1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
|
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE CPP
, NoImplicitPrelude
, RecordWildCards
, BangPatterns
, NondecreasingIndentation
, MagicHash
#-}
{-# OPTIONS_GHC -fno-warn-name-shadowing #-}
{-# OPTIONS_GHC -fno-warn-unused-matches #-}
{-# OPTIONS_HADDOCK hide #-}
-----------------------------------------------------------------------------
-- |
-- Module : GHC.IO.Text
-- Copyright : (c) The University of Glasgow, 1992-2008
-- License : see libraries/base/LICENSE
--
-- Maintainer : libraries@haskell.org
-- Stability : internal
-- Portability : non-portable
--
-- String I\/O functions
--
-----------------------------------------------------------------------------
module GHC.IO.Handle.Text (
hWaitForInput, hGetChar, hGetLine, hGetContents, hPutChar, hPutStr,
commitBuffer', -- hack, see below
hGetBuf, hGetBufSome, hGetBufNonBlocking, hPutBuf, hPutBufNonBlocking,
memcpy, hPutStrLn,
) where
import GHC.IO
import GHC.IO.FD
import GHC.IO.Buffer
import qualified GHC.IO.BufferedIO as Buffered
import GHC.IO.Exception
import GHC.Exception
import GHC.IO.Handle.Types
import GHC.IO.Handle.Internals
import qualified GHC.IO.Device as IODevice
import qualified GHC.IO.Device as RawIO
import Foreign
import Foreign.C
import qualified Control.Exception as Exception
import Data.Typeable
import System.IO.Error
import Data.Maybe
import GHC.IORef
import GHC.Base
import GHC.Real
import GHC.Num
import GHC.Show
import GHC.List
-- ---------------------------------------------------------------------------
-- Simple input operations
-- If hWaitForInput finds anything in the Handle's buffer, it
-- immediately returns. If not, it tries to read from the underlying
-- OS handle. Notice that for buffered Handles connected to terminals
-- this means waiting until a complete line is available.
-- | Computation 'hWaitForInput' @hdl t@
-- waits until input is available on handle @hdl@.
-- It returns 'True' as soon as input is available on @hdl@,
-- or 'False' if no input is available within @t@ milliseconds. Note that
-- 'hWaitForInput' waits until one or more full /characters/ are available,
-- which means that it needs to do decoding, and hence may fail
-- with a decoding error.
--
-- If @t@ is less than zero, then @hWaitForInput@ waits indefinitely.
--
-- This operation may fail with:
--
-- * 'isEOFError' if the end of file has been reached.
--
-- * a decoding error, if the input begins with an invalid byte sequence
-- in this Handle's encoding.
--
-- NOTE for GHC users: unless you use the @-threaded@ flag,
-- @hWaitForInput hdl t@ where @t >= 0@ will block all other Haskell
-- threads for the duration of the call. It behaves like a
-- @safe@ foreign call in this respect.
--
hWaitForInput :: Handle -> Int -> IO Bool
hWaitForInput h msecs = do
wantReadableHandle_ "hWaitForInput" h $ \ handle_@Handle__{..} -> do
cbuf <- readIORef haCharBuffer
if not (isEmptyBuffer cbuf) then return True else do
if msecs < 0
then do cbuf' <- readTextDevice handle_ cbuf
writeIORef haCharBuffer cbuf'
return True
else do
-- there might be bytes in the byte buffer waiting to be decoded
cbuf' <- decodeByteBuf handle_ cbuf
writeIORef haCharBuffer cbuf'
if not (isEmptyBuffer cbuf') then return True else do
r <- IODevice.ready haDevice False{-read-} msecs
if r then do -- Call hLookAhead' to throw an EOF
-- exception if appropriate
_ <- hLookAhead_ handle_
return True
else return False
-- XXX we should only return when there are full characters
-- not when there are only bytes. That would mean looping
-- and re-running IODevice.ready if we don't have any full
-- characters; but we don't know how long we've waited
-- so far.
-- ---------------------------------------------------------------------------
-- hGetChar
-- | Computation 'hGetChar' @hdl@ reads a character from the file or
-- channel managed by @hdl@, blocking until a character is available.
--
-- This operation may fail with:
--
-- * 'isEOFError' if the end of file has been reached.
hGetChar :: Handle -> IO Char
hGetChar handle =
wantReadableHandle_ "hGetChar" handle $ \handle_@Handle__{..} -> do
-- buffering mode makes no difference: we just read whatever is available
-- from the device (blocking only if there is nothing available), and then
-- return the first character.
-- See [note Buffered Reading] in GHC.IO.Handle.Types
buf0 <- readIORef haCharBuffer
buf1 <- if isEmptyBuffer buf0
then readTextDevice handle_ buf0
else return buf0
(c1,i) <- readCharBuf (bufRaw buf1) (bufL buf1)
let buf2 = bufferAdjustL i buf1
if haInputNL == CRLF && c1 == '\r'
then do
mbuf3 <- if isEmptyBuffer buf2
then maybeFillReadBuffer handle_ buf2
else return (Just buf2)
case mbuf3 of
-- EOF, so just return the '\r' we have
Nothing -> do
writeIORef haCharBuffer buf2
return '\r'
Just buf3 -> do
(c2,i2) <- readCharBuf (bufRaw buf2) (bufL buf2)
if c2 == '\n'
then do
writeIORef haCharBuffer (bufferAdjustL i2 buf3)
return '\n'
else do
-- not a \r\n sequence, so just return the \r
writeIORef haCharBuffer buf3
return '\r'
else do
writeIORef haCharBuffer buf2
return c1
-- ---------------------------------------------------------------------------
-- hGetLine
-- | Computation 'hGetLine' @hdl@ reads a line from the file or
-- channel managed by @hdl@.
--
-- This operation may fail with:
--
-- * 'isEOFError' if the end of file is encountered when reading
-- the /first/ character of the line.
--
-- If 'hGetLine' encounters end-of-file at any other point while reading
-- in a line, it is treated as a line terminator and the (partial)
-- line is returned.
hGetLine :: Handle -> IO String
hGetLine h =
wantReadableHandle_ "hGetLine" h $ \ handle_ -> do
hGetLineBuffered handle_
hGetLineBuffered :: Handle__ -> IO String
hGetLineBuffered handle_@Handle__{..} = do
buf <- readIORef haCharBuffer
hGetLineBufferedLoop handle_ buf []
hGetLineBufferedLoop :: Handle__
-> CharBuffer -> [String]
-> IO String
hGetLineBufferedLoop handle_@Handle__{..}
buf@Buffer{ bufL=r0, bufR=w, bufRaw=raw0 } xss =
let
-- find the end-of-line character, if there is one
loop raw r
| r == w = return (False, w)
| otherwise = do
(c,r') <- readCharBuf raw r
if c == '\n'
then return (True, r) -- NB. not r': don't include the '\n'
else loop raw r'
in do
(eol, off) <- loop raw0 r0
debugIO ("hGetLineBufferedLoop: r=" ++ show r0 ++ ", w=" ++ show w ++ ", off=" ++ show off)
(xs,r') <- if haInputNL == CRLF
then unpack_nl raw0 r0 off ""
else do xs <- unpack raw0 r0 off ""
return (xs,off)
-- if eol == True, then off is the offset of the '\n'
-- otherwise off == w and the buffer is now empty.
if eol -- r' == off
then do writeIORef haCharBuffer (bufferAdjustL (off+1) buf)
return (concat (reverse (xs:xss)))
else do
let buf1 = bufferAdjustL r' buf
maybe_buf <- maybeFillReadBuffer handle_ buf1
case maybe_buf of
-- Nothing indicates we caught an EOF, and we may have a
-- partial line to return.
Nothing -> do
-- we reached EOF. There might be a lone \r left
-- in the buffer, so check for that and
-- append it to the line if necessary.
--
let pre = if not (isEmptyBuffer buf1) then "\r" else ""
writeIORef haCharBuffer buf1{ bufL=0, bufR=0 }
let str = concat (reverse (pre:xs:xss))
if not (null str)
then return str
else ioe_EOF
Just new_buf ->
hGetLineBufferedLoop handle_ new_buf (xs:xss)
maybeFillReadBuffer :: Handle__ -> CharBuffer -> IO (Maybe CharBuffer)
maybeFillReadBuffer handle_ buf
= Exception.catch
(do buf' <- getSomeCharacters handle_ buf
return (Just buf')
)
(\e -> do if isEOFError e
then return Nothing
else ioError e)
-- See GHC.IO.Buffer
#define CHARBUF_UTF32
-- #define CHARBUF_UTF16
-- NB. performance-critical code: eyeball the Core.
unpack :: RawCharBuffer -> Int -> Int -> [Char] -> IO [Char]
unpack !buf !r !w acc0
| r == w = return acc0
| otherwise =
withRawBuffer buf $ \pbuf ->
let
unpackRB acc !i
| i < r = return acc
| otherwise = do
-- Here, we are rather careful to only put an *evaluated* character
-- in the output string. Due to pointer tagging, this allows the consumer
-- to avoid ping-ponging between the actual consumer code and the thunk code
#ifdef CHARBUF_UTF16
-- reverse-order decoding of UTF-16
c2 <- peekElemOff pbuf i
if (c2 < 0xdc00 || c2 > 0xdffff)
then unpackRB (unsafeChr (fromIntegral c2) : acc) (i-1)
else do c1 <- peekElemOff pbuf (i-1)
let c = (fromIntegral c1 - 0xd800) * 0x400 +
(fromIntegral c2 - 0xdc00) + 0x10000
case desurrogatifyRoundtripCharacter (unsafeChr c) of
{ C# c# -> unpackRB (C# c# : acc) (i-2) }
#else
c <- peekElemOff pbuf i
unpackRB (c : acc) (i-1)
#endif
in
unpackRB acc0 (w-1)
-- NB. performance-critical code: eyeball the Core.
unpack_nl :: RawCharBuffer -> Int -> Int -> [Char] -> IO ([Char],Int)
unpack_nl !buf !r !w acc0
| r == w = return (acc0, 0)
| otherwise =
withRawBuffer buf $ \pbuf ->
let
unpackRB acc !i
| i < r = return acc
| otherwise = do
c <- peekElemOff pbuf i
if (c == '\n' && i > r)
then do
c1 <- peekElemOff pbuf (i-1)
if (c1 == '\r')
then unpackRB ('\n':acc) (i-2)
else unpackRB ('\n':acc) (i-1)
else do
unpackRB (c : acc) (i-1)
in do
c <- peekElemOff pbuf (w-1)
if (c == '\r')
then do
-- If the last char is a '\r', we need to know whether or
-- not it is followed by a '\n', so leave it in the buffer
-- for now and just unpack the rest.
str <- unpackRB acc0 (w-2)
return (str, w-1)
else do
str <- unpackRB acc0 (w-1)
return (str, w)
-- Note [#5536]
--
-- We originally had
--
-- let c' = desurrogatifyRoundtripCharacter c in
-- c' `seq` unpackRB (c':acc) (i-1)
--
-- but this resulted in Core like
--
-- case (case x <# y of True -> C# e1; False -> C# e2) of c
-- C# _ -> unpackRB (c:acc) (i-1)
--
-- which compiles into a continuation for the outer case, with each
-- branch of the inner case building a C# and then jumping to the
-- continuation. We'd rather not have this extra jump, which makes
-- quite a difference to performance (see #5536) It turns out that
-- matching on the C# directly causes GHC to do the case-of-case,
-- giving much straighter code.
-- -----------------------------------------------------------------------------
-- hGetContents
-- hGetContents on a DuplexHandle only affects the read side: you can
-- carry on writing to it afterwards.
-- | Computation 'hGetContents' @hdl@ returns the list of characters
-- corresponding to the unread portion of the channel or file managed
-- by @hdl@, which is put into an intermediate state, /semi-closed/.
-- In this state, @hdl@ is effectively closed,
-- but items are read from @hdl@ on demand and accumulated in a special
-- list returned by 'hGetContents' @hdl@.
--
-- Any operation that fails because a handle is closed,
-- also fails if a handle is semi-closed. The only exception is 'hClose'.
-- A semi-closed handle becomes closed:
--
-- * if 'hClose' is applied to it;
--
-- * if an I\/O error occurs when reading an item from the handle;
--
-- * or once the entire contents of the handle has been read.
--
-- Once a semi-closed handle becomes closed, the contents of the
-- associated list becomes fixed. The contents of this final list is
-- only partially specified: it will contain at least all the items of
-- the stream that were evaluated prior to the handle becoming closed.
--
-- Any I\/O errors encountered while a handle is semi-closed are simply
-- discarded.
--
-- This operation may fail with:
--
-- * 'isEOFError' if the end of file has been reached.
hGetContents :: Handle -> IO String
hGetContents handle =
wantReadableHandle "hGetContents" handle $ \handle_ -> do
xs <- lazyRead handle
return (handle_{ haType=SemiClosedHandle}, xs )
-- Note that someone may close the semi-closed handle (or change its
-- buffering), so each time these lazy read functions are pulled on,
-- they have to check whether the handle has indeed been closed.
lazyRead :: Handle -> IO String
lazyRead handle =
unsafeInterleaveIO $
withHandle "hGetContents" handle $ \ handle_ -> do
case haType handle_ of
SemiClosedHandle -> lazyReadBuffered handle handle_
ClosedHandle
-> ioException
(IOError (Just handle) IllegalOperation "hGetContents"
"delayed read on closed handle" Nothing Nothing)
_ -> ioException
(IOError (Just handle) IllegalOperation "hGetContents"
"illegal handle type" Nothing Nothing)
lazyReadBuffered :: Handle -> Handle__ -> IO (Handle__, [Char])
lazyReadBuffered h handle_@Handle__{..} = do
buf <- readIORef haCharBuffer
Exception.catch
(do
buf'@Buffer{..} <- getSomeCharacters handle_ buf
lazy_rest <- lazyRead h
(s,r) <- if haInputNL == CRLF
then unpack_nl bufRaw bufL bufR lazy_rest
else do s <- unpack bufRaw bufL bufR lazy_rest
return (s,bufR)
writeIORef haCharBuffer (bufferAdjustL r buf')
return (handle_, s)
)
(\e -> do (handle_', _) <- hClose_help handle_
debugIO ("hGetContents caught: " ++ show e)
-- We might have a \r cached in CRLF mode. So we
-- need to check for that and return it:
let r = if isEOFError e
then if not (isEmptyBuffer buf)
then "\r"
else ""
else
throw (augmentIOError e "hGetContents" h)
return (handle_', r)
)
-- ensure we have some characters in the buffer
getSomeCharacters :: Handle__ -> CharBuffer -> IO CharBuffer
getSomeCharacters handle_@Handle__{..} buf@Buffer{..} =
case bufferElems buf of
-- buffer empty: read some more
0 -> readTextDevice handle_ buf
-- if the buffer has a single '\r' in it and we're doing newline
-- translation: read some more
1 | haInputNL == CRLF -> do
(c,_) <- readCharBuf bufRaw bufL
if c == '\r'
then do -- shuffle the '\r' to the beginning. This is only safe
-- if we're about to call readTextDevice, otherwise it
-- would mess up flushCharBuffer.
-- See [note Buffer Flushing], GHC.IO.Handle.Types
_ <- writeCharBuf bufRaw 0 '\r'
let buf' = buf{ bufL=0, bufR=1 }
readTextDevice handle_ buf'
else do
return buf
-- buffer has some chars in it already: just return it
_otherwise ->
return buf
-- ---------------------------------------------------------------------------
-- hPutChar
-- | Computation 'hPutChar' @hdl ch@ writes the character @ch@ to the
-- file or channel managed by @hdl@. Characters may be buffered if
-- buffering is enabled for @hdl@.
--
-- This operation may fail with:
--
-- * 'isFullError' if the device is full; or
--
-- * 'isPermissionError' if another system resource limit would be exceeded.
hPutChar :: Handle -> Char -> IO ()
hPutChar handle c = do
c `seq` return ()
wantWritableHandle "hPutChar" handle $ \ handle_ -> do
hPutcBuffered handle_ c
hPutcBuffered :: Handle__ -> Char -> IO ()
hPutcBuffered handle_@Handle__{..} c = do
buf <- readIORef haCharBuffer
if c == '\n'
then do buf1 <- if haOutputNL == CRLF
then do
buf1 <- putc buf '\r'
putc buf1 '\n'
else do
putc buf '\n'
writeCharBuffer handle_ buf1
when is_line $ flushByteWriteBuffer handle_
else do
buf1 <- putc buf c
writeCharBuffer handle_ buf1
return ()
where
is_line = case haBufferMode of
LineBuffering -> True
_ -> False
putc buf@Buffer{ bufRaw=raw, bufR=w } c = do
debugIO ("putc: " ++ summaryBuffer buf)
w' <- writeCharBuf raw w c
return buf{ bufR = w' }
-- ---------------------------------------------------------------------------
-- hPutStr
-- We go to some trouble to avoid keeping the handle locked while we're
-- evaluating the string argument to hPutStr, in case doing so triggers another
-- I/O operation on the same handle which would lead to deadlock. The classic
-- case is
--
-- putStr (trace "hello" "world")
--
-- so the basic scheme is this:
--
-- * copy the string into a fresh buffer,
-- * "commit" the buffer to the handle.
--
-- Committing may involve simply copying the contents of the new
-- buffer into the handle's buffer, flushing one or both buffers, or
-- maybe just swapping the buffers over (if the handle's buffer was
-- empty). See commitBuffer below.
-- | Computation 'hPutStr' @hdl s@ writes the string
-- @s@ to the file or channel managed by @hdl@.
--
-- This operation may fail with:
--
-- * 'isFullError' if the device is full; or
--
-- * 'isPermissionError' if another system resource limit would be exceeded.
hPutStr :: Handle -> String -> IO ()
hPutStr handle str = hPutStr' handle str False
-- | The same as 'hPutStr', but adds a newline character.
hPutStrLn :: Handle -> String -> IO ()
hPutStrLn handle str = hPutStr' handle str True
-- An optimisation: we treat hPutStrLn specially, to avoid the
-- overhead of a single putChar '\n', which is quite high now that we
-- have to encode eagerly.
hPutStr' :: Handle -> String -> Bool -> IO ()
hPutStr' handle str add_nl =
do
(buffer_mode, nl) <-
wantWritableHandle "hPutStr" handle $ \h_ -> do
bmode <- getSpareBuffer h_
return (bmode, haOutputNL h_)
case buffer_mode of
(NoBuffering, _) -> do
hPutChars handle str -- v. slow, but we don't care
when add_nl $ hPutChar handle '\n'
(LineBuffering, buf) -> do
writeBlocks handle True add_nl nl buf str
(BlockBuffering _, buf) -> do
writeBlocks handle False add_nl nl buf str
hPutChars :: Handle -> [Char] -> IO ()
hPutChars _ [] = return ()
hPutChars handle (c:cs) = hPutChar handle c >> hPutChars handle cs
getSpareBuffer :: Handle__ -> IO (BufferMode, CharBuffer)
getSpareBuffer Handle__{haCharBuffer=ref,
haBuffers=spare_ref,
haBufferMode=mode}
= do
case mode of
NoBuffering -> return (mode, error "no buffer!")
_ -> do
bufs <- readIORef spare_ref
buf <- readIORef ref
case bufs of
BufferListCons b rest -> do
writeIORef spare_ref rest
return ( mode, emptyBuffer b (bufSize buf) WriteBuffer)
BufferListNil -> do
new_buf <- newCharBuffer (bufSize buf) WriteBuffer
return (mode, new_buf)
-- NB. performance-critical code: eyeball the Core.
writeBlocks :: Handle -> Bool -> Bool -> Newline -> Buffer CharBufElem -> String -> IO ()
writeBlocks hdl line_buffered add_nl nl
buf@Buffer{ bufRaw=raw, bufSize=len } s =
let
shoveString :: Int -> [Char] -> [Char] -> IO ()
shoveString !n [] [] = do
commitBuffer hdl raw len n False{-no flush-} True{-release-}
shoveString !n [] rest = do
shoveString n rest []
shoveString !n (c:cs) rest
-- n+1 so we have enough room to write '\r\n' if necessary
| n + 1 >= len = do
commitBuffer hdl raw len n False{-flush-} False
shoveString 0 (c:cs) rest
| c == '\n' = do
n' <- if nl == CRLF
then do
n1 <- writeCharBuf raw n '\r'
writeCharBuf raw n1 '\n'
else do
writeCharBuf raw n c
if line_buffered
then do
-- end of line, so write and flush
commitBuffer hdl raw len n' True{-flush-} False
shoveString 0 cs rest
else do
shoveString n' cs rest
| otherwise = do
n' <- writeCharBuf raw n c
shoveString n' cs rest
in
shoveString 0 s (if add_nl then "\n" else "")
-- -----------------------------------------------------------------------------
-- commitBuffer handle buf sz count flush release
--
-- Write the contents of the buffer 'buf' ('sz' bytes long, containing
-- 'count' bytes of data) to handle (handle must be block or line buffered).
commitBuffer
:: Handle -- handle to commit to
-> RawCharBuffer -> Int -- address and size (in bytes) of buffer
-> Int -- number of bytes of data in buffer
-> Bool -- True <=> flush the handle afterward
-> Bool -- release the buffer?
-> IO ()
commitBuffer hdl !raw !sz !count flush release =
wantWritableHandle "commitBuffer" hdl $ \h_@Handle__{..} -> do
debugIO ("commitBuffer: sz=" ++ show sz ++ ", count=" ++ show count
++ ", flush=" ++ show flush ++ ", release=" ++ show release)
writeCharBuffer h_ Buffer{ bufRaw=raw, bufState=WriteBuffer,
bufL=0, bufR=count, bufSize=sz }
when flush $ flushByteWriteBuffer h_
-- release the buffer if necessary
when release $ do
-- find size of current buffer
old_buf@Buffer{ bufSize=size } <- readIORef haCharBuffer
when (sz == size) $ do
spare_bufs <- readIORef haBuffers
writeIORef haBuffers (BufferListCons raw spare_bufs)
return ()
-- backwards compatibility; the text package uses this
commitBuffer' :: RawCharBuffer -> Int -> Int -> Bool -> Bool -> Handle__
-> IO CharBuffer
commitBuffer' raw sz@(I# _) count@(I# _) flush release h_@Handle__{..}
= do
debugIO ("commitBuffer: sz=" ++ show sz ++ ", count=" ++ show count
++ ", flush=" ++ show flush ++ ", release=" ++ show release)
let this_buf = Buffer{ bufRaw=raw, bufState=WriteBuffer,
bufL=0, bufR=count, bufSize=sz }
writeCharBuffer h_ this_buf
when flush $ flushByteWriteBuffer h_
-- release the buffer if necessary
when release $ do
-- find size of current buffer
old_buf@Buffer{ bufSize=size } <- readIORef haCharBuffer
when (sz == size) $ do
spare_bufs <- readIORef haBuffers
writeIORef haBuffers (BufferListCons raw spare_bufs)
return this_buf
-- ---------------------------------------------------------------------------
-- Reading/writing sequences of bytes.
-- ---------------------------------------------------------------------------
-- hPutBuf
-- | 'hPutBuf' @hdl buf count@ writes @count@ 8-bit bytes from the
-- buffer @buf@ to the handle @hdl@. It returns ().
--
-- 'hPutBuf' ignores any text encoding that applies to the 'Handle',
-- writing the bytes directly to the underlying file or device.
--
-- 'hPutBuf' ignores the prevailing 'TextEncoding' and
-- 'NewlineMode' on the 'Handle', and writes bytes directly.
--
-- This operation may fail with:
--
-- * 'ResourceVanished' if the handle is a pipe or socket, and the
-- reading end is closed. (If this is a POSIX system, and the program
-- has not asked to ignore SIGPIPE, then a SIGPIPE may be delivered
-- instead, whose default action is to terminate the program).
hPutBuf :: Handle -- handle to write to
-> Ptr a -- address of buffer
-> Int -- number of bytes of data in buffer
-> IO ()
hPutBuf h ptr count = do _ <- hPutBuf' h ptr count True
return ()
hPutBufNonBlocking
:: Handle -- handle to write to
-> Ptr a -- address of buffer
-> Int -- number of bytes of data in buffer
-> IO Int -- returns: number of bytes written
hPutBufNonBlocking h ptr count = hPutBuf' h ptr count False
hPutBuf':: Handle -- handle to write to
-> Ptr a -- address of buffer
-> Int -- number of bytes of data in buffer
-> Bool -- allow blocking?
-> IO Int
hPutBuf' handle ptr count can_block
| count == 0 = return 0
| count < 0 = illegalBufferSize handle "hPutBuf" count
| otherwise =
wantWritableHandle "hPutBuf" handle $
\ h_@Handle__{..} -> do
debugIO ("hPutBuf count=" ++ show count)
r <- bufWrite h_ (castPtr ptr) count can_block
-- we must flush if this Handle is set to NoBuffering. If
-- it is set to LineBuffering, be conservative and flush
-- anyway (we didn't check for newlines in the data).
case haBufferMode of
BlockBuffering _ -> do return ()
_line_or_no_buffering -> do flushWriteBuffer h_
return r
bufWrite :: Handle__-> Ptr Word8 -> Int -> Bool -> IO Int
bufWrite h_@Handle__{..} ptr count can_block =
seq count $ do -- strictness hack
old_buf@Buffer{ bufRaw=old_raw, bufR=w, bufSize=size }
<- readIORef haByteBuffer
-- enough room in handle buffer?
if (size - w > count)
-- There's enough room in the buffer:
-- just copy the data in and update bufR.
then do debugIO ("hPutBuf: copying to buffer, w=" ++ show w)
copyToRawBuffer old_raw w ptr count
writeIORef haByteBuffer old_buf{ bufR = w + count }
return count
-- else, we have to flush
else do debugIO "hPutBuf: flushing first"
old_buf' <- Buffered.flushWriteBuffer haDevice old_buf
-- TODO: we should do a non-blocking flush here
writeIORef haByteBuffer old_buf'
-- if we can fit in the buffer, then just loop
if count < size
then bufWrite h_ ptr count can_block
else if can_block
then do writeChunk h_ (castPtr ptr) count
return count
else writeChunkNonBlocking h_ (castPtr ptr) count
writeChunk :: Handle__ -> Ptr Word8 -> Int -> IO ()
writeChunk h_@Handle__{..} ptr bytes
| Just fd <- cast haDevice = RawIO.write (fd::FD) ptr bytes
| otherwise = error "Todo: hPutBuf"
writeChunkNonBlocking :: Handle__ -> Ptr Word8 -> Int -> IO Int
writeChunkNonBlocking h_@Handle__{..} ptr bytes
| Just fd <- cast haDevice = RawIO.writeNonBlocking (fd::FD) ptr bytes
| otherwise = error "Todo: hPutBuf"
-- ---------------------------------------------------------------------------
-- hGetBuf
-- | 'hGetBuf' @hdl buf count@ reads data from the handle @hdl@
-- into the buffer @buf@ until either EOF is reached or
-- @count@ 8-bit bytes have been read.
-- It returns the number of bytes actually read. This may be zero if
-- EOF was reached before any data was read (or if @count@ is zero).
--
-- 'hGetBuf' never raises an EOF exception, instead it returns a value
-- smaller than @count@.
--
-- If the handle is a pipe or socket, and the writing end
-- is closed, 'hGetBuf' will behave as if EOF was reached.
--
-- 'hGetBuf' ignores the prevailing 'TextEncoding' and 'NewlineMode'
-- on the 'Handle', and reads bytes directly.
hGetBuf :: Handle -> Ptr a -> Int -> IO Int
hGetBuf h ptr count
| count == 0 = return 0
| count < 0 = illegalBufferSize h "hGetBuf" count
| otherwise =
wantReadableHandle_ "hGetBuf" h $ \ h_@Handle__{..} -> do
flushCharReadBuffer h_
buf@Buffer{ bufRaw=raw, bufR=w, bufL=r, bufSize=sz }
<- readIORef haByteBuffer
if isEmptyBuffer buf
then bufReadEmpty h_ buf (castPtr ptr) 0 count
else bufReadNonEmpty h_ buf (castPtr ptr) 0 count
-- small reads go through the buffer, large reads are satisfied by
-- taking data first from the buffer and then direct from the file
-- descriptor.
bufReadNonEmpty :: Handle__ -> Buffer Word8 -> Ptr Word8 -> Int -> Int -> IO Int
bufReadNonEmpty h_@Handle__{..}
buf@Buffer{ bufRaw=raw, bufR=w, bufL=r, bufSize=sz }
ptr !so_far !count
= do
let avail = w - r
if (count < avail)
then do
copyFromRawBuffer ptr raw r count
writeIORef haByteBuffer buf{ bufL = r + count }
return (so_far + count)
else do
copyFromRawBuffer ptr raw r avail
let buf' = buf{ bufR=0, bufL=0 }
writeIORef haByteBuffer buf'
let remaining = count - avail
so_far' = so_far + avail
ptr' = ptr `plusPtr` avail
if remaining == 0
then return so_far'
else bufReadEmpty h_ buf' ptr' so_far' remaining
bufReadEmpty :: Handle__ -> Buffer Word8 -> Ptr Word8 -> Int -> Int -> IO Int
bufReadEmpty h_@Handle__{..}
buf@Buffer{ bufRaw=raw, bufR=w, bufL=r, bufSize=sz }
ptr so_far count
| count > sz, Just fd <- cast haDevice = loop fd 0 count
| otherwise = do
(r,buf') <- Buffered.fillReadBuffer haDevice buf
if r == 0
then return so_far
else do writeIORef haByteBuffer buf'
bufReadNonEmpty h_ buf' ptr so_far count
where
loop :: FD -> Int -> Int -> IO Int
loop fd off bytes | bytes <= 0 = return (so_far + off)
loop fd off bytes = do
r <- RawIO.read (fd::FD) (ptr `plusPtr` off) bytes
if r == 0
then return (so_far + off)
else loop fd (off + r) (bytes - r)
-- ---------------------------------------------------------------------------
-- hGetBufSome
-- | 'hGetBufSome' @hdl buf count@ reads data from the handle @hdl@
-- into the buffer @buf@. If there is any data available to read,
-- then 'hGetBufSome' returns it immediately; it only blocks if there
-- is no data to be read.
--
-- It returns the number of bytes actually read. This may be zero if
-- EOF was reached before any data was read (or if @count@ is zero).
--
-- 'hGetBufSome' never raises an EOF exception, instead it returns a value
-- smaller than @count@.
--
-- If the handle is a pipe or socket, and the writing end
-- is closed, 'hGetBufSome' will behave as if EOF was reached.
--
-- 'hGetBufSome' ignores the prevailing 'TextEncoding' and 'NewlineMode'
-- on the 'Handle', and reads bytes directly.
hGetBufSome :: Handle -> Ptr a -> Int -> IO Int
hGetBufSome h ptr count
| count == 0 = return 0
| count < 0 = illegalBufferSize h "hGetBufSome" count
| otherwise =
wantReadableHandle_ "hGetBufSome" h $ \ h_@Handle__{..} -> do
flushCharReadBuffer h_
buf@Buffer{ bufSize=sz } <- readIORef haByteBuffer
if isEmptyBuffer buf
then case count > sz of -- large read? optimize it with a little special case:
True | Just fd <- haFD h_ -> do RawIO.read fd (castPtr ptr) count
_ -> do (r,buf') <- Buffered.fillReadBuffer haDevice buf
if r == 0
then return 0
else do writeIORef haByteBuffer buf'
bufReadNBNonEmpty h_ buf' (castPtr ptr) 0 (min r count)
-- new count is (min r count), so
-- that bufReadNBNonEmpty will not
-- issue another read.
else
let count' = min count (bufferElems buf)
in bufReadNBNonEmpty h_ buf (castPtr ptr) 0 count'
haFD :: Handle__ -> Maybe FD
haFD h_@Handle__{..} = cast haDevice
-- | 'hGetBufNonBlocking' @hdl buf count@ reads data from the handle @hdl@
-- into the buffer @buf@ until either EOF is reached, or
-- @count@ 8-bit bytes have been read, or there is no more data available
-- to read immediately.
--
-- 'hGetBufNonBlocking' is identical to 'hGetBuf', except that it will
-- never block waiting for data to become available, instead it returns
-- only whatever data is available. To wait for data to arrive before
-- calling 'hGetBufNonBlocking', use 'hWaitForInput'.
--
-- If the handle is a pipe or socket, and the writing end
-- is closed, 'hGetBufNonBlocking' will behave as if EOF was reached.
--
-- 'hGetBufNonBlocking' ignores the prevailing 'TextEncoding' and
-- 'NewlineMode' on the 'Handle', and reads bytes directly.
--
-- NOTE: on Windows, this function does not work correctly; it
-- behaves identically to 'hGetBuf'.
hGetBufNonBlocking :: Handle -> Ptr a -> Int -> IO Int
hGetBufNonBlocking h ptr count
| count == 0 = return 0
| count < 0 = illegalBufferSize h "hGetBufNonBlocking" count
| otherwise =
wantReadableHandle_ "hGetBufNonBlocking" h $ \ h_@Handle__{..} -> do
flushCharReadBuffer h_
buf@Buffer{ bufRaw=raw, bufR=w, bufL=r, bufSize=sz }
<- readIORef haByteBuffer
if isEmptyBuffer buf
then bufReadNBEmpty h_ buf (castPtr ptr) 0 count
else bufReadNBNonEmpty h_ buf (castPtr ptr) 0 count
bufReadNBEmpty :: Handle__ -> Buffer Word8 -> Ptr Word8 -> Int -> Int -> IO Int
bufReadNBEmpty h_@Handle__{..}
buf@Buffer{ bufRaw=raw, bufR=w, bufL=r, bufSize=sz }
ptr so_far count
| count > sz,
Just fd <- cast haDevice = do
m <- RawIO.readNonBlocking (fd::FD) ptr count
case m of
Nothing -> return so_far
Just n -> return (so_far + n)
| otherwise = do
buf <- readIORef haByteBuffer
(r,buf') <- Buffered.fillReadBuffer0 haDevice buf
case r of
Nothing -> return so_far
Just 0 -> return so_far
Just r -> do
writeIORef haByteBuffer buf'
bufReadNBNonEmpty h_ buf' ptr so_far (min count r)
-- NOTE: new count is min count r
-- so we will just copy the contents of the
-- buffer in the recursive call, and not
-- loop again.
bufReadNBNonEmpty :: Handle__ -> Buffer Word8 -> Ptr Word8 -> Int -> Int -> IO Int
bufReadNBNonEmpty h_@Handle__{..}
buf@Buffer{ bufRaw=raw, bufR=w, bufL=r, bufSize=sz }
ptr so_far count
= do
let avail = w - r
if (count < avail)
then do
copyFromRawBuffer ptr raw r count
writeIORef haByteBuffer buf{ bufL = r + count }
return (so_far + count)
else do
copyFromRawBuffer ptr raw r avail
let buf' = buf{ bufR=0, bufL=0 }
writeIORef haByteBuffer buf'
let remaining = count - avail
so_far' = so_far + avail
ptr' = ptr `plusPtr` avail
if remaining == 0
then return so_far'
else bufReadNBEmpty h_ buf' ptr' so_far' remaining
-- ---------------------------------------------------------------------------
-- memcpy wrappers
copyToRawBuffer :: RawBuffer e -> Int -> Ptr e -> Int -> IO ()
copyToRawBuffer raw off ptr bytes =
withRawBuffer raw $ \praw ->
do _ <- memcpy (praw `plusPtr` off) ptr (fromIntegral bytes)
return ()
copyFromRawBuffer :: Ptr e -> RawBuffer e -> Int -> Int -> IO ()
copyFromRawBuffer ptr raw off bytes =
withRawBuffer raw $ \praw ->
do _ <- memcpy ptr (praw `plusPtr` off) (fromIntegral bytes)
return ()
foreign import ccall unsafe "memcpy"
memcpy :: Ptr a -> Ptr a -> CSize -> IO (Ptr ())
-----------------------------------------------------------------------------
-- Internal Utils
illegalBufferSize :: Handle -> String -> Int -> IO a
illegalBufferSize handle fn sz =
ioException (IOError (Just handle)
InvalidArgument fn
("illegal buffer size " ++ showsPrec 9 sz [])
Nothing Nothing)
|