1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
|
{-# OPTIONS -fno-implicit-prelude #-}
#undef DEBUG_DUMP
#undef DEBUG
-- -----------------------------------------------------------------------------
-- $Id: Handle.hsc,v 1.1 2001/06/28 14:15:03 simonmar Exp $
--
-- (c) The University of Glasgow, 1994-2001
--
-- This module defines the basic operations on I/O "handles".
module GHC.Handle (
withHandle, withHandle', withHandle_,
wantWritableHandle, wantReadableHandle, wantSeekableHandle,
newEmptyBuffer, allocateBuffer, readCharFromBuffer, writeCharIntoBuffer,
flushWriteBufferOnly, flushWriteBuffer, flushReadBuffer, fillReadBuffer,
read_off,
ioe_closedHandle, ioe_EOF, ioe_notReadable, ioe_notWritable,
stdin, stdout, stderr,
IOMode(..), IOModeEx(..), openFile, openFileEx, openFd,
hClose, hFileSize, hIsEOF, isEOF, hLookAhead, hSetBuffering, hSetBinaryMode,
hFlush,
HandlePosn(..), hGetPosn, hSetPosn,
SeekMode(..), hSeek,
hIsOpen, hIsClosed, hIsReadable, hIsWritable, hGetBuffering, hIsSeekable,
hSetEcho, hGetEcho, hIsTerminalDevice,
ioeGetFileName, ioeGetErrorString, ioeGetHandle,
#ifdef DEBUG_DUMP
puts,
#endif
) where
#include "HsCore.h"
import Control.Monad
import Data.Bits
import Data.Maybe
import Foreign
import Foreign.C
import GHC.Posix
import GHC.Real
import GHC.Arr
import GHC.Base
import GHC.Read ( Read )
import GHC.List
import GHC.IOBase
import GHC.Exception
import GHC.Enum
import GHC.Num ( Integer(..), Num(..) )
import GHC.Show
import GHC.Real ( toInteger )
import GHC.Conc
-- -----------------------------------------------------------------------------
-- TODO:
-- hWaitForInput blocks (should use a timeout)
-- unbuffered hGetLine is a bit dodgy
-- hSetBuffering: can't change buffering on a stream,
-- when the read buffer is non-empty? (no way to flush the buffer)
-- ---------------------------------------------------------------------------
-- Are files opened by default in text or binary mode, if the user doesn't
-- specify?
dEFAULT_OPEN_IN_BINARY_MODE :: Bool
dEFAULT_OPEN_IN_BINARY_MODE = False
-- ---------------------------------------------------------------------------
-- Creating a new handle
newFileHandle :: (MVar Handle__ -> IO ()) -> Handle__ -> IO Handle
newFileHandle finalizer hc = do
m <- newMVar hc
addMVarFinalizer m (finalizer m)
return (FileHandle m)
-- ---------------------------------------------------------------------------
-- Working with Handles
{-
In the concurrent world, handles are locked during use. This is done
by wrapping an MVar around the handle which acts as a mutex over
operations on the handle.
To avoid races, we use the following bracketing operations. The idea
is to obtain the lock, do some operation and replace the lock again,
whether the operation succeeded or failed. We also want to handle the
case where the thread receives an exception while processing the IO
operation: in these cases we also want to relinquish the lock.
There are three versions of @withHandle@: corresponding to the three
possible combinations of:
- the operation may side-effect the handle
- the operation may return a result
If the operation generates an error or an exception is raised, the
original handle is always replaced [ this is the case at the moment,
but we might want to revisit this in the future --SDM ].
-}
{-# INLINE withHandle #-}
withHandle :: String -> Handle -> (Handle__ -> IO (Handle__,a)) -> IO a
withHandle fun h@(FileHandle m) act = withHandle' fun h m act
withHandle fun h@(DuplexHandle r w) act = do
withHandle' fun h r act
withHandle' fun h w act
withHandle' fun h m act =
block $ do
h_ <- takeMVar m
checkBufferInvariants h_
(h',v) <- catchException (act h_)
(\ ex -> putMVar m h_ >> throw (augmentIOError ex fun h h_))
checkBufferInvariants h'
putMVar m h'
return v
{-# INLINE withHandle_ #-}
withHandle_ :: String -> Handle -> (Handle__ -> IO a) -> IO a
withHandle_ fun h@(FileHandle m) act = withHandle_' fun h m act
withHandle_ fun h@(DuplexHandle m _) act = withHandle_' fun h m act
withHandle_' fun h m act =
block $ do
h_ <- takeMVar m
checkBufferInvariants h_
v <- catchException (act h_)
(\ ex -> putMVar m h_ >> throw (augmentIOError ex fun h h_))
checkBufferInvariants h_
putMVar m h_
return v
withAllHandles__ :: String -> Handle -> (Handle__ -> IO Handle__) -> IO ()
withAllHandles__ fun h@(FileHandle m) act = withHandle__' fun h m act
withAllHandles__ fun h@(DuplexHandle r w) act = do
withHandle__' fun h r act
withHandle__' fun h w act
withHandle__' fun h m act =
block $ do
h_ <- takeMVar m
checkBufferInvariants h_
h' <- catchException (act h_)
(\ ex -> putMVar m h_ >> throw (augmentIOError ex fun h h_))
checkBufferInvariants h'
putMVar m h'
return ()
augmentIOError (IOException (IOError _ iot _ str fp)) fun h h_
= IOException (IOError (Just h) iot fun str filepath)
where filepath | Just _ <- fp = fp
| otherwise = Just (haFilePath h_)
augmentIOError other_exception _ _ _
= other_exception
-- ---------------------------------------------------------------------------
-- Wrapper for write operations.
wantWritableHandle :: String -> Handle -> (Handle__ -> IO a) -> IO a
wantWritableHandle fun h@(FileHandle m) act
= wantWritableHandle' fun h m act
wantWritableHandle fun h@(DuplexHandle _ m) act
= wantWritableHandle' fun h m act
-- ToDo: in the Duplex case, we don't need to checkWritableHandle
wantWritableHandle'
:: String -> Handle -> MVar Handle__
-> (Handle__ -> IO a) -> IO a
wantWritableHandle' fun h m act
= withHandle_' fun h m (checkWritableHandle act)
checkWritableHandle act handle_
= case haType handle_ of
ClosedHandle -> ioe_closedHandle
SemiClosedHandle -> ioe_closedHandle
ReadHandle -> ioe_notWritable
ReadWriteHandle -> do
let ref = haBuffer handle_
buf <- readIORef ref
new_buf <-
if not (bufferIsWritable buf)
then do b <- flushReadBuffer (haFD handle_) buf
return b{ bufState=WriteBuffer }
else return buf
writeIORef ref new_buf
act handle_
_other -> act handle_
-- ---------------------------------------------------------------------------
-- Wrapper for read operations.
wantReadableHandle :: String -> Handle -> (Handle__ -> IO a) -> IO a
wantReadableHandle fun h@(FileHandle m) act
= wantReadableHandle' fun h m act
wantReadableHandle fun h@(DuplexHandle m _) act
= wantReadableHandle' fun h m act
-- ToDo: in the Duplex case, we don't need to checkReadableHandle
wantReadableHandle'
:: String -> Handle -> MVar Handle__
-> (Handle__ -> IO a) -> IO a
wantReadableHandle' fun h m act
= withHandle_' fun h m (checkReadableHandle act)
checkReadableHandle act handle_ =
case haType handle_ of
ClosedHandle -> ioe_closedHandle
SemiClosedHandle -> ioe_closedHandle
AppendHandle -> ioe_notReadable
WriteHandle -> ioe_notReadable
ReadWriteHandle -> do
let ref = haBuffer handle_
buf <- readIORef ref
when (bufferIsWritable buf) $ do
new_buf <- flushWriteBuffer (haFD handle_) buf
writeIORef ref new_buf{ bufState=ReadBuffer }
act handle_
_other -> act handle_
-- ---------------------------------------------------------------------------
-- Wrapper for seek operations.
wantSeekableHandle :: String -> Handle -> (Handle__ -> IO a) -> IO a
wantSeekableHandle fun h@(DuplexHandle _ _) _act =
ioException (IOError (Just h) IllegalOperation fun
"handle is not seekable" Nothing)
wantSeekableHandle fun h@(FileHandle m) act =
withHandle_' fun h m (checkSeekableHandle act)
checkSeekableHandle act handle_ =
case haType handle_ of
ClosedHandle -> ioe_closedHandle
SemiClosedHandle -> ioe_closedHandle
AppendHandle -> ioe_notSeekable
_ | haIsBin handle_ -> act handle_
| otherwise -> ioe_notSeekable_notBin
-- -----------------------------------------------------------------------------
-- Handy IOErrors
ioe_closedHandle, ioe_EOF,
ioe_notReadable, ioe_notWritable,
ioe_notSeekable, ioe_notSeekable_notBin :: IO a
ioe_closedHandle = ioException
(IOError Nothing IllegalOperation ""
"handle is closed" Nothing)
ioe_EOF = ioException
(IOError Nothing EOF "" "" Nothing)
ioe_notReadable = ioException
(IOError Nothing IllegalOperation ""
"handle is not open for reading" Nothing)
ioe_notWritable = ioException
(IOError Nothing IllegalOperation ""
"handle is not open for writing" Nothing)
ioe_notSeekable = ioException
(IOError Nothing IllegalOperation ""
"handle is not seekable" Nothing)
ioe_notSeekable_notBin = ioException
(IOError Nothing IllegalOperation ""
"seek operations are only allowed on binary-mode handles" Nothing)
ioe_bufsiz :: Int -> IO a
ioe_bufsiz n = ioException
(IOError Nothing InvalidArgument "hSetBuffering"
("illegal buffer size " ++ showsPrec 9 n []) Nothing)
-- 9 => should be parens'ified.
-- -----------------------------------------------------------------------------
-- Handle Finalizers
-- For a duplex handle, we arrange that the read side points to the write side
-- (and hence keeps it alive if the read side is alive). This is done by
-- having the haType field of the read side be ReadSideHandle with a pointer
-- to the write side. The finalizer is then placed on the write side, and
-- the handle only gets finalized once, when both sides are no longer
-- required.
stdHandleFinalizer :: MVar Handle__ -> IO ()
stdHandleFinalizer m = do
h_ <- takeMVar m
flushWriteBufferOnly h_
handleFinalizer :: MVar Handle__ -> IO ()
handleFinalizer m = do
h_ <- takeMVar m
flushWriteBufferOnly h_
let fd = fromIntegral (haFD h_)
unlockFile fd
-- ToDo: closesocket() for a WINSOCK socket?
when (fd /= -1) (c_close fd >> return ())
return ()
-- ---------------------------------------------------------------------------
-- Grimy buffer operations
#ifdef DEBUG
checkBufferInvariants h_ = do
let ref = haBuffer h_
Buffer{ bufWPtr=w, bufRPtr=r, bufSize=size, bufState=state } <- readIORef ref
if not (
size > 0
&& r <= w
&& w <= size
&& ( r /= w || (r == 0 && w == 0) )
&& ( state /= WriteBuffer || r == 0 )
&& ( state /= WriteBuffer || w < size ) -- write buffer is never full
)
then error "buffer invariant violation"
else return ()
#else
checkBufferInvariants h_ = return ()
#endif
newEmptyBuffer :: RawBuffer -> BufferState -> Int -> Buffer
newEmptyBuffer b state size
= Buffer{ bufBuf=b, bufRPtr=0, bufWPtr=0, bufSize=size, bufState=state }
allocateBuffer :: Int -> BufferState -> IO Buffer
allocateBuffer sz@(I## size) state = IO $ \s ->
case newByteArray## size s of { (## s, b ##) ->
(## s, newEmptyBuffer b state sz ##) }
writeCharIntoBuffer :: RawBuffer -> Int -> Char -> IO Int
writeCharIntoBuffer slab (I## off) (C## c)
= IO $ \s -> case writeCharArray## slab off c s of
s -> (## s, I## (off +## 1##) ##)
readCharFromBuffer :: RawBuffer -> Int -> IO (Char, Int)
readCharFromBuffer slab (I## off)
= IO $ \s -> case readCharArray## slab off s of
(## s, c ##) -> (## s, (C## c, I## (off +## 1##)) ##)
dEFAULT_BUFFER_SIZE = (#const BUFSIZ) :: Int
getBuffer :: FD -> BufferState -> IO (IORef Buffer, BufferMode)
getBuffer fd state = do
buffer <- allocateBuffer dEFAULT_BUFFER_SIZE state
ioref <- newIORef buffer
is_tty <- fdIsTTY fd
let buffer_mode
| is_tty = LineBuffering
| otherwise = BlockBuffering Nothing
return (ioref, buffer_mode)
mkUnBuffer :: IO (IORef Buffer)
mkUnBuffer = do
buffer <- allocateBuffer 1 ReadBuffer
newIORef buffer
-- flushWriteBufferOnly flushes the buffer iff it contains pending write data.
flushWriteBufferOnly :: Handle__ -> IO ()
flushWriteBufferOnly h_ = do
let fd = haFD h_
ref = haBuffer h_
buf <- readIORef ref
new_buf <- if bufferIsWritable buf
then flushWriteBuffer fd buf
else return buf
writeIORef ref new_buf
-- flushBuffer syncs the file with the buffer, including moving the
-- file pointer backwards in the case of a read buffer.
flushBuffer :: Handle__ -> IO ()
flushBuffer h_ = do
let ref = haBuffer h_
buf <- readIORef ref
flushed_buf <-
case bufState buf of
ReadBuffer -> flushReadBuffer (haFD h_) buf
WriteBuffer -> flushWriteBuffer (haFD h_) buf
writeIORef ref flushed_buf
-- When flushing a read buffer, we seek backwards by the number of
-- characters in the buffer. The file descriptor must therefore be
-- seekable: attempting to flush the read buffer on an unseekable
-- handle is not allowed.
flushReadBuffer :: FD -> Buffer -> IO Buffer
flushReadBuffer fd buf
| bufferEmpty buf = return buf
| otherwise = do
let off = negate (bufWPtr buf - bufRPtr buf)
# ifdef DEBUG_DUMP
puts ("flushReadBuffer: new file offset = " ++ show off ++ "\n")
# endif
throwErrnoIfMinus1Retry "flushReadBuffer"
(c_lseek (fromIntegral fd) (fromIntegral off) (#const SEEK_CUR))
return buf{ bufWPtr=0, bufRPtr=0 }
flushWriteBuffer :: FD -> Buffer -> IO Buffer
flushWriteBuffer fd buf@Buffer{ bufBuf=b, bufRPtr=r, bufWPtr=w } = do
let bytes = w - r
#ifdef DEBUG_DUMP
puts ("flushWriteBuffer, fd=" ++ show fd ++ ", bytes=" ++ show bytes ++ "\n")
#endif
if bytes == 0
then return (buf{ bufRPtr=0, bufWPtr=0 })
else do
res <- throwErrnoIfMinus1RetryMayBlock "flushWriteBuffer"
(write_off (fromIntegral fd) b (fromIntegral r)
(fromIntegral bytes))
(threadWaitWrite fd)
let res' = fromIntegral res
if res' < bytes
then flushWriteBuffer fd (buf{ bufRPtr = r + res' })
else return buf{ bufRPtr=0, bufWPtr=0 }
foreign import "write_wrap" unsafe
write_off :: CInt -> RawBuffer -> Int -> CInt -> IO CInt
#def inline \
int write_wrap(int fd, void *ptr, HsInt off, int size) \
{ return write(fd, ptr + off, size); }
fillReadBuffer :: FD -> Bool -> Buffer -> IO Buffer
fillReadBuffer fd is_line
buf@Buffer{ bufBuf=b, bufRPtr=r, bufWPtr=w, bufSize=size } =
-- buffer better be empty:
assert (r == 0 && w == 0) $ do
fillReadBufferLoop fd is_line buf b w size
-- For a line buffer, we just get the first chunk of data to arrive,
-- and don't wait for the whole buffer to be full (but we *do* wait
-- until some data arrives). This isn't really line buffering, but it
-- appears to be what GHC has done for a long time, and I suspect it
-- is more useful than line buffering in most cases.
fillReadBufferLoop fd is_line buf b w size = do
let bytes = size - w
if bytes == 0 -- buffer full?
then return buf{ bufRPtr=0, bufWPtr=w }
else do
#ifdef DEBUG_DUMP
puts ("fillReadBufferLoop: bytes = " ++ show bytes ++ "\n")
#endif
res <- throwErrnoIfMinus1RetryMayBlock "fillReadBuffer"
(read_off fd b (fromIntegral w) (fromIntegral bytes))
(threadWaitRead fd)
let res' = fromIntegral res
#ifdef DEBUG_DUMP
puts ("fillReadBufferLoop: res' = " ++ show res' ++ "\n")
#endif
if res' == 0
then if w == 0
then ioe_EOF
else return buf{ bufRPtr=0, bufWPtr=w }
else if res' < bytes && not is_line
then fillReadBufferLoop fd is_line buf b (w+res') size
else return buf{ bufRPtr=0, bufWPtr=w+res' }
foreign import "read_wrap" unsafe
read_off :: FD -> RawBuffer -> Int -> CInt -> IO CInt
#def inline \
int read_wrap(int fd, void *ptr, HsInt off, int size) \
{ return read(fd, ptr + off, size); }
-- ---------------------------------------------------------------------------
-- Standard Handles
-- Three handles are allocated during program initialisation. The first
-- two manage input or output from the Haskell program's standard input
-- or output channel respectively. The third manages output to the
-- standard error channel. These handles are initially open.
fd_stdin = 0 :: FD
fd_stdout = 1 :: FD
fd_stderr = 2 :: FD
stdin :: Handle
stdin = unsafePerformIO $ do
-- ToDo: acquire lock
setNonBlockingFD fd_stdin
(buf, bmode) <- getBuffer fd_stdin ReadBuffer
spares <- newIORef BufferListNil
newFileHandle stdHandleFinalizer
(Handle__ { haFD = fd_stdin,
haType = ReadHandle,
haIsBin = dEFAULT_OPEN_IN_BINARY_MODE,
haBufferMode = bmode,
haFilePath = "<stdin>",
haBuffer = buf,
haBuffers = spares
})
stdout :: Handle
stdout = unsafePerformIO $ do
-- ToDo: acquire lock
-- We don't set non-blocking mode on stdout or sterr, because
-- some shells don't recover properly.
-- setNonBlockingFD fd_stdout
(buf, bmode) <- getBuffer fd_stdout WriteBuffer
spares <- newIORef BufferListNil
newFileHandle stdHandleFinalizer
(Handle__ { haFD = fd_stdout,
haType = WriteHandle,
haIsBin = dEFAULT_OPEN_IN_BINARY_MODE,
haBufferMode = bmode,
haFilePath = "<stdout>",
haBuffer = buf,
haBuffers = spares
})
stderr :: Handle
stderr = unsafePerformIO $ do
-- ToDo: acquire lock
-- We don't set non-blocking mode on stdout or sterr, because
-- some shells don't recover properly.
-- setNonBlockingFD fd_stderr
buffer <- mkUnBuffer
spares <- newIORef BufferListNil
newFileHandle stdHandleFinalizer
(Handle__ { haFD = fd_stderr,
haType = WriteHandle,
haIsBin = dEFAULT_OPEN_IN_BINARY_MODE,
haBufferMode = NoBuffering,
haFilePath = "<stderr>",
haBuffer = buffer,
haBuffers = spares
})
-- ---------------------------------------------------------------------------
-- Opening and Closing Files
{-
Computation `openFile file mode' allocates and returns a new, open
handle to manage the file `file'. It manages input if `mode'
is `ReadMode', output if `mode' is `WriteMode' or `AppendMode',
and both input and output if mode is `ReadWriteMode'.
If the file does not exist and it is opened for output, it should be
created as a new file. If `mode' is `WriteMode' and the file
already exists, then it should be truncated to zero length. The
handle is positioned at the end of the file if `mode' is
`AppendMode', and otherwise at the beginning (in which case its
internal position is 0).
Implementations should enforce, locally to the Haskell process,
multiple-reader single-writer locking on files, which is to say that
there may either be many handles on the same file which manage input,
or just one handle on the file which manages output. If any open or
semi-closed handle is managing a file for output, no new handle can be
allocated for that file. If any open or semi-closed handle is
managing a file for input, new handles can only be allocated if they
do not manage output.
Two files are the same if they have the same absolute name. An
implementation is free to impose stricter conditions.
-}
data IOMode = ReadMode | WriteMode | AppendMode | ReadWriteMode
deriving (Eq, Ord, Ix, Enum, Read, Show)
data IOModeEx
= BinaryMode IOMode
| TextMode IOMode
deriving (Eq, Read, Show)
addFilePathToIOError fun fp (IOException (IOError h iot _ str _))
= IOException (IOError h iot fun str (Just fp))
addFilePathToIOError _ _ other_exception
= other_exception
openFile :: FilePath -> IOMode -> IO Handle
openFile fp im =
catch
(openFile' fp (if dEFAULT_OPEN_IN_BINARY_MODE
then BinaryMode im
else TextMode im))
(\e -> throw (addFilePathToIOError "openFile" fp e))
openFileEx :: FilePath -> IOModeEx -> IO Handle
openFileEx fp m =
catch
(openFile' fp m)
(\e -> throw (addFilePathToIOError "openFileEx" fp e))
openFile' filepath ex_mode =
withCString filepath $ \ f ->
let
(mode, binary) =
case ex_mode of
BinaryMode bmo -> (bmo, True)
TextMode tmo -> (tmo, False)
oflags1 = case mode of
ReadMode -> read_flags
WriteMode -> write_flags
ReadWriteMode -> rw_flags
AppendMode -> append_flags
binary_flags
#ifdef HAVE_O_BINARY
| binary = o_BINARY
#endif
| otherwise = 0
oflags = oflags1 .|. binary_flags
in do
-- the old implementation had a complicated series of three opens,
-- which is perhaps because we have to be careful not to open
-- directories. However, the man pages I've read say that open()
-- always returns EISDIR if the file is a directory and was opened
-- for writing, so I think we're ok with a single open() here...
fd <- fromIntegral `liftM`
throwErrnoIfMinus1Retry "openFile"
(c_open f (fromIntegral oflags) 0o666)
openFd fd filepath mode binary
std_flags = o_NONBLOCK .|. o_NOCTTY
output_flags = std_flags .|. o_CREAT
read_flags = std_flags .|. o_RDONLY
write_flags = output_flags .|. o_WRONLY .|. o_TRUNC
rw_flags = output_flags .|. o_RDWR
append_flags = output_flags .|. o_WRONLY .|. o_APPEND
-- ---------------------------------------------------------------------------
-- openFd
openFd :: FD -> FilePath -> IOMode -> Bool -> IO Handle
openFd fd filepath mode binary = do
-- turn on non-blocking mode
setNonBlockingFD fd
let (ha_type, write) =
case mode of
ReadMode -> ( ReadHandle, False )
WriteMode -> ( WriteHandle, True )
ReadWriteMode -> ( ReadWriteHandle, True )
AppendMode -> ( AppendHandle, True )
-- open() won't tell us if it was a directory if we only opened for
-- reading, so check again.
fd_type <- fdType fd
case fd_type of
Directory ->
ioException (IOError Nothing InappropriateType "openFile"
"is a directory" Nothing)
Stream
| ReadWriteHandle <- ha_type -> mkDuplexHandle fd filepath binary
| otherwise -> mkFileHandle fd filepath ha_type binary
-- regular files need to be locked
RegularFile -> do
r <- lockFile (fromIntegral fd) (fromBool write) 1{-exclusive-}
when (r == -1) $
ioException (IOError Nothing ResourceBusy "openFile"
"file is locked" Nothing)
mkFileHandle fd filepath ha_type binary
foreign import "lockFile" unsafe
lockFile :: CInt -> CInt -> CInt -> IO CInt
foreign import "unlockFile" unsafe
unlockFile :: CInt -> IO CInt
mkFileHandle :: FD -> FilePath -> HandleType -> Bool -> IO Handle
mkFileHandle fd filepath ha_type binary = do
(buf, bmode) <- getBuffer fd (initBufferState ha_type)
spares <- newIORef BufferListNil
newFileHandle handleFinalizer
(Handle__ { haFD = fd,
haType = ha_type,
haIsBin = binary,
haBufferMode = bmode,
haFilePath = filepath,
haBuffer = buf,
haBuffers = spares
})
mkDuplexHandle :: FD -> FilePath -> Bool -> IO Handle
mkDuplexHandle fd filepath binary = do
(w_buf, w_bmode) <- getBuffer fd WriteBuffer
w_spares <- newIORef BufferListNil
let w_handle_ =
Handle__ { haFD = fd,
haType = WriteHandle,
haIsBin = binary,
haBufferMode = w_bmode,
haFilePath = filepath,
haBuffer = w_buf,
haBuffers = w_spares
}
write_side <- newMVar w_handle_
(r_buf, r_bmode) <- getBuffer fd ReadBuffer
r_spares <- newIORef BufferListNil
let r_handle_ =
Handle__ { haFD = fd,
haType = ReadSideHandle write_side,
haIsBin = binary,
haBufferMode = r_bmode,
haFilePath = filepath,
haBuffer = r_buf,
haBuffers = r_spares
}
read_side <- newMVar r_handle_
addMVarFinalizer write_side (handleFinalizer write_side)
return (DuplexHandle read_side write_side)
initBufferState ReadHandle = ReadBuffer
initBufferState _ = WriteBuffer
-- ---------------------------------------------------------------------------
-- Closing a handle
-- Computation `hClose hdl' makes handle `hdl' closed. Before the
-- computation finishes, any items buffered for output and not already
-- sent to the operating system are flushed as for `hFlush'.
-- For a duplex handle, we close&flush the write side, and just close
-- the read side.
hClose :: Handle -> IO ()
hClose h@(FileHandle m) = hClose' h m
hClose h@(DuplexHandle r w) = do
hClose' h w
withHandle__' "hClose" h r $ \ handle_ -> do
return handle_{ haFD = -1,
haType = ClosedHandle
}
hClose' h m =
withHandle__' "hClose" h m $ \ handle_ -> do
case haType handle_ of
ClosedHandle -> return handle_
_ -> do
let fd = fromIntegral (haFD handle_)
flushWriteBufferOnly handle_
throwErrnoIfMinus1Retry_ "hClose" (c_close fd)
-- free the spare buffers
writeIORef (haBuffers handle_) BufferListNil
-- unlock it
unlockFile fd
-- we must set the fd to -1, because the finalizer is going
-- to run eventually and try to close/unlock it.
return (handle_{ haFD = -1,
haType = ClosedHandle
})
-----------------------------------------------------------------------------
-- Detecting the size of a file
-- For a handle `hdl' which attached to a physical file, `hFileSize
-- hdl' returns the size of `hdl' in terms of the number of items
-- which can be read from `hdl'.
hFileSize :: Handle -> IO Integer
hFileSize handle =
withHandle_ "hFileSize" handle $ \ handle_ -> do
case haType handle_ of
ClosedHandle -> ioe_closedHandle
SemiClosedHandle -> ioe_closedHandle
_ -> do flushWriteBufferOnly handle_
r <- fdFileSize (haFD handle_)
if r /= -1
then return r
else ioException (IOError Nothing InappropriateType "hFileSize"
"not a regular file" Nothing)
-- ---------------------------------------------------------------------------
-- Detecting the End of Input
-- For a readable handle `hdl', `hIsEOF hdl' returns
-- `True' if no further input can be taken from `hdl' or for a
-- physical file, if the current I/O position is equal to the length of
-- the file. Otherwise, it returns `False'.
hIsEOF :: Handle -> IO Bool
hIsEOF handle =
catch
(do hLookAhead handle; return False)
(\e -> if isEOFError e then return True else throw e)
isEOF :: IO Bool
isEOF = hIsEOF stdin
-- ---------------------------------------------------------------------------
-- Looking ahead
-- hLookahead returns the next character from the handle without
-- removing it from the input buffer, blocking until a character is
-- available.
hLookAhead :: Handle -> IO Char
hLookAhead handle = do
wantReadableHandle "hLookAhead" handle $ \handle_ -> do
let ref = haBuffer handle_
fd = haFD handle_
is_line = haBufferMode handle_ == LineBuffering
buf <- readIORef ref
-- fill up the read buffer if necessary
new_buf <- if bufferEmpty buf
then fillReadBuffer fd is_line buf
else return buf
writeIORef ref new_buf
(c,_) <- readCharFromBuffer (bufBuf buf) (bufRPtr buf)
return c
-- ---------------------------------------------------------------------------
-- Buffering Operations
-- Three kinds of buffering are supported: line-buffering,
-- block-buffering or no-buffering. See GHC.IOBase for definition and
-- further explanation of what the type represent.
-- Computation `hSetBuffering hdl mode' sets the mode of buffering for
-- handle hdl on subsequent reads and writes.
--
-- * If mode is LineBuffering, line-buffering should be enabled if possible.
--
-- * If mode is `BlockBuffering size', then block-buffering
-- should be enabled if possible. The size of the buffer is n items
-- if size is `Just n' and is otherwise implementation-dependent.
--
-- * If mode is NoBuffering, then buffering is disabled if possible.
-- If the buffer mode is changed from BlockBuffering or
-- LineBuffering to NoBuffering, then any items in the output
-- buffer are written to the device, and any items in the input buffer
-- are discarded. The default buffering mode when a handle is opened
-- is implementation-dependent and may depend on the object which is
-- attached to that handle.
hSetBuffering :: Handle -> BufferMode -> IO ()
hSetBuffering handle mode =
withAllHandles__ "hSetBuffering" handle $ \ handle_ -> do
case haType handle_ of
ClosedHandle -> ioe_closedHandle
_ -> do
{- Note:
- we flush the old buffer regardless of whether
the new buffer could fit the contents of the old buffer
or not.
- allow a handle's buffering to change even if IO has
occurred (ANSI C spec. does not allow this, nor did
the previous implementation of IO.hSetBuffering).
- a non-standard extension is to allow the buffering
of semi-closed handles to change [sof 6/98]
-}
flushBuffer handle_
let state = initBufferState (haType handle_)
new_buf <-
case mode of
-- we always have a 1-character read buffer for
-- unbuffered handles: it's needed to
-- support hLookAhead.
NoBuffering -> allocateBuffer 1 ReadBuffer
LineBuffering -> allocateBuffer dEFAULT_BUFFER_SIZE state
BlockBuffering Nothing -> allocateBuffer dEFAULT_BUFFER_SIZE state
BlockBuffering (Just n) | n <= 0 -> ioe_bufsiz n
| otherwise -> allocateBuffer n state
writeIORef (haBuffer handle_) new_buf
-- for input terminals we need to put the terminal into
-- cooked or raw mode depending on the type of buffering.
is_tty <- fdIsTTY (haFD handle_)
when (is_tty && isReadableHandleType (haType handle_)) $
case mode of
NoBuffering -> setCooked (haFD handle_) False
_ -> setCooked (haFD handle_) True
-- throw away spare buffers, they might be the wrong size
writeIORef (haBuffers handle_) BufferListNil
return (handle_{ haBufferMode = mode })
-- -----------------------------------------------------------------------------
-- hFlush
-- The action `hFlush hdl' causes any items buffered for output
-- in handle `hdl' to be sent immediately to the operating
-- system.
hFlush :: Handle -> IO ()
hFlush handle =
wantWritableHandle "hFlush" handle $ \ handle_ -> do
buf <- readIORef (haBuffer handle_)
if bufferIsWritable buf && not (bufferEmpty buf)
then do flushed_buf <- flushWriteBuffer (haFD handle_) buf
writeIORef (haBuffer handle_) flushed_buf
else return ()
-- -----------------------------------------------------------------------------
-- Repositioning Handles
data HandlePosn = HandlePosn Handle HandlePosition
instance Eq HandlePosn where
(HandlePosn h1 p1) == (HandlePosn h2 p2) = p1==p2 && h1==h2
-- HandlePosition is the Haskell equivalent of POSIX' off_t.
-- We represent it as an Integer on the Haskell side, but
-- cheat slightly in that hGetPosn calls upon a C helper
-- that reports the position back via (merely) an Int.
type HandlePosition = Integer
-- Computation `hGetPosn hdl' returns the current I/O position of
-- `hdl' as an abstract position. Computation `hSetPosn p' sets the
-- position of `hdl' to a previously obtained position `p'.
hGetPosn :: Handle -> IO HandlePosn
hGetPosn handle =
wantSeekableHandle "hGetPosn" handle $ \ handle_ -> do
#if defined(_WIN32)
-- urgh, on Windows we have to worry about \n -> \r\n translation,
-- so we can't easily calculate the file position using the
-- current buffer size. Just flush instead.
flushBuffer handle_
#endif
let fd = fromIntegral (haFD handle_)
posn <- fromIntegral `liftM`
throwErrnoIfMinus1Retry "hGetPosn"
(c_lseek fd 0 (#const SEEK_CUR))
let ref = haBuffer handle_
buf <- readIORef ref
let real_posn
| bufferIsWritable buf = posn + fromIntegral (bufWPtr buf)
| otherwise = posn - fromIntegral (bufWPtr buf - bufRPtr buf)
# ifdef DEBUG_DUMP
puts ("\nhGetPosn: (fd, posn, real_posn) = " ++ show (fd, posn, real_posn) ++ "\n")
puts (" (bufWPtr, bufRPtr) = " ++ show (bufWPtr buf, bufRPtr buf) ++ "\n")
# endif
return (HandlePosn handle real_posn)
hSetPosn :: HandlePosn -> IO ()
hSetPosn (HandlePosn h i) = hSeek h AbsoluteSeek i
-- ---------------------------------------------------------------------------
-- hSeek
{-
The action `hSeek hdl mode i' sets the position of handle
`hdl' depending on `mode'. If `mode' is
* AbsoluteSeek - The position of `hdl' is set to `i'.
* RelativeSeek - The position of `hdl' is set to offset `i' from
the current position.
* SeekFromEnd - The position of `hdl' is set to offset `i' from
the end of the file.
Some handles may not be seekable (see `hIsSeekable'), or only
support a subset of the possible positioning operations (e.g. it may
only be possible to seek to the end of a tape, or to a positive
offset from the beginning or current position).
It is not possible to set a negative I/O position, or for a physical
file, an I/O position beyond the current end-of-file.
Note:
- when seeking using `SeekFromEnd', positive offsets (>=0) means
seeking at or past EOF.
- we possibly deviate from the report on the issue of seeking within
the buffer and whether to flush it or not. The report isn't exactly
clear here.
-}
data SeekMode = AbsoluteSeek | RelativeSeek | SeekFromEnd
deriving (Eq, Ord, Ix, Enum, Read, Show)
hSeek :: Handle -> SeekMode -> Integer -> IO ()
hSeek handle mode offset =
wantSeekableHandle "hSeek" handle $ \ handle_ -> do
# ifdef DEBUG_DUMP
puts ("hSeek " ++ show (mode,offset) ++ "\n")
# endif
let ref = haBuffer handle_
buf <- readIORef ref
let r = bufRPtr buf
w = bufWPtr buf
fd = haFD handle_
let do_seek =
throwErrnoIfMinus1Retry_ "hSeek"
(c_lseek (fromIntegral (haFD handle_)) (fromIntegral offset) whence)
whence :: CInt
whence = case mode of
AbsoluteSeek -> (#const SEEK_SET)
RelativeSeek -> (#const SEEK_CUR)
SeekFromEnd -> (#const SEEK_END)
if bufferIsWritable buf
then do new_buf <- flushWriteBuffer fd buf
writeIORef ref new_buf
do_seek
else do
if mode == RelativeSeek && offset >= 0 && offset < fromIntegral (w - r)
then writeIORef ref buf{ bufRPtr = r + fromIntegral offset }
else do
new_buf <- flushReadBuffer (haFD handle_) buf
writeIORef ref new_buf
do_seek
-- -----------------------------------------------------------------------------
-- Handle Properties
-- A number of operations return information about the properties of a
-- handle. Each of these operations returns `True' if the handle has
-- the specified property, and `False' otherwise.
hIsOpen :: Handle -> IO Bool
hIsOpen handle =
withHandle_ "hIsOpen" handle $ \ handle_ -> do
case haType handle_ of
ClosedHandle -> return False
SemiClosedHandle -> return False
_ -> return True
hIsClosed :: Handle -> IO Bool
hIsClosed handle =
withHandle_ "hIsClosed" handle $ \ handle_ -> do
case haType handle_ of
ClosedHandle -> return True
_ -> return False
{- not defined, nor exported, but mentioned
here for documentation purposes:
hSemiClosed :: Handle -> IO Bool
hSemiClosed h = do
ho <- hIsOpen h
hc <- hIsClosed h
return (not (ho || hc))
-}
hIsReadable :: Handle -> IO Bool
hIsReadable (DuplexHandle _ _) = return True
hIsReadable handle =
withHandle_ "hIsReadable" handle $ \ handle_ -> do
case haType handle_ of
ClosedHandle -> ioe_closedHandle
SemiClosedHandle -> ioe_closedHandle
htype -> return (isReadableHandleType htype)
hIsWritable :: Handle -> IO Bool
hIsWritable (DuplexHandle _ _) = return False
hIsWritable handle =
withHandle_ "hIsWritable" handle $ \ handle_ -> do
case haType handle_ of
ClosedHandle -> ioe_closedHandle
SemiClosedHandle -> ioe_closedHandle
htype -> return (isWritableHandleType htype)
-- Querying how a handle buffers its data:
hGetBuffering :: Handle -> IO BufferMode
hGetBuffering handle =
withHandle_ "hGetBuffering" handle $ \ handle_ -> do
case haType handle_ of
ClosedHandle -> ioe_closedHandle
_ ->
-- We're being non-standard here, and allow the buffering
-- of a semi-closed handle to be queried. -- sof 6/98
return (haBufferMode handle_) -- could be stricter..
hIsSeekable :: Handle -> IO Bool
hIsSeekable handle =
withHandle_ "hIsSeekable" handle $ \ handle_ -> do
case haType handle_ of
ClosedHandle -> ioe_closedHandle
SemiClosedHandle -> ioe_closedHandle
AppendHandle -> return False
_ -> do t <- fdType (haFD handle_)
return (t == RegularFile && haIsBin handle_)
-- -----------------------------------------------------------------------------
-- Changing echo status
-- Non-standard GHC extension is to allow the echoing status
-- of a handles connected to terminals to be reconfigured:
hSetEcho :: Handle -> Bool -> IO ()
hSetEcho handle on = do
isT <- hIsTerminalDevice handle
if not isT
then return ()
else
withHandle_ "hSetEcho" handle $ \ handle_ -> do
case haType handle_ of
ClosedHandle -> ioe_closedHandle
_ -> setEcho (haFD handle_) on
hGetEcho :: Handle -> IO Bool
hGetEcho handle = do
isT <- hIsTerminalDevice handle
if not isT
then return False
else
withHandle_ "hGetEcho" handle $ \ handle_ -> do
case haType handle_ of
ClosedHandle -> ioe_closedHandle
_ -> getEcho (haFD handle_)
hIsTerminalDevice :: Handle -> IO Bool
hIsTerminalDevice handle = do
withHandle_ "hIsTerminalDevice" handle $ \ handle_ -> do
case haType handle_ of
ClosedHandle -> ioe_closedHandle
_ -> fdIsTTY (haFD handle_)
-- -----------------------------------------------------------------------------
-- hSetBinaryMode
#ifdef _WIN32
hSetBinaryMode handle bin =
withHandle "hSetBinaryMode" handle $ \ handle_ ->
do let flg | bin = (#const O_BINARY)
| otherwise = (#const O_TEXT)
throwErrnoIfMinus1_ "hSetBinaryMode"
(setmode (fromIntegral (haFD handle_)) flg)
return (handle_{haIsBin=bin}, ())
foreign import "setmode" setmode :: CInt -> CInt -> IO CInt
#else
hSetBinaryMode handle bin =
withHandle "hSetBinaryMode" handle $ \ handle_ ->
return (handle_{haIsBin=bin}, ())
#endif
-- -----------------------------------------------------------------------------
-- Miscellaneous
-- These three functions are meant to get things out of an IOError.
ioeGetFileName :: IOError -> Maybe FilePath
ioeGetErrorString :: IOError -> String
ioeGetHandle :: IOError -> Maybe Handle
ioeGetHandle (IOException (IOError h _ _ _ _)) = h
ioeGetHandle (UserError _) = Nothing
ioeGetHandle _ = error "IO.ioeGetHandle: not an IO error"
ioeGetErrorString (IOException (IOError _ iot _ _ _)) = show iot
ioeGetErrorString (UserError str) = str
ioeGetErrorString _ = error "IO.ioeGetErrorString: not an IO error"
ioeGetFileName (IOException (IOError _ _ _ _ fn)) = fn
ioeGetFileName (UserError _) = Nothing
ioeGetFileName _ = error "IO.ioeGetFileName: not an IO error"
-- ---------------------------------------------------------------------------
-- debugging
#ifdef DEBUG_DUMP
puts :: String -> IO ()
puts s = withCString s $ \cstr -> do c_write 1 cstr (fromIntegral (length s))
return ()
#endif
|