x))
scaleFloat k x = case decodeFloat x of
(m,n) -> encodeFloat m (n+k)
isNaN x = 0 /= isFloatNaN x
isInfinite x = 0 /= isFloatInfinite x
isDenormalized x = 0 /= isFloatDenormalized x
isNegativeZero x = 0 /= isFloatNegativeZero x
isIEEE _ = True
instance Show Float where
showsPrec x = showSigned showFloat x
showList = showList__ (showsPrec 0)
\end{code}
%*********************************************************
%* *
\subsection{Type @Double@}
%* *
%*********************************************************
\begin{code}
instance Eq Double where
(D# x) == (D# y) = x ==## y
instance Ord Double where
(D# x) `compare` (D# y) | x <## y = LT
| x ==## y = EQ
| otherwise = GT
(D# x) < (D# y) = x <## y
(D# x) <= (D# y) = x <=## y
(D# x) >= (D# y) = x >=## y
(D# x) > (D# y) = x >## y
instance Num Double where
(+) x y = plusDouble x y
(-) x y = minusDouble x y
negate x = negateDouble x
(*) x y = timesDouble x y
abs x | x >= 0.0 = x
| otherwise = negateDouble x
signum x | x == 0.0 = 0
| x > 0.0 = 1
| otherwise = negate 1
{-# INLINE fromInteger #-}
-- See comments with Num Float
fromInteger (S# i#) = case (int2Double# i#) of { d# -> D# d# }
fromInteger (J# s# d#) = encodeDouble# s# d# 0
instance Real Double where
toRational x = (m%1)*(b%1)^^n
where (m,n) = decodeFloat x
b = floatRadix x
instance Fractional Double where
(/) x y = divideDouble x y
fromRational x = fromRat x
recip x = 1.0 / x
instance Floating Double where
pi = 3.141592653589793238
exp x = expDouble x
log x = logDouble x
sqrt x = sqrtDouble x
sin x = sinDouble x
cos x = cosDouble x
tan x = tanDouble x
asin x = asinDouble x
acos x = acosDouble x
atan x = atanDouble x
sinh x = sinhDouble x
cosh x = coshDouble x
tanh x = tanhDouble x
(**) x y = powerDouble x y
logBase x y = log y / log x
asinh x = log (x + sqrt (1.0+x*x))
acosh x = log (x + (x+1.0) * sqrt ((x-1.0)/(x+1.0)))
atanh x = log ((x+1.0) / sqrt (1.0-x*x))
{-# RULES "truncate/Double->Int" truncate = double2Int #-}
instance RealFrac Double where
{-# SPECIALIZE properFraction :: Double -> (Int, Double) #-}
{-# SPECIALIZE round :: Double -> Int #-}
{-# SPECIALIZE properFraction :: Double -> (Integer, Double) #-}
{-# SPECIALIZE round :: Double -> Integer #-}
-- ceiling, floor, and truncate are all small
{-# INLINE ceiling #-}
{-# INLINE floor #-}
{-# INLINE truncate #-}
properFraction x
= case (decodeFloat x) of { (m,n) ->
let b = floatRadix x in
if n >= 0 then
(fromInteger m * fromInteger b ^ n, 0.0)
else
case (quotRem m (b^(negate n))) of { (w,r) ->
(fromInteger w, encodeFloat r n)
}
}
truncate x = case properFraction x of
(n,_) -> n
round x = case properFraction x of
(n,r) -> let
m = if r < 0.0 then n - 1 else n + 1
half_down = abs r - 0.5
in
case (compare half_down 0.0) of
LT -> n
EQ -> if even n then n else m
GT -> m
ceiling x = case properFraction x of
(n,r) -> if r > 0.0 then n + 1 else n
floor x = case properFraction x of
(n,r) -> if r < 0.0 then n - 1 else n
instance RealFloat Double where
floatRadix _ = FLT_RADIX -- from float.h
floatDigits _ = DBL_MANT_DIG -- ditto
floatRange _ = (DBL_MIN_EXP, DBL_MAX_EXP) -- ditto
decodeFloat (D# x#)
= case decodeDouble# x# of
(# exp#, s#, d# #) -> (J# s# d#, I# exp#)
encodeFloat (S# i) j = int_encodeDouble# i j
encodeFloat (J# s# d#) e = encodeDouble# s# d# e
exponent x = case decodeFloat x of
(m,n) -> if m == 0 then 0 else n + floatDigits x
significand x = case decodeFloat x of
(m,_) -> encodeFloat m (negate (floatDigits x))
scaleFloat k x = case decodeFloat x of
(m,n) -> encodeFloat m (n+k)
isNaN x = 0 /= isDoubleNaN x
isInfinite x = 0 /= isDoubleInfinite x
isDenormalized x = 0 /= isDoubleDenormalized x
isNegativeZero x = 0 /= isDoubleNegativeZero x
isIEEE _ = True
instance Show Double where
showsPrec x = showSigned showFloat x
showList = showList__ (showsPrec 0)
\end{code}
%*********************************************************
%* *
\subsection{@Enum@ instances}
%* *
%*********************************************************
The @Enum@ instances for Floats and Doubles are slightly unusual.
The @toEnum@ function truncates numbers to Int. The definitions
of @enumFrom@ and @enumFromThen@ allow floats to be used in arithmetic
series: [0,0.1 .. 1.0]. However, roundoff errors make these somewhat
dubious. This example may have either 10 or 11 elements, depending on
how 0.1 is represented.
NOTE: The instances for Float and Double do not make use of the default
methods for @enumFromTo@ and @enumFromThenTo@, as these rely on there being
a `non-lossy' conversion to and from Ints. Instead we make use of the
1.2 default methods (back in the days when Enum had Ord as a superclass)
for these (@numericEnumFromTo@ and @numericEnumFromThenTo@ below.)
\begin{code}
instance Enum Float where
succ x = x + 1
pred x = x - 1
toEnum = int2Float
fromEnum = fromInteger . truncate -- may overflow
enumFrom = numericEnumFrom
enumFromTo = numericEnumFromTo
enumFromThen = numericEnumFromThen
enumFromThenTo = numericEnumFromThenTo
instance Enum Double where
succ x = x + 1
pred x = x - 1
toEnum = int2Double
fromEnum = fromInteger . truncate -- may overflow
enumFrom = numericEnumFrom
enumFromTo = numericEnumFromTo
enumFromThen = numericEnumFromThen
enumFromThenTo = numericEnumFromThenTo
\end{code}
%*********************************************************
%* *
\subsection{Printing floating point}
%* *
%*********************************************************
\begin{code}
-- | Show a signed 'RealFloat' value to full precision
-- using standard decimal notation for arguments whose absolute value lies
-- between @0.1@ and @9,999,999@, and scientific notation otherwise.
showFloat :: (RealFloat a) => a -> ShowS
showFloat x = showString (formatRealFloat FFGeneric Nothing x)
-- These are the format types. This type is not exported.
data FFFormat = FFExponent | FFFixed | FFGeneric
formatRealFloat :: (RealFloat a) => FFFormat -> Maybe Int -> a -> String
formatRealFloat fmt decs x
| isNaN x = "NaN"
| isInfinite x = if x < 0 then "-Infinity" else "Infinity"
| x < 0 || isNegativeZero x = '-':doFmt fmt (floatToDigits (toInteger base) (-x))
| otherwise = doFmt fmt (floatToDigits (toInteger base) x)
where
base = 10
doFmt format (is, e) =
let ds = map intToDigit is in
case format of
FFGeneric ->
doFmt (if e < 0 || e > 7 then FFExponent else FFFixed)
(is,e)
FFExponent ->
case decs of
Nothing ->
let show_e' = show (e-1) in
case ds of
"0" -> "0.0e0"
[d] -> d : ".0e" ++ show_e'
(d:ds') -> d : '.' : ds' ++ "e" ++ show_e'
Just dec ->
let dec' = max dec 1 in
case is of
[0] -> '0' :'.' : take dec' (repeat '0') ++ "e0"
_ ->
let
(ei,is') = roundTo base (dec'+1) is
(d:ds') = map intToDigit (if ei > 0 then init is' else is')
in
d:'.':ds' ++ 'e':show (e-1+ei)
FFFixed ->
let
mk0 ls = case ls of { "" -> "0" ; _ -> ls}
in
case decs of
Nothing
| e <= 0 -> "0." ++ replicate (-e) '0' ++ ds
| otherwise ->
let
f 0 s rs = mk0 (reverse s) ++ '.':mk0 rs
f n s "" = f (n-1) ('0':s) ""
f n s (r:rs) = f (n-1) (r:s) rs
in
f e "" ds
Just dec ->
let dec' = max dec 0 in
if e >= 0 then
let
(ei,is') = roundTo base (dec' + e) is
(ls,rs) = splitAt (e+ei) (map intToDigit is')
in
mk0 ls ++ (if null rs then "" else '.':rs)
else
let
(ei,is') = roundTo base dec' (replicate (-e) 0 ++ is)
d:ds' = map intToDigit (if ei > 0 then is' else 0:is')
in
d : (if null ds' then "" else '.':ds')
roundTo :: Int -> Int -> [Int] -> (Int,[Int])
roundTo base d is =
case f d is of
x@(0,_) -> x
(1,xs) -> (1, 1:xs)
where
b2 = base `div` 2
f n [] = (0, replicate n 0)
f 0 (x:_) = (if x >= b2 then 1 else 0, [])
f n (i:xs)
| i' == base = (1,0:ds)
| otherwise = (0,i':ds)
where
(c,ds) = f (n-1) xs
i' = c + i
-- Based on "Printing Floating-Point Numbers Quickly and Accurately"
-- by R.G. Burger and R.K. Dybvig in PLDI 96.
-- This version uses a much slower logarithm estimator. It should be improved.
-- | 'floatToDigits' takes a base and a non-negative 'RealFloat' number,
-- and returns a list of digits and an exponent.
-- In particular, if @x>=0@, and
--
-- > floatToDigits base x = ([d1,d2,...,dn], e)
--
-- then
--
-- (1) @n >= 1@
--
-- (2) @x = 0.d1d2...dn * (base**e)@
--
-- (3) @0 <= di <= base-1@
floatToDigits :: (RealFloat a) => Integer -> a -> ([Int], Int)
floatToDigits _ 0 = ([0], 0)
floatToDigits base x =
let
(f0, e0) = decodeFloat x
(minExp0, _) = floatRange x
p = floatDigits x
b = floatRadix x
minExp = minExp0 - p -- the real minimum exponent
-- Haskell requires that f be adjusted so denormalized numbers
-- will have an impossibly low exponent. Adjust for this.
(f, e) =
let n = minExp - e0 in
if n > 0 then (f0 `div` (b^n), e0+n) else (f0, e0)
(r, s, mUp, mDn) =
if e >= 0 then
let be = b^ e in
if f == b^(p-1) then
(f*be*b*2, 2*b, be*b, b)
else
(f*be*2, 2, be, be)
else
if e > minExp && f == b^(p-1) then
(f*b*2, b^(-e+1)*2, b, 1)
else
(f*2, b^(-e)*2, 1, 1)
k =
let
k0 =
if b == 2 && base == 10 then
-- logBase 10 2 is slightly bigger than 3/10 so
-- the following will err on the low side. Ignoring
-- the fraction will make it err even more.
-- Haskell promises that p-1 <= logBase b f < p.
(p - 1 + e0) * 3 `div` 10
else
ceiling ((log (fromInteger (f+1)) +
fromInteger (int2Integer e) * log (fromInteger b)) /
log (fromInteger base))
--WAS: fromInt e * log (fromInteger b))
fixup n =
if n >= 0 then
if r + mUp <= expt base n * s then n else fixup (n+1)
else
if expt base (-n) * (r + mUp) <= s then n else fixup (n+1)
in
fixup k0
gen ds rn sN mUpN mDnN =
let
(dn, rn') = (rn * base) `divMod` sN
mUpN' = mUpN * base
mDnN' = mDnN * base
in
case (rn' < mDnN', rn' + mUpN' > sN) of
(True, False) -> dn : ds
(False, True) -> dn+1 : ds
(True, True) -> if rn' * 2 < sN then dn : ds else dn+1 : ds
(False, False) -> gen (dn:ds) rn' sN mUpN' mDnN'
rds =
if k >= 0 then
gen [] r (s * expt base k) mUp mDn
else
let bk = expt base (-k) in
gen [] (r * bk) s (mUp * bk) (mDn * bk)
in
(map fromIntegral (reverse rds), k)
\end{code}
%*********************************************************
%* *
\subsection{Converting from a Rational to a RealFloat
%* *
%*********************************************************
[In response to a request for documentation of how fromRational works,
Joe Fasel writes:] A quite reasonable request! This code was added to
the Prelude just before the 1.2 release, when Lennart, working with an
early version of hbi, noticed that (read . show) was not the identity
for floating-point numbers. (There was a one-bit error about half the
time.) The original version of the conversion function was in fact
simply a floating-point divide, as you suggest above. The new version
is, I grant you, somewhat denser.
Unfortunately, Joe's code doesn't work! Here's an example:
main = putStr (shows (1.82173691287639817263897126389712638972163e-300::Double) "\n")
This program prints
0.0000000000000000
instead of
1.8217369128763981e-300
Here's Joe's code:
\begin{pseudocode}
fromRat :: (RealFloat a) => Rational -> a
fromRat x = x'
where x' = f e
-- If the exponent of the nearest floating-point number to x
-- is e, then the significand is the integer nearest xb^(-e),
-- where b is the floating-point radix. We start with a good
-- guess for e, and if it is correct, the exponent of the
-- floating-point number we construct will again be e. If
-- not, one more iteration is needed.
f e = if e' == e then y else f e'
where y = encodeFloat (round (x * (1 % b)^^e)) e
(_,e') = decodeFloat y
b = floatRadix x'
-- We obtain a trial exponent by doing a floating-point
-- division of x's numerator by its denominator. The
-- result of this division may not itself be the ultimate
-- result, because of an accumulation of three rounding
-- errors.
(s,e) = decodeFloat (fromInteger (numerator x) `asTypeOf` x'
/ fromInteger (denominator x))
\end{pseudocode}
Now, here's Lennart's code (which works)
\begin{code}
-- | Converts a 'Rational' value into any type in class 'RealFloat'.
{-# SPECIALISE fromRat :: Rational -> Double,
Rational -> Float #-}
fromRat :: (RealFloat a) => Rational -> a
-- Deal with special cases first, delegating the real work to fromRat'
fromRat (n :% 0) | n > 0 = 1/0 -- +Infinity
| n == 0 = 0/0 -- NaN
| n < 0 = -1/0 -- -Infinity
fromRat (n :% d) | n > 0 = fromRat' (n :% d)
| n == 0 = encodeFloat 0 0 -- Zero
| n < 0 = - fromRat' ((-n) :% d)
-- Conversion process:
-- Scale the rational number by the RealFloat base until
-- it lies in the range of the mantissa (as used by decodeFloat/encodeFloat).
-- Then round the rational to an Integer and encode it with the exponent
-- that we got from the scaling.
-- To speed up the scaling process we compute the log2 of the number to get
-- a first guess of the exponent.
fromRat' :: (RealFloat a) => Rational -> a
-- Invariant: argument is strictly positive
fromRat' x = r
where b = floatRadix r
p = floatDigits r
(minExp0, _) = floatRange r
minExp = minExp0 - p -- the real minimum exponent
xMin = toRational (expt b (p-1))
xMax = toRational (expt b p)
p0 = (integerLogBase b (numerator x) - integerLogBase b (denominator x) - p) `max` minExp
f = if p0 < 0 then 1 % expt b (-p0) else expt b p0 % 1
(x', p') = scaleRat (toRational b) minExp xMin xMax p0 (x / f)
r = encodeFloat (round x') p'
-- Scale x until xMin <= x < xMax, or p (the exponent) <= minExp.
scaleRat :: Rational -> Int -> Rational -> Rational -> Int -> Rational -> (Rational, Int)
scaleRat b minExp xMin xMax p x
| p <= minExp = (x, p)
| x >= xMax = scaleRat b minExp xMin xMax (p+1) (x/b)
| x < xMin = scaleRat b minExp xMin xMax (p-1) (x*b)
| otherwise = (x, p)
-- Exponentiation with a cache for the most common numbers.
minExpt, maxExpt :: Int
minExpt = 0
maxExpt = 1100
expt :: Integer -> Int -> Integer
expt base n =
if base == 2 && n >= minExpt && n <= maxExpt then
expts!n
else
base^n
expts :: Array Int Integer
expts = array (minExpt,maxExpt) [(n,2^n) | n <- [minExpt .. maxExpt]]
-- Compute the (floor of the) log of i in base b.
-- Simplest way would be just divide i by b until it's smaller then b, but that would
-- be very slow! We are just slightly more clever.
integerLogBase :: Integer -> Integer -> Int
integerLogBase b i
| i < b = 0
| otherwise = doDiv (i `div` (b^l)) l
where
-- Try squaring the base first to cut down the number of divisions.
l = 2 * integerLogBase (b*b) i
doDiv :: Integer -> Int -> Int
doDiv x y
| x < b = y
| otherwise = doDiv (x `div` b) (y+1)
\end{code}
%*********************************************************
%* *
\subsection{Floating point numeric primops}
%* *
%*********************************************************
Definitions of the boxed PrimOps; these will be
used in the case of partial applications, etc.
\begin{code}
plusFloat, minusFloat, timesFloat, divideFloat :: Float -> Float -> Float
plusFloat (F# x) (F# y) = F# (plusFloat# x y)
minusFloat (F# x) (F# y) = F# (minusFloat# x y)
timesFloat (F# x) (F# y) = F# (timesFloat# x y)
divideFloat (F# x) (F# y) = F# (divideFloat# x y)
negateFloat :: Float -> Float
negateFloat (F# x) = F# (negateFloat# x)
gtFloat, geFloat, eqFloat, neFloat, ltFloat, leFloat :: Float -> Float -> Bool
gtFloat (F# x) (F# y) = gtFloat# x y
geFloat (F# x) (F# y) = geFloat# x y
eqFloat (F# x) (F# y) = eqFloat# x y
neFloat (F# x) (F# y) = neFloat# x y
ltFloat (F# x) (F# y) = ltFloat# x y
leFloat (F# x) (F# y) = leFloat# x y
float2Int :: Float -> Int
float2Int (F# x) = I# (float2Int# x)
int2Float :: Int -> Float
int2Float (I# x) = F# (int2Float# x)
expFloat, logFloat, sqrtFloat :: Float -> Float
sinFloat, cosFloat, tanFloat :: Float -> Float
asinFloat, acosFloat, atanFloat :: Float -> Float
sinhFloat, coshFloat, tanhFloat :: Float -> Float
expFloat (F# x) = F# (expFloat# x)
logFloat (F# x) = F# (logFloat# x)
sqrtFloat (F# x) = F# (sqrtFloat# x)
sinFloat (F# x) = F# (sinFloat# x)
cosFloat (F# x) = F# (cosFloat# x)
tanFloat (F# x) = F# (tanFloat# x)
asinFloat (F# x) = F# (asinFloat# x)
acosFloat (F# x) = F# (acosFloat# x)
atanFloat (F# x) = F# (atanFloat# x)
sinhFloat (F# x) = F# (sinhFloat# x)
coshFloat (F# x) = F# (coshFloat# x)
tanhFloat (F# x) = F# (tanhFloat# x)
powerFloat :: Float -> Float -> Float
powerFloat (F# x) (F# y) = F# (powerFloat# x y)
-- definitions of the boxed PrimOps; these will be
-- used in the case of partial applications, etc.
plusDouble, minusDouble, timesDouble, divideDouble :: Double -> Double -> Double
plusDouble (D# x) (D# y) = D# (x +## y)
minusDouble (D# x) (D# y) = D# (x -## y)
timesDouble (D# x) (D# y) = D# (x *## y)
divideDouble (D# x) (D# y) = D# (x /## y)
negateDouble :: Double -> Double
negateDouble (D# x) = D# (negateDouble# x)
gtDouble, geDouble, eqDouble, neDouble, leDouble, ltDouble :: Double -> Double -> Bool
gtDouble (D# x) (D# y) = x >## y
geDouble (D# x) (D# y) = x >=## y
eqDouble (D# x) (D# y) = x ==## y
neDouble (D# x) (D# y) = x /=## y
ltDouble (D# x) (D# y) = x <## y
leDouble (D# x) (D# y) = x <=## y
double2Int :: Double -> Int
double2Int (D# x) = I# (double2Int# x)
int2Double :: Int -> Double
int2Double (I# x) = D# (int2Double# x)
double2Float :: Double -> Float
double2Float (D# x) = F# (double2Float# x)
float2Double :: Float -> Double
float2Double (F# x) = D# (float2Double# x)
expDouble, logDouble, sqrtDouble :: Double -> Double
sinDouble, cosDouble, tanDouble :: Double -> Double
asinDouble, acosDouble, atanDouble :: Double -> Double
sinhDouble, coshDouble, tanhDouble :: Double -> Double
expDouble (D# x) = D# (expDouble# x)
logDouble (D# x) = D# (logDouble# x)
sqrtDouble (D# x) = D# (sqrtDouble# x)
sinDouble (D# x) = D# (sinDouble# x)
cosDouble (D# x) = D# (cosDouble# x)
tanDouble (D# x) = D# (tanDouble# x)
asinDouble (D# x) = D# (asinDouble# x)
acosDouble (D# x) = D# (acosDouble# x)
atanDouble (D# x) = D# (atanDouble# x)
sinhDouble (D# x) = D# (sinhDouble# x)
coshDouble (D# x) = D# (coshDouble# x)
tanhDouble (D# x) = D# (tanhDouble# x)
powerDouble :: Double -> Double -> Double
powerDouble (D# x) (D# y) = D# (x **## y)
\end{code}
\begin{code}
foreign import ccall unsafe "__encodeFloat"
encodeFloat# :: Int# -> ByteArray# -> Int -> Float
foreign import ccall unsafe "__int_encodeFloat"
int_encodeFloat# :: Int# -> Int -> Float
foreign import ccall unsafe "isFloatNaN" isFloatNaN :: Float -> Int
foreign import ccall unsafe "isFloatInfinite" isFloatInfinite :: Float -> Int
foreign import ccall unsafe "isFloatDenormalized" isFloatDenormalized :: Float -> Int
foreign import ccall unsafe "isFloatNegativeZero" isFloatNegativeZero :: Float -> Int
foreign import ccall unsafe "__encodeDouble"
encodeDouble# :: Int# -> ByteArray# -> Int -> Double
foreign import ccall unsafe "__int_encodeDouble"
int_encodeDouble# :: Int# -> Int -> Double
foreign import ccall unsafe "isDoubleNaN" isDoubleNaN :: Double -> Int
foreign import ccall unsafe "isDoubleInfinite" isDoubleInfinite :: Double -> Int
foreign import ccall unsafe "isDoubleDenormalized" isDoubleDenormalized :: Double -> Int
foreign import ccall unsafe "isDoubleNegativeZero" isDoubleNegativeZero :: Double -> Int
\end{code}
%*********************************************************
%* *
\subsection{Coercion rules}
%* *
%*********************************************************
\begin{code}
{-# RULES
"fromIntegral/Int->Float" fromIntegral = int2Float
"fromIntegral/Int->Double" fromIntegral = int2Double
"realToFrac/Float->Float" realToFrac = id :: Float -> Float
"realToFrac/Float->Double" realToFrac = float2Double
"realToFrac/Double->Float" realToFrac = double2Float
"realToFrac/Double->Double" realToFrac = id :: Double -> Double
#-}
\end{code}
|