1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
|
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE BangPatterns #-}
-----------------------------------------------------------------------------
-- |
-- Module : GHC.Foreign
-- Copyright : (c) The University of Glasgow, 2008-2011
-- License : see libraries/base/LICENSE
--
-- Maintainer : libraries@haskell.org
-- Stability : internal
-- Portability : non-portable
--
-- Foreign marshalling support for CStrings with configurable encodings
--
-----------------------------------------------------------------------------
module GHC.Foreign (
-- * C strings with a configurable encoding
-- conversion of C strings into Haskell strings
--
peekCString,
peekCStringLen,
-- conversion of Haskell strings into C strings
--
newCString,
newCStringLen,
-- conversion of Haskell strings into C strings using temporary storage
--
withCString,
withCStringLen,
withCStringsLen,
charIsRepresentable,
) where
import Foreign.Marshal.Array
import Foreign.C.Types
import Foreign.Ptr
import Foreign.Storable
import Data.Word
-- Imports for the locale-encoding version of marshallers
import Data.Tuple (fst)
import GHC.Show ( show )
import Foreign.Marshal.Alloc
import Foreign.ForeignPtr
import GHC.Debug
import GHC.List
import GHC.Num
import GHC.Base
import GHC.IO
import GHC.IO.Exception
import GHC.IO.Buffer
import GHC.IO.Encoding.Types
c_DEBUG_DUMP :: Bool
c_DEBUG_DUMP = False
putDebugMsg :: String -> IO ()
putDebugMsg | c_DEBUG_DUMP = debugLn
| otherwise = const (return ())
-- These definitions are identical to those in Foreign.C.String, but copied in here to avoid a cycle:
type CString = Ptr CChar
type CStringLen = (Ptr CChar, Int)
-- exported functions
-- ------------------
-- | Marshal a NUL terminated C string into a Haskell string.
--
peekCString :: TextEncoding -> CString -> IO String
peekCString enc cp = do
sz <- lengthArray0 nUL cp
peekEncodedCString enc (cp, sz * cCharSize)
-- | Marshal a C string with explicit length into a Haskell string.
--
peekCStringLen :: TextEncoding -> CStringLen -> IO String
peekCStringLen = peekEncodedCString
-- | Marshal a Haskell string into a NUL terminated C string.
--
-- * the Haskell string may /not/ contain any NUL characters
--
-- * new storage is allocated for the C string and must be
-- explicitly freed using 'Foreign.Marshal.Alloc.free' or
-- 'Foreign.Marshal.Alloc.finalizerFree'.
--
newCString :: TextEncoding -> String -> IO CString
newCString enc = liftM fst . newEncodedCString enc True
-- | Marshal a Haskell string into a C string (ie, character array) with
-- explicit length information.
--
-- * new storage is allocated for the C string and must be
-- explicitly freed using 'Foreign.Marshal.Alloc.free' or
-- 'Foreign.Marshal.Alloc.finalizerFree'.
--
newCStringLen :: TextEncoding -> String -> IO CStringLen
newCStringLen enc = newEncodedCString enc False
-- | Marshal a Haskell string into a NUL terminated C string using temporary
-- storage.
--
-- * the Haskell string may /not/ contain any NUL characters
--
-- * the memory is freed when the subcomputation terminates (either
-- normally or via an exception), so the pointer to the temporary
-- storage must /not/ be used after this.
--
withCString :: TextEncoding -> String -> (CString -> IO a) -> IO a
withCString enc s act = withEncodedCString enc True s $ \(cp, _sz) -> act cp
-- | Marshal a Haskell string into a C string (ie, character array)
-- in temporary storage, with explicit length information.
--
-- * the memory is freed when the subcomputation terminates (either
-- normally or via an exception), so the pointer to the temporary
-- storage must /not/ be used after this.
--
withCStringLen :: TextEncoding -> String -> (CStringLen -> IO a) -> IO a
withCStringLen enc = withEncodedCString enc False
-- | Marshal a list of Haskell strings into an array of NUL terminated C strings
-- using temporary storage.
--
-- * the Haskell strings may /not/ contain any NUL characters
--
-- * the memory is freed when the subcomputation terminates (either
-- normally or via an exception), so the pointer to the temporary
-- storage must /not/ be used after this.
--
withCStringsLen :: TextEncoding
-> [String]
-> (Int -> Ptr CString -> IO a)
-> IO a
withCStringsLen enc strs f = go [] strs
where
go cs (s:ss) = withCString enc s $ \c -> go (c:cs) ss
go cs [] = withArrayLen (reverse cs) f
-- | Determines whether a character can be accurately encoded in a
-- 'Foreign.C.String.CString'.
--
-- Pretty much anyone who uses this function is in a state of sin because
-- whether or not a character is encodable will, in general, depend on the
-- context in which it occurs.
charIsRepresentable :: TextEncoding -> Char -> IO Bool
-- We force enc explicitly because `catch` is lazy in its
-- first argument. We would probably like to force c as well,
-- but unfortunately worker/wrapper produces very bad code for
-- that.
--
-- TODO If this function is performance-critical, it would probably
-- pay to use a single-character specialization of withCString. That
-- would allow worker/wrapper to actually eliminate Char boxes, and
-- would also get rid of the completely unnecessary cons allocation.
charIsRepresentable !enc c =
withCString enc [c]
(\cstr -> do str <- peekCString enc cstr
case str of
[ch] | ch == c -> pure True
_ -> pure False)
`catch`
\(_ :: IOException) -> pure False
-- auxiliary definitions
-- ----------------------
-- C's end of string character
nUL :: CChar
nUL = 0
-- Size of a CChar in bytes
cCharSize :: Int
cCharSize = sizeOf (undefined :: CChar)
{-# INLINE peekEncodedCString #-}
peekEncodedCString :: TextEncoding -- ^ Encoding of CString
-> CStringLen
-> IO String -- ^ String in Haskell terms
peekEncodedCString (TextEncoding { mkTextDecoder = mk_decoder }) (p, sz_bytes)
= bracket mk_decoder close $ \decoder -> do
let chunk_size = sz_bytes `max` 1 -- Decode buffer chunk size in characters: one iteration only for ASCII
from0 <- fmap (\fp -> bufferAdd sz_bytes (emptyBuffer fp sz_bytes ReadBuffer)) $ newForeignPtr_ (castPtr p)
to <- newCharBuffer chunk_size WriteBuffer
let go !iteration from = do
(why, from', to') <- encode decoder from to
if isEmptyBuffer from'
then
-- No input remaining: @why@ will be InputUnderflow, but we don't care
withBuffer to' $ peekArray (bufferElems to')
else do
-- Input remaining: what went wrong?
putDebugMsg ("peekEncodedCString: " ++ show iteration ++ " " ++ show why)
(from'', to'') <- case why of InvalidSequence -> recover decoder from' to' -- These conditions are equally bad because
InputUnderflow -> recover decoder from' to' -- they indicate malformed/truncated input
OutputUnderflow -> return (from', to') -- We will have more space next time round
putDebugMsg ("peekEncodedCString: from " ++ summaryBuffer from ++ " " ++ summaryBuffer from' ++ " " ++ summaryBuffer from'')
putDebugMsg ("peekEncodedCString: to " ++ summaryBuffer to ++ " " ++ summaryBuffer to' ++ " " ++ summaryBuffer to'')
to_chars <- withBuffer to'' $ peekArray (bufferElems to'')
fmap (to_chars++) $ go (iteration + 1) from''
go (0 :: Int) from0
{-# INLINE withEncodedCString #-}
withEncodedCString :: TextEncoding -- ^ Encoding of CString to create
-> Bool -- ^ Null-terminate?
-> String -- ^ String to encode
-> (CStringLen -> IO a) -- ^ Worker that can safely use the allocated memory
-> IO a
withEncodedCString (TextEncoding { mkTextEncoder = mk_encoder }) null_terminate s act
= bracket mk_encoder close $ \encoder -> withArrayLen s $ \sz p -> do
from <- fmap (\fp -> bufferAdd sz (emptyBuffer fp sz ReadBuffer)) $ newForeignPtr_ p
let go !iteration to_sz_bytes = do
putDebugMsg ("withEncodedCString: " ++ show iteration)
allocaBytes to_sz_bytes $ \to_p -> do
-- See Note [Check *before* fill in withEncodedCString] about why
-- this is subtle.
mb_res <- tryFillBuffer encoder null_terminate from to_p to_sz_bytes
case mb_res of
Nothing -> go (iteration + 1) (to_sz_bytes * 2)
Just to_buf -> withCStringBuffer to_buf null_terminate act
-- If the input string is ASCII, this value will ensure we only allocate once
go (0 :: Int) (cCharSize * (sz + 1))
withCStringBuffer :: Buffer Word8 -> Bool -> (CStringLen -> IO r) -> IO r
withCStringBuffer to_buf null_terminate act = do
let bytes = bufferElems to_buf
withBuffer to_buf $ \to_ptr -> do
when null_terminate $ pokeElemOff to_ptr (bufR to_buf) 0
act (castPtr to_ptr, bytes) -- NB: the length information is specified as being in *bytes*
{-# INLINE newEncodedCString #-}
newEncodedCString :: TextEncoding -- ^ Encoding of CString to create
-> Bool -- ^ Null-terminate?
-> String -- ^ String to encode
-> IO CStringLen
newEncodedCString (TextEncoding { mkTextEncoder = mk_encoder }) null_terminate s
= bracket mk_encoder close $ \encoder -> withArrayLen s $ \sz p -> do
from <- fmap (\fp -> bufferAdd sz (emptyBuffer fp sz ReadBuffer)) $ newForeignPtr_ p
let go !iteration to_p to_sz_bytes = do
putDebugMsg ("newEncodedCString: " ++ show iteration)
mb_res <- tryFillBuffer encoder null_terminate from to_p to_sz_bytes
case mb_res of
Nothing -> do
let to_sz_bytes' = to_sz_bytes * 2
to_p' <- reallocBytes to_p to_sz_bytes'
go (iteration + 1) to_p' to_sz_bytes'
Just to_buf -> withCStringBuffer to_buf null_terminate return
-- If the input string is ASCII, this value will ensure we only allocate once
let to_sz_bytes = cCharSize * (sz + 1)
to_p <- mallocBytes to_sz_bytes
go (0 :: Int) to_p to_sz_bytes
tryFillBuffer :: TextEncoder dstate -> Bool -> Buffer Char -> Ptr Word8 -> Int
-> IO (Maybe (Buffer Word8))
tryFillBuffer encoder null_terminate from0 to_p to_sz_bytes = do
to_fp <- newForeignPtr_ to_p
go (0 :: Int) (from0, emptyBuffer to_fp to_sz_bytes WriteBuffer)
where
go !iteration (from, to) = do
(why, from', to') <- encode encoder from to
putDebugMsg ("tryFillBufferAndCall: " ++ show iteration ++ " " ++ show why ++ " " ++ summaryBuffer from ++ " " ++ summaryBuffer from')
if isEmptyBuffer from'
then if null_terminate && bufferAvailable to' == 0
then return Nothing -- We had enough for the string but not the terminator: ask the caller for more buffer
else return (Just to')
else case why of -- We didn't consume all of the input
InputUnderflow -> recover encoder from' to' >>= go (iteration + 1) -- These conditions are equally bad
InvalidSequence -> recover encoder from' to' >>= go (iteration + 1) -- since the input was truncated/invalid
OutputUnderflow -> return Nothing -- Oops, out of buffer during decoding: ask the caller for more
{-
Note [Check *before* fill in withEncodedCString]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's very important that the size check and readjustment peformed by tryFillBuffer
happens before the continuation is called. The size check is the part which can
fail, the call to the continuation never fails and so the caller should respond
first to the size check failing and *then* call the continuation. Making this evident
to the compiler avoids historic space leaks.
In a previous interation of this code we had a pattern that, somewhat simplified,
looked like this:
go :: State -> (State -> IO a) -> IO a
go state action =
case tryFillBufferAndCall state action of
Left state' -> go state' action
Right result -> result
`tryFillBufferAndCall` performed some checks, and then we either called action,
or we modified the state and tried again.
This went wrong because `action` can be a function closure containing a reference to
a lazy data structure. If we call action directly, without retaining any references
to action, that is fine. The data structure is consumed as it is produced and we operate
in constant space.
However the failure branch `go state' action` *does* capture a reference to action.
This went wrong because the reference to action in the failure branch only becomes
unreachable *after* action returns. This means we keep alive the function closure
for `action` until `action` returns. Which in turn keeps alive the *whole* lazy list
via `action` until the action has fully run.
This went wrong in #20107, where the continuation kept an entire lazy bytestring alive
rather than allowing it to be incrementaly consumed and collected.
-}
|