summaryrefslogtreecommitdiff
path: root/libraries/base/GHC/Generics.hs
blob: b89d628526f3877dcc79fb945a2f5e6967b398ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
{-# LANGUAGE Trustworthy            #-}
{-# LANGUAGE CPP                    #-}
{-# LANGUAGE NoImplicitPrelude      #-}
{-# LANGUAGE TypeSynonymInstances   #-}
{-# LANGUAGE TypeOperators          #-}
{-# LANGUAGE KindSignatures         #-}
{-# LANGUAGE TypeFamilies           #-}
{-# LANGUAGE StandaloneDeriving     #-}
{-# LANGUAGE DeriveGeneric          #-}

-----------------------------------------------------------------------------
-- |
-- Module      :  GHC.Generics
-- Copyright   :  (c) Universiteit Utrecht 2010-2011, University of Oxford 2012-2013
-- License     :  see libraries/base/LICENSE
--
-- Maintainer  :  libraries@haskell.org
-- Stability   :  internal
-- Portability :  non-portable
--
-- @since 4.6.0.0
--
-- If you're using @GHC.Generics@, you should consider using the
-- <http://hackage.haskell.org/package/generic-deriving> package, which
-- contains many useful generic functions.

module GHC.Generics  (
-- * Introduction
--
-- |
--
-- Datatype-generic functions are are based on the idea of converting values of
-- a datatype @T@ into corresponding values of a (nearly) isomorphic type @'Rep' T@.
-- The type @'Rep' T@ is
-- built from a limited set of type constructors, all provided by this module. A
-- datatype-generic function is then an overloaded function with instances
-- for most of these type constructors, together with a wrapper that performs
-- the mapping between @T@ and @'Rep' T@. By using this technique, we merely need
-- a few generic instances in order to implement functionality that works for any
-- representable type.
--
-- Representable types are collected in the 'Generic' class, which defines the
-- associated type 'Rep' as well as conversion functions 'from' and 'to'.
-- Typically, you will not define 'Generic' instances by hand, but have the compiler
-- derive them for you.

-- ** Representing datatypes
--
-- |
--
-- The key to defining your own datatype-generic functions is to understand how to
-- represent datatypes using the given set of type constructors.
--
-- Let us look at an example first:
--
-- @
-- data Tree a = Leaf a | Node (Tree a) (Tree a)
--   deriving 'Generic'
-- @
--
-- The above declaration (which requires the language pragma @DeriveGeneric@)
-- causes the following representation to be generated:
--
-- @
-- instance 'Generic' (Tree a) where
--   type 'Rep' (Tree a) =
--     'D1' D1Tree
--       ('C1' C1_0Tree
--          ('S1' 'NoSelector' ('Par0' a))
--        ':+:'
--        'C1' C1_1Tree
--          ('S1' 'NoSelector' ('Rec0' (Tree a))
--           ':*:'
--           'S1' 'NoSelector' ('Rec0' (Tree a))))
--   ...
-- @
--
-- /Hint:/ You can obtain information about the code being generated from GHC by passing
-- the @-ddump-deriv@ flag. In GHCi, you can expand a type family such as 'Rep' using
-- the @:kind!@ command.
--
#if 0
-- /TODO:/ Newer GHC versions abandon the distinction between 'Par0' and 'Rec0' and will
-- use 'Rec0' everywhere.
--
#endif
-- This is a lot of information! However, most of it is actually merely meta-information
-- that makes names of datatypes and constructors and more available on the type level.
--
-- Here is a reduced representation for 'Tree' with nearly all meta-information removed,
-- for now keeping only the most essential aspects:
--
-- @
-- instance 'Generic' (Tree a) where
--   type 'Rep' (Tree a) =
--     'Par0' a
--     ':+:'
--     ('Rec0' (Tree a) ':*:' 'Rec0' (Tree a))
-- @
--
-- The @Tree@ datatype has two constructors. The representation of individual constructors
-- is combined using the binary type constructor ':+:'.
--
-- The first constructor consists of a single field, which is the parameter @a@. This is
-- represented as @'Par0' a@.
--
-- The second constructor consists of two fields. Each is a recursive field of type @Tree a@,
-- represented as @'Rec0' (Tree a)@. Representations of individual fields are combined using
-- the binary type constructor ':*:'.
--
-- Now let us explain the additional tags being used in the complete representation:
--
--    * The @'S1' 'NoSelector'@ indicates that there is no record field selector associated with
--      this field of the constructor.
--
--    * The @'C1' C1_0Tree@ and @'C1' C1_1Tree@ invocations indicate that the enclosed part is
--      the representation of the first and second constructor of datatype @Tree@, respectively.
--      Here, @C1_0Tree@ and @C1_1Tree@ are datatypes generated by the compiler as part of
--      @deriving 'Generic'@. These datatypes are proxy types with no values. They are useful
--      because they are instances of the type class 'Constructor'. This type class can be used
--      to obtain information about the constructor in question, such as its name
--      or infix priority.
--
--    * The @'D1' D1Tree@ tag indicates that the enclosed part is the representation of the
--      datatype @Tree@. Again, @D1Tree@ is a datatype generated by the compiler. It is a
--      proxy type, and is useful by being an instance of class 'Datatype', which
--      can be used to obtain the name of a datatype, the module it has been defined in, and
--      whether it has been defined using @data@ or @newtype@.

-- ** Derived and fundamental representation types
--
-- |
--
-- There are many datatype-generic functions that do not distinguish between positions that
-- are parameters or positions that are recursive calls. There are also many datatype-generic
-- functions that do not care about the names of datatypes and constructors at all. To keep
-- the number of cases to consider in generic functions in such a situation to a minimum,
-- it turns out that many of the type constructors introduced above are actually synonyms,
-- defining them to be variants of a smaller set of constructors.

-- *** Individual fields of constructors: 'K1'
--
-- |
--
-- The type constructors 'Par0' and 'Rec0' are variants of 'K1':
--
-- @
-- type 'Par0' = 'K1' 'P'
-- type 'Rec0' = 'K1' 'R'
-- @
--
-- Here, 'P' and 'R' are type-level proxies again that do not have any associated values.

-- *** Meta information: 'M1'
--
-- |
--
-- The type constructors 'S1', 'C1' and 'D1' are all variants of 'M1':
--
-- @
-- type 'S1' = 'M1' 'S'
-- type 'C1' = 'M1' 'C'
-- type 'D1' = 'M1' 'D'
-- @
--
-- The types 'S', 'C' and 'D' are once again type-level proxies, just used to create
-- several variants of 'M1'.

-- *** Additional generic representation type constructors
--
-- |
--
-- Next to 'K1', 'M1', ':+:' and ':*:' there are a few more type constructors that occur
-- in the representations of other datatypes.

-- **** Empty datatypes: 'V1'
--
-- |
--
-- For empty datatypes, 'V1' is used as a representation. For example,
--
-- @
-- data Empty deriving 'Generic'
-- @
--
-- yields
--
-- @
-- instance 'Generic' Empty where
--   type 'Rep' Empty = 'D1' D1Empty 'V1'
-- @

-- **** Constructors without fields: 'U1'
--
-- |
--
-- If a constructor has no arguments, then 'U1' is used as its representation. For example
-- the representation of 'Bool' is
--
-- @
-- instance 'Generic' Bool where
--   type 'Rep' Bool =
--     'D1' D1Bool
--       ('C1' C1_0Bool 'U1' ':+:' 'C1' C1_1Bool 'U1')
-- @

-- *** Representation of types with many constructors or many fields
--
-- |
--
-- As ':+:' and ':*:' are just binary operators, one might ask what happens if the
-- datatype has more than two constructors, or a constructor with more than two
-- fields. The answer is simple: the operators are used several times, to combine
-- all the constructors and fields as needed. However, users /should not rely on
-- a specific nesting strategy/ for ':+:' and ':*:' being used. The compiler is
-- free to choose any nesting it prefers. (In practice, the current implementation
-- tries to produce a more or less balanced nesting, so that the traversal of the
-- structure of the datatype from the root to a particular component can be performed
-- in logarithmic rather than linear time.)

-- ** Defining datatype-generic functions
--
-- |
--
-- A datatype-generic function comprises two parts:
--
--    1. /Generic instances/ for the function, implementing it for most of the representation
--       type constructors introduced above.
--
--    2. A /wrapper/ that for any datatype that is in `Generic`, performs the conversion
--       between the original value and its `Rep`-based representation and then invokes the
--       generic instances.
--
-- As an example, let us look at a function 'encode' that produces a naive, but lossless
-- bit encoding of values of various datatypes. So we are aiming to define a function
--
-- @
-- encode :: 'Generic' a => a -> [Bool]
-- @
--
-- where we use 'Bool' as our datatype for bits.
--
-- For part 1, we define a class @Encode'@. Perhaps surprisingly, this class is parameterized
-- over a type constructor @f@ of kind @* -> *@. This is a technicality: all the representation
-- type constructors operate with kind @* -> *@ as base kind. But the type argument is never
-- being used. This may be changed at some point in the future. The class has a single method,
-- and we use the type we want our final function to have, but we replace the occurrences of
-- the generic type argument @a@ with @f p@ (where the @p@ is any argument; it will not be used).
--
-- > class Encode' f where
-- >   encode' :: f p -> [Bool]
--
-- With the goal in mind to make @encode@ work on @Tree@ and other datatypes, we now define
-- instances for the representation type constructors 'V1', 'U1', ':+:', ':*:', 'K1', and 'M1'.

-- *** Definition of the generic representation types
--
-- |
--
-- In order to be able to do this, we need to know the actual definitions of these types:
--
-- @
-- data    'V1'        p                       -- lifted version of Empty
-- data    'U1'        p = 'U1'                  -- lifted version of ()
-- data    (':+:') f g p = 'L1' (f p) | 'R1' (g p) -- lifted version of 'Either'
-- data    (':*:') f g p = (f p) ':*:' (g p)     -- lifted version of (,)
-- newtype 'K1'    i c p = 'K1' { 'unK1' :: c }    -- a container for a c
-- newtype 'M1'  i t f p = 'M1' { 'unM1' :: f p }  -- a wrapper
-- @
--
-- So, 'U1' is just the unit type, ':+:' is just a binary choice like 'Either',
-- ':*:' is a binary pair like the pair constructor @(,)@, and 'K1' is a value
-- of a specific type @c@, and 'M1' wraps a value of the generic type argument,
-- which in the lifted world is an @f p@ (where we do not care about @p@).

-- *** Generic instances
--
-- |
--
-- The instance for 'V1' is slightly awkward (but also rarely used):
--
-- @
-- instance Encode' 'V1' where
--   encode' x = undefined
-- @
--
-- There are no values of type @V1 p@ to pass (except undefined), so this is
-- actually impossible. One can ask why it is useful to define an instance for
-- 'V1' at all in this case? Well, an empty type can be used as an argument to
-- a non-empty type, and you might still want to encode the resulting type.
-- As a somewhat contrived example, consider @[Empty]@, which is not an empty
-- type, but contains just the empty list. The 'V1' instance ensures that we
-- can call the generic function on such types.
--
-- There is exactly one value of type 'U1', so encoding it requires no
-- knowledge, and we can use zero bits:
--
-- @
-- instance Encode' 'U1' where
--   encode' 'U1' = []
-- @
--
-- In the case for ':+:', we produce 'False' or 'True' depending on whether
-- the constructor of the value provided is located on the left or on the right:
--
-- @
-- instance (Encode' f, Encode' g) => Encode' (f ':+:' g) where
--   encode' ('L1' x) = False : encode' x
--   encode' ('R1' x) = True  : encode' x
-- @
--
-- In the case for ':*:', we append the encodings of the two subcomponents:
--
-- @
-- instance (Encode' f, Encode' g) => Encode' (f ':*:' g) where
--   encode' (x ':*:' y) = encode' x ++ encode' y
-- @
--
-- The case for 'K1' is rather interesting. Here, we call the final function
-- 'encode' that we yet have to define, recursively. We will use another type
-- class 'Encode' for that function:
--
-- @
-- instance (Encode c) => Encode' ('K1' i c) where
--   encode' ('K1' x) = encode x
-- @
--
-- Note how 'Par0' and 'Rec0' both being mapped to 'K1' allows us to define
-- a uniform instance here.
--
-- Similarly, we can define a uniform instance for 'M1', because we completely
-- disregard all meta-information:
--
-- @
-- instance (Encode' f) => Encode' ('M1' i t f) where
--   encode' ('M1' x) = encode' x
-- @
--
-- Unlike in 'K1', the instance for 'M1' refers to 'encode'', not 'encode'.

-- *** The wrapper and generic default
--
-- |
--
-- We now define class 'Encode' for the actual 'encode' function:
--
-- @
-- class Encode a where
--   encode :: a -> [Bool]
--   default encode :: ('Generic' a) => a -> [Bool]
--   encode x = encode' ('from' x)
-- @
--
-- The incoming 'x' is converted using 'from', then we dispatch to the
-- generic instances using 'encode''. We use this as a default definition
-- for 'encode'. We need the 'default encode' signature because ordinary
-- Haskell default methods must not introduce additional class constraints,
-- but our generic default does.
--
-- Defining a particular instance is now as simple as saying
--
-- @
-- instance (Encode a) => Encode (Tree a)
-- @
--
#if 0
-- /TODO:/ Add usage example?
--
#endif
-- The generic default is being used. In the future, it will hopefully be
-- possible to use @deriving Encode@ as well, but GHC does not yet support
-- that syntax for this situation.
--
-- Having 'Encode' as a class has the advantage that we can define
-- non-generic special cases, which is particularly useful for abstract
-- datatypes that have no structural representation. For example, given
-- a suitable integer encoding function 'encodeInt', we can define
--
-- @
-- instance Encode Int where
--   encode = encodeInt
-- @

-- *** Omitting generic instances
--
-- |
--
-- It is not always required to provide instances for all the generic
-- representation types, but omitting instances restricts the set of
-- datatypes the functions will work for:
--
--    * If no ':+:' instance is given, the function may still work for
--      empty datatypes or datatypes that have a single constructor,
--      but will fail on datatypes with more than one constructor.
--
--    * If no ':*:' instance is given, the function may still work for
--      datatypes where each constructor has just zero or one field,
--      in particular for enumeration types.
--
--    * If no 'K1' instance is given, the function may still work for
--      enumeration types, where no constructor has any fields.
--
--    * If no 'V1' instance is given, the function may still work for
--      any datatype that is not empty.
--
--    * If no 'U1' instance is given, the function may still work for
--      any datatype where each constructor has at least one field.
--
-- An 'M1' instance is always required (but it can just ignore the
-- meta-information, as is the case for 'encode' above).
#if 0
-- *** Using meta-information
--
-- |
--
-- TODO
#endif
-- ** Generic constructor classes
--
-- |
--
-- Datatype-generic functions as defined above work for a large class
-- of datatypes, including parameterized datatypes. (We have used 'Tree'
-- as our example above, which is of kind @* -> *@.) However, the
-- 'Generic' class ranges over types of kind @*@, and therefore, the
-- resulting generic functions (such as 'encode') must be parameterized
-- by a generic type argument of kind @*@.
--
-- What if we want to define generic classes that range over type
-- constructors (such as 'Functor', 'Traversable', or 'Foldable')?

-- *** The 'Generic1' class
--
-- |
--
-- Like 'Generic', there is a class 'Generic1' that defines a
-- representation 'Rep1' and conversion functions 'from1' and 'to1',
-- only that 'Generic1' ranges over types of kind @* -> *@.
-- The 'Generic1' class is also derivable.
--
-- The representation 'Rep1' is ever so slightly different from 'Rep'.
-- Let us look at 'Tree' as an example again:
--
-- @
-- data Tree a = Leaf a | Node (Tree a) (Tree a)
--   deriving 'Generic1'
-- @
--
-- The above declaration causes the following representation to be generated:
--
-- instance 'Generic1' Tree where
--   type 'Rep1' Tree =
--     'D1' D1Tree
--       ('C1' C1_0Tree
--          ('S1' 'NoSelector' 'Par1')
--        ':+:'
--        'C1' C1_1Tree
--          ('S1' 'NoSelector' ('Rec1' Tree)
--           ':*:'
--           'S1' 'NoSelector' ('Rec1' Tree)))
--   ...
--
-- The representation reuses 'D1', 'C1', 'S1' (and thereby 'M1') as well
-- as ':+:' and ':*:' from 'Rep'. (This reusability is the reason that we
-- carry around the dummy type argument for kind-@*@-types, but there are
-- already enough different names involved without duplicating each of
-- these.)
--
-- What's different is that we now use 'Par1' to refer to the parameter
-- (and that parameter, which used to be @a@), is not mentioned explicitly
-- by name anywhere; and we use 'Rec1' to refer to a recursive use of @Tree a@.

-- *** Representation of @* -> *@ types
--
-- |
--
-- Unlike 'Par0' and 'Rec0', the 'Par1' and 'Rec1' type constructors do not
-- map to 'K1'. They are defined directly, as follows:
--
-- @
-- newtype 'Par1'   p = 'Par1' { 'unPar1' ::   p } -- gives access to parameter p
-- newtype 'Rec1' f p = 'Rec1' { 'unRec1' :: f p } -- a wrapper
-- @
--
-- In 'Par1', the parameter @p@ is used for the first time, whereas 'Rec1' simply
-- wraps an application of @f@ to @p@.
--
-- Note that 'K1' (in the guise of 'Rec0') can still occur in a 'Rep1' representation,
-- namely when the datatype has a field that does not mention the parameter.
--
-- The declaration
--
-- @
-- data WithInt a = WithInt Int a
--   deriving 'Generic1'
-- @
--
-- yields
--
-- @
-- class 'Rep1' WithInt where
--   type 'Rep1' WithInt =
--     'D1' D1WithInt
--       ('C1' C1_0WithInt
--         ('S1' 'NoSelector' ('Rec0' Int)
--          ':*:'
--          'S1' 'NoSelector' 'Par1'))
-- @
--
-- If the parameter @a@ appears underneath a composition of other type constructors,
-- then the representation involves composition, too:
--
-- @
-- data Rose a = Fork a [Rose a]
-- @
--
-- yields
--
-- @
-- class 'Rep1' Rose where
--   type 'Rep1' Rose =
--     'D1' D1Rose
--       ('C1' C1_0Rose
--         ('S1' 'NoSelector' 'Par1'
--          ':*:'
--          'S1' 'NoSelector' ([] ':.:' 'Rec1' Rose)
-- @
--
-- where
--
-- @
-- newtype (':.:') f g p = 'Comp1' { 'unComp1' :: f (g p) }
-- @
#if 0
-- *** Limitations
--
-- |
--
-- /TODO/
--
-- /TODO:/ Also clear up confusion about 'Rec0' and 'Rec1' not really indicating recursion.
--
#endif
-----------------------------------------------------------------------------

  -- * Generic representation types
    V1, U1(..), Par1(..), Rec1(..), K1(..), M1(..)
  , (:+:)(..), (:*:)(..), (:.:)(..)

  -- ** Synonyms for convenience
  , Rec0, Par0, R, P
  , D1, C1, S1, D, C, S

  -- * Meta-information
  , Datatype(..), Constructor(..), Selector(..), NoSelector
  , Fixity(..), Associativity(..), Arity(..), prec

  -- * Generic type classes
  , Generic(..), Generic1(..)

  ) where

-- We use some base types
import GHC.Types
import Data.Maybe ( Maybe(..) )
import Data.Either ( Either(..) )

-- Needed for instances
import GHC.Classes ( Eq, Ord )
import GHC.Read ( Read )
import GHC.Show ( Show )
import Data.Proxy

--------------------------------------------------------------------------------
-- Representation types
--------------------------------------------------------------------------------

-- | Void: used for datatypes without constructors
data V1 p

-- | Unit: used for constructors without arguments
data U1 p = U1
  deriving (Eq, Ord, Read, Show, Generic)

-- | Used for marking occurrences of the parameter
newtype Par1 p = Par1 { unPar1 :: p }
  deriving (Eq, Ord, Read, Show, Generic)

-- | Recursive calls of kind * -> *
newtype Rec1 f p = Rec1 { unRec1 :: f p }
  deriving (Eq, Ord, Read, Show, Generic)

-- | Constants, additional parameters and recursion of kind *
newtype K1 i c p = K1 { unK1 :: c }
  deriving (Eq, Ord, Read, Show, Generic)

-- | Meta-information (constructor names, etc.)
newtype M1 i c f p = M1 { unM1 :: f p }
  deriving (Eq, Ord, Read, Show, Generic)

-- | Sums: encode choice between constructors
infixr 5 :+:
data (:+:) f g p = L1 (f p) | R1 (g p)
  deriving (Eq, Ord, Read, Show, Generic)

-- | Products: encode multiple arguments to constructors
infixr 6 :*:
data (:*:) f g p = f p :*: g p
  deriving (Eq, Ord, Read, Show, Generic)

-- | Composition of functors
infixr 7 :.:
newtype (:.:) f g p = Comp1 { unComp1 :: f (g p) }
  deriving (Eq, Ord, Read, Show, Generic)

-- | Tag for K1: recursion (of kind *)
data R
-- | Tag for K1: parameters (other than the last)
data P

-- | Type synonym for encoding recursion (of kind *)
type Rec0  = K1 R
-- | Type synonym for encoding parameters (other than the last)
type Par0  = K1 P
{-# DEPRECATED Par0 "'Par0' is no longer used; use 'Rec0' instead" #-} -- deprecated in 7.6
{-# DEPRECATED P "'P' is no longer used; use 'R' instead" #-} -- deprecated in 7.6

-- | Tag for M1: datatype
data D
-- | Tag for M1: constructor
data C
-- | Tag for M1: record selector
data S

-- | Type synonym for encoding meta-information for datatypes
type D1 = M1 D

-- | Type synonym for encoding meta-information for constructors
type C1 = M1 C

-- | Type synonym for encoding meta-information for record selectors
type S1 = M1 S


-- | Class for datatypes that represent datatypes
class Datatype d where
  -- | The name of the datatype (unqualified)
  datatypeName :: t d (f :: * -> *) a -> [Char]
  -- | The fully-qualified name of the module where the type is declared
  moduleName   :: t d (f :: * -> *) a -> [Char]
  -- | Marks if the datatype is actually a newtype
  isNewtype    :: t d (f :: * -> *) a -> Bool
  isNewtype _ = False


-- | Class for datatypes that represent records
class Selector s where
  -- | The name of the selector
  selName :: t s (f :: * -> *) a -> [Char]

-- | Used for constructor fields without a name
data NoSelector

instance Selector NoSelector where selName _ = ""

-- | Class for datatypes that represent data constructors
class Constructor c where
  -- | The name of the constructor
  conName :: t c (f :: * -> *) a -> [Char]

  -- | The fixity of the constructor
  conFixity :: t c (f :: * -> *) a -> Fixity
  conFixity _ = Prefix

  -- | Marks if this constructor is a record
  conIsRecord :: t c (f :: * -> *) a -> Bool
  conIsRecord _ = False


-- | Datatype to represent the arity of a tuple.
data Arity = NoArity | Arity Int
  deriving (Eq, Show, Ord, Read, Generic)

-- | Datatype to represent the fixity of a constructor. An infix
-- | declaration directly corresponds to an application of 'Infix'.
data Fixity = Prefix | Infix Associativity Int
  deriving (Eq, Show, Ord, Read, Generic)

-- | Get the precedence of a fixity value.
prec :: Fixity -> Int
prec Prefix      = 10
prec (Infix _ n) = n

-- | Datatype to represent the associativity of a constructor
data Associativity = LeftAssociative
                   | RightAssociative
                   | NotAssociative
  deriving (Eq, Show, Ord, Read, Generic)

-- | Representable types of kind *.
-- This class is derivable in GHC with the DeriveGeneric flag on.
class Generic a where
  -- | Generic representation type
  type Rep a :: * -> *
  -- | Convert from the datatype to its representation
  from  :: a -> (Rep a) x
  -- | Convert from the representation to the datatype
  to    :: (Rep a) x -> a


-- | Representable types of kind * -> *.
-- This class is derivable in GHC with the DeriveGeneric flag on.
class Generic1 f where
  -- | Generic representation type
  type Rep1 f :: * -> *
  -- | Convert from the datatype to its representation
  from1  :: f a -> (Rep1 f) a
  -- | Convert from the representation to the datatype
  to1    :: (Rep1 f) a -> f a


--------------------------------------------------------------------------------
-- Derived instances
--------------------------------------------------------------------------------
deriving instance Generic [a]
deriving instance Generic (Maybe a)
deriving instance Generic (Either a b)
deriving instance Generic Bool
deriving instance Generic Ordering
deriving instance Generic ()
deriving instance Generic ((,) a b)
deriving instance Generic ((,,) a b c)
deriving instance Generic ((,,,) a b c d)
deriving instance Generic ((,,,,) a b c d e)
deriving instance Generic ((,,,,,) a b c d e f)
deriving instance Generic ((,,,,,,) a b c d e f g)

deriving instance Generic1 []
deriving instance Generic1 Maybe
deriving instance Generic1 (Either a)
deriving instance Generic1 ((,) a)
deriving instance Generic1 ((,,) a b)
deriving instance Generic1 ((,,,) a b c)
deriving instance Generic1 ((,,,,) a b c d)
deriving instance Generic1 ((,,,,,) a b c d e)
deriving instance Generic1 ((,,,,,,) a b c d e f)

--------------------------------------------------------------------------------
-- Primitive representations
--------------------------------------------------------------------------------

-- Int
data D_Int
data C_Int

instance Datatype D_Int where
  datatypeName _ = "Int"
  moduleName   _ = "GHC.Int"

instance Constructor C_Int where
  conName _ = "" -- JPM: I'm not sure this is the right implementation...

instance Generic Int where
  type Rep Int = D1 D_Int (C1 C_Int (S1 NoSelector (Rec0 Int)))
  from x = M1 (M1 (M1 (K1 x)))
  to (M1 (M1 (M1 (K1 x)))) = x


-- Float
data D_Float
data C_Float

instance Datatype D_Float where
  datatypeName _ = "Float"
  moduleName   _ = "GHC.Float"

instance Constructor C_Float where
  conName _ = "" -- JPM: I'm not sure this is the right implementation...

instance Generic Float where
  type Rep Float = D1 D_Float (C1 C_Float (S1 NoSelector (Rec0 Float)))
  from x = M1 (M1 (M1 (K1 x)))
  to (M1 (M1 (M1 (K1 x)))) = x


-- Double
data D_Double
data C_Double

instance Datatype D_Double where
  datatypeName _ = "Double"
  moduleName   _ = "GHC.Float"

instance Constructor C_Double where
  conName _ = "" -- JPM: I'm not sure this is the right implementation...

instance Generic Double where
  type Rep Double = D1 D_Double (C1 C_Double (S1 NoSelector (Rec0 Double)))
  from x = M1 (M1 (M1 (K1 x)))
  to (M1 (M1 (M1 (K1 x)))) = x


-- Char
data D_Char
data C_Char

instance Datatype D_Char where
  datatypeName _ = "Char"
  moduleName   _ = "GHC.Base"

instance Constructor C_Char where
  conName _ = "" -- JPM: I'm not sure this is the right implementation...

instance Generic Char where
  type Rep Char = D1 D_Char (C1 C_Char (S1 NoSelector (Rec0 Char)))
  from x = M1 (M1 (M1 (K1 x)))
  to (M1 (M1 (M1 (K1 x)))) = x

deriving instance Generic (Proxy t)