1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
|
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE CPP, NoImplicitPrelude, ScopedTypeVariables, MagicHash #-}
{-# LANGUAGE BangPatterns #-}
{-# OPTIONS_HADDOCK hide #-}
-----------------------------------------------------------------------------
-- |
-- Module : GHC.List
-- Copyright : (c) The University of Glasgow 1994-2002
-- License : see libraries/base/LICENSE
--
-- Maintainer : cvs-ghc@haskell.org
-- Stability : internal
-- Portability : non-portable (GHC Extensions)
--
-- The List data type and its operations
--
-----------------------------------------------------------------------------
module GHC.List (
-- [] (..), -- built-in syntax; can't be used in export list
map, (++), filter, concat,
head, last, tail, init, uncons, null, length, (!!),
foldl, foldl', foldl1, foldl1', scanl, scanl1, scanl', foldr, foldr1,
scanr, scanr1, iterate, repeat, replicate, cycle,
take, drop, sum, product, maximum, minimum, splitAt, takeWhile, dropWhile,
span, break, reverse, and, or,
any, all, elem, notElem, lookup,
concatMap,
zip, zip3, zipWith, zipWith3, unzip, unzip3,
errorEmptyList,
) where
import Data.Maybe
import GHC.Base
import GHC.Num (Num(..))
import GHC.Integer (Integer)
infixl 9 !!
infix 4 `elem`, `notElem`
--------------------------------------------------------------
-- List-manipulation functions
--------------------------------------------------------------
-- | Extract the first element of a list, which must be non-empty.
head :: [a] -> a
head (x:_) = x
head [] = badHead
{-# NOINLINE [1] head #-}
badHead :: a
badHead = errorEmptyList "head"
-- This rule is useful in cases like
-- head [y | (x,y) <- ps, x==t]
{-# RULES
"head/build" forall (g::forall b.(a->b->b)->b->b) .
head (build g) = g (\x _ -> x) badHead
"head/augment" forall xs (g::forall b. (a->b->b) -> b -> b) .
head (augment g xs) = g (\x _ -> x) (head xs)
#-}
-- | Decompose a list into its head and tail. If the list is empty,
-- returns 'Nothing'. If the list is non-empty, returns @'Just' (x, xs)@,
-- where @x@ is the head of the list and @xs@ its tail.
--
-- @since 4.8.0.0
uncons :: [a] -> Maybe (a, [a])
uncons [] = Nothing
uncons (x:xs) = Just (x, xs)
-- | Extract the elements after the head of a list, which must be non-empty.
tail :: [a] -> [a]
tail (_:xs) = xs
tail [] = errorEmptyList "tail"
-- | Extract the last element of a list, which must be finite and non-empty.
last :: [a] -> a
#ifdef USE_REPORT_PRELUDE
last [x] = x
last (_:xs) = last xs
last [] = errorEmptyList "last"
#else
-- Use foldl to make last a good consumer.
-- This will compile to good code for the actual GHC.List.last.
-- (At least as long it is eta-expaned, otherwise it does not, #10260.)
last xs = foldl (\_ x -> x) lastError xs
{-# INLINE last #-}
-- The inline pragma is required to make GHC remember the implementation via
-- foldl.
lastError :: a
lastError = errorEmptyList "last"
#endif
-- | Return all the elements of a list except the last one.
-- The list must be non-empty.
init :: [a] -> [a]
#ifdef USE_REPORT_PRELUDE
init [x] = []
init (x:xs) = x : init xs
init [] = errorEmptyList "init"
#else
-- eliminate repeated cases
init [] = errorEmptyList "init"
init (x:xs) = init' x xs
where init' _ [] = []
init' y (z:zs) = y : init' z zs
#endif
-- | Test whether a list is empty.
null :: [a] -> Bool
null [] = True
null (_:_) = False
-- | /O(n)/. 'length' returns the length of a finite list as an 'Int'.
-- It is an instance of the more general 'Data.List.genericLength',
-- the result type of which may be any kind of number.
{-# NOINLINE [1] length #-}
length :: [a] -> Int
length xs = lenAcc xs 0
lenAcc :: [a] -> Int -> Int
lenAcc [] n = n
lenAcc (_:ys) n = lenAcc ys (n+1)
{-# RULES
"length" [~1] forall xs . length xs = foldr lengthFB idLength xs 0
"lengthList" [1] foldr lengthFB idLength = lenAcc
#-}
-- The lambda form turns out to be necessary to make this inline
-- when we need it to and give good performance.
{-# INLINE [0] lengthFB #-}
lengthFB :: x -> (Int -> Int) -> Int -> Int
lengthFB _ r = \ !a -> r (a + 1)
{-# INLINE [0] idLength #-}
idLength :: Int -> Int
idLength = id
-- | 'filter', applied to a predicate and a list, returns the list of
-- those elements that satisfy the predicate; i.e.,
--
-- > filter p xs = [ x | x <- xs, p x]
{-# NOINLINE [1] filter #-}
filter :: (a -> Bool) -> [a] -> [a]
filter _pred [] = []
filter pred (x:xs)
| pred x = x : filter pred xs
| otherwise = filter pred xs
{-# NOINLINE [0] filterFB #-}
filterFB :: (a -> b -> b) -> (a -> Bool) -> a -> b -> b
filterFB c p x r | p x = x `c` r
| otherwise = r
{-# RULES
"filter" [~1] forall p xs. filter p xs = build (\c n -> foldr (filterFB c p) n xs)
"filterList" [1] forall p. foldr (filterFB (:) p) [] = filter p
"filterFB" forall c p q. filterFB (filterFB c p) q = filterFB c (\x -> q x && p x)
#-}
-- Note the filterFB rule, which has p and q the "wrong way round" in the RHS.
-- filterFB (filterFB c p) q a b
-- = if q a then filterFB c p a b else b
-- = if q a then (if p a then c a b else b) else b
-- = if q a && p a then c a b else b
-- = filterFB c (\x -> q x && p x) a b
-- I originally wrote (\x -> p x && q x), which is wrong, and actually
-- gave rise to a live bug report. SLPJ.
-- | 'foldl', applied to a binary operator, a starting value (typically
-- the left-identity of the operator), and a list, reduces the list
-- using the binary operator, from left to right:
--
-- > foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn
--
-- The list must be finite.
-- We write foldl as a non-recursive thing, so that it
-- can be inlined, and then (often) strictness-analysed,
-- and hence the classic space leak on foldl (+) 0 xs
foldl :: forall a b. (b -> a -> b) -> b -> [a] -> b
{-# INLINE foldl #-}
foldl k z0 xs =
foldr (\(v::a) (fn::b->b) -> oneShot (\(z::b) -> fn (k z v))) (id :: b -> b) xs z0
-- See Note [Left folds via right fold]
{-
Note [Left folds via right fold]
Implementing foldl et. al. via foldr is only a good idea if the compiler can
optimize the resulting code (eta-expand the recursive "go"). See #7994.
We hope that one of the two measure kick in:
* Call Arity (-fcall-arity, enabled by default) eta-expands it if it can see
all calls and determine that the arity is large.
* The oneShot annotation gives a hint to the regular arity analysis that
it may assume that the lambda is called at most once.
See [One-shot lambdas] in CoreArity and especially [Eta expanding thunks]
in CoreArity.
The oneShot annotations used in this module are correct, as we only use them in
argumets to foldr, where we know how the arguments are called.
-}
-- ----------------------------------------------------------------------------
-- | A strict version of 'foldl'.
foldl' :: forall a b . (b -> a -> b) -> b -> [a] -> b
{-# INLINE foldl' #-}
foldl' k z0 xs =
foldr (\(v::a) (fn::b->b) -> oneShot (\(z::b) -> z `seq` fn (k z v))) (id :: b -> b) xs z0
-- See Note [Left folds via right fold]
-- | 'foldl1' is a variant of 'foldl' that has no starting value argument,
-- and thus must be applied to non-empty lists.
foldl1 :: (a -> a -> a) -> [a] -> a
foldl1 f (x:xs) = foldl f x xs
foldl1 _ [] = errorEmptyList "foldl1"
-- | A strict version of 'foldl1'
foldl1' :: (a -> a -> a) -> [a] -> a
foldl1' f (x:xs) = foldl' f x xs
foldl1' _ [] = errorEmptyList "foldl1'"
-- -----------------------------------------------------------------------------
-- List sum and product
-- | The 'sum' function computes the sum of a finite list of numbers.
sum :: (Num a) => [a] -> a
{-# INLINE sum #-}
sum = foldl (+) 0
-- | The 'product' function computes the product of a finite list of numbers.
product :: (Num a) => [a] -> a
{-# INLINE product #-}
product = foldl (*) 1
-- | 'scanl' is similar to 'foldl', but returns a list of successive
-- reduced values from the left:
--
-- > scanl f z [x1, x2, ...] == [z, z `f` x1, (z `f` x1) `f` x2, ...]
--
-- Note that
--
-- > last (scanl f z xs) == foldl f z xs.
-- This peculiar arrangement is necessary to prevent scanl being rewritten in
-- its own right-hand side.
{-# NOINLINE [1] scanl #-}
scanl :: (b -> a -> b) -> b -> [a] -> [b]
scanl = scanlGo
where
scanlGo :: (b -> a -> b) -> b -> [a] -> [b]
scanlGo f q ls = q : (case ls of
[] -> []
x:xs -> scanlGo f (f q x) xs)
-- Note [scanl rewrite rules]
{-# RULES
"scanl" [~1] forall f a bs . scanl f a bs =
build (\c n -> a `c` foldr (scanlFB f c) (constScanl n) bs a)
"scanlList" [1] forall f (a::a) bs .
foldr (scanlFB f (:)) (constScanl []) bs a = tail (scanl f a bs)
#-}
{-# INLINE [0] scanlFB #-}
scanlFB :: (b -> a -> b) -> (b -> c -> c) -> a -> (b -> c) -> b -> c
scanlFB f c = \b g -> oneShot (\x -> let b' = f x b in b' `c` g b')
-- See Note [Left folds via right fold]
{-# INLINE [0] constScanl #-}
constScanl :: a -> b -> a
constScanl = const
-- | 'scanl1' is a variant of 'scanl' that has no starting value argument:
--
-- > scanl1 f [x1, x2, ...] == [x1, x1 `f` x2, ...]
scanl1 :: (a -> a -> a) -> [a] -> [a]
scanl1 f (x:xs) = scanl f x xs
scanl1 _ [] = []
-- | A strictly accumulating version of 'scanl'
{-# NOINLINE [1] scanl' #-}
scanl' :: (b -> a -> b) -> b -> [a] -> [b]
-- This peculiar form is needed to prevent scanl' from being rewritten
-- in its own right hand side.
scanl' = scanlGo'
where
scanlGo' :: (b -> a -> b) -> b -> [a] -> [b]
scanlGo' f !q ls = q : (case ls of
[] -> []
x:xs -> scanlGo' f (f q x) xs)
-- Note [scanl rewrite rules]
{-# RULES
"scanl'" [~1] forall f a bs . scanl' f a bs =
build (\c n -> a `c` foldr (scanlFB' f c) (flipSeqScanl' n) bs a)
"scanlList'" [1] forall f a bs .
foldr (scanlFB' f (:)) (flipSeqScanl' []) bs a = tail (scanl' f a bs)
#-}
{-# INLINE [0] scanlFB' #-}
scanlFB' :: (b -> a -> b) -> (b -> c -> c) -> a -> (b -> c) -> b -> c
scanlFB' f c = \b g -> oneShot (\x -> let !b' = f x b in b' `c` g b')
-- See Note [Left folds via right fold]
{-# INLINE [0] flipSeqScanl' #-}
flipSeqScanl' :: a -> b -> a
flipSeqScanl' a !_b = a
{-
Note [scanl rewrite rules]
~~~~~~~~~~~~~~~~~~~~~~~~~~
In most cases, when we rewrite a form to one that can fuse, we try to rewrite it
back to the original form if it does not fuse. For scanl, we do something a
little different. In particular, we rewrite
scanl f a bs
to
build (\c n -> a `c` foldr (scanlFB f c) (constScanl n) bs a)
When build is inlined, this becomes
a : foldr (scanlFB f (:)) (constScanl []) bs a
To rewrite this form back to scanl, we would need a rule that looked like
forall f a bs. a : foldr (scanlFB f (:)) (constScanl []) bs a = scanl f a bs
The problem with this rule is that it has (:) at its head. This would have the
effect of changing the way the inliner looks at (:), not only here but
everywhere. In most cases, this makes no difference, but in some cases it
causes it to come to a different decision about whether to inline something.
Based on nofib benchmarks, this is bad for performance. Therefore, we instead
match on everything past the :, which is just the tail of scanl.
-}
-- foldr, foldr1, scanr, and scanr1 are the right-to-left duals of the
-- above functions.
-- | 'foldr1' is a variant of 'foldr' that has no starting value argument,
-- and thus must be applied to non-empty lists.
foldr1 :: (a -> a -> a) -> [a] -> a
foldr1 f = go
where go [x] = x
go (x:xs) = f x (go xs)
go [] = errorEmptyList "foldr1"
{-# INLINE [0] foldr1 #-}
-- | 'scanr' is the right-to-left dual of 'scanl'.
-- Note that
--
-- > head (scanr f z xs) == foldr f z xs.
{-# NOINLINE [1] scanr #-}
scanr :: (a -> b -> b) -> b -> [a] -> [b]
scanr _ q0 [] = [q0]
scanr f q0 (x:xs) = f x q : qs
where qs@(q:_) = scanr f q0 xs
{-# INLINE [0] strictUncurryScanr #-}
strictUncurryScanr :: (a -> b -> c) -> (a, b) -> c
strictUncurryScanr f pair = case pair of
(x, y) -> f x y
{-# INLINE [0] scanrFB #-}
scanrFB :: (a -> b -> b) -> (b -> c -> c) -> a -> (b, c) -> (b, c)
scanrFB f c = \x (r, est) -> (f x r, r `c` est)
{-# RULES
"scanr" [~1] forall f q0 ls . scanr f q0 ls =
build (\c n -> strictUncurryScanr c (foldr (scanrFB f c) (q0,n) ls))
"scanrList" [1] forall f q0 ls .
strictUncurryScanr (:) (foldr (scanrFB f (:)) (q0,[]) ls) =
scanr f q0 ls
#-}
-- | 'scanr1' is a variant of 'scanr' that has no starting value argument.
scanr1 :: (a -> a -> a) -> [a] -> [a]
scanr1 _ [] = []
scanr1 _ [x] = [x]
scanr1 f (x:xs) = f x q : qs
where qs@(q:_) = scanr1 f xs
-- | 'maximum' returns the maximum value from a list,
-- which must be non-empty, finite, and of an ordered type.
-- It is a special case of 'Data.List.maximumBy', which allows the
-- programmer to supply their own comparison function.
maximum :: (Ord a) => [a] -> a
{-# INLINE [1] maximum #-}
maximum [] = errorEmptyList "maximum"
maximum xs = foldl1 max xs
{-# RULES
"maximumInt" maximum = (strictMaximum :: [Int] -> Int);
"maximumInteger" maximum = (strictMaximum :: [Integer] -> Integer)
#-}
-- We can't make the overloaded version of maximum strict without
-- changing its semantics (max might not be strict), but we can for
-- the version specialised to 'Int'.
strictMaximum :: (Ord a) => [a] -> a
strictMaximum [] = errorEmptyList "maximum"
strictMaximum xs = foldl1' max xs
-- | 'minimum' returns the minimum value from a list,
-- which must be non-empty, finite, and of an ordered type.
-- It is a special case of 'Data.List.minimumBy', which allows the
-- programmer to supply their own comparison function.
minimum :: (Ord a) => [a] -> a
{-# INLINE [1] minimum #-}
minimum [] = errorEmptyList "minimum"
minimum xs = foldl1 min xs
{-# RULES
"minimumInt" minimum = (strictMinimum :: [Int] -> Int);
"minimumInteger" minimum = (strictMinimum :: [Integer] -> Integer)
#-}
strictMinimum :: (Ord a) => [a] -> a
strictMinimum [] = errorEmptyList "minimum"
strictMinimum xs = foldl1' min xs
-- | 'iterate' @f x@ returns an infinite list of repeated applications
-- of @f@ to @x@:
--
-- > iterate f x == [x, f x, f (f x), ...]
{-# NOINLINE [1] iterate #-}
iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)
{-# NOINLINE [0] iterateFB #-}
iterateFB :: (a -> b -> b) -> (a -> a) -> a -> b
iterateFB c f x0 = go x0
where go x = x `c` go (f x)
{-# RULES
"iterate" [~1] forall f x. iterate f x = build (\c _n -> iterateFB c f x)
"iterateFB" [1] iterateFB (:) = iterate
#-}
-- | 'repeat' @x@ is an infinite list, with @x@ the value of every element.
repeat :: a -> [a]
{-# INLINE [0] repeat #-}
-- The pragma just gives the rules more chance to fire
repeat x = xs where xs = x : xs
{-# INLINE [0] repeatFB #-} -- ditto
repeatFB :: (a -> b -> b) -> a -> b
repeatFB c x = xs where xs = x `c` xs
{-# RULES
"repeat" [~1] forall x. repeat x = build (\c _n -> repeatFB c x)
"repeatFB" [1] repeatFB (:) = repeat
#-}
-- | 'replicate' @n x@ is a list of length @n@ with @x@ the value of
-- every element.
-- It is an instance of the more general 'Data.List.genericReplicate',
-- in which @n@ may be of any integral type.
{-# INLINE replicate #-}
replicate :: Int -> a -> [a]
replicate n x = take n (repeat x)
-- | 'cycle' ties a finite list into a circular one, or equivalently,
-- the infinite repetition of the original list. It is the identity
-- on infinite lists.
cycle :: [a] -> [a]
cycle [] = errorEmptyList "cycle"
cycle xs = xs' where xs' = xs ++ xs'
-- | 'takeWhile', applied to a predicate @p@ and a list @xs@, returns the
-- longest prefix (possibly empty) of @xs@ of elements that satisfy @p@:
--
-- > takeWhile (< 3) [1,2,3,4,1,2,3,4] == [1,2]
-- > takeWhile (< 9) [1,2,3] == [1,2,3]
-- > takeWhile (< 0) [1,2,3] == []
--
{-# NOINLINE [1] takeWhile #-}
takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile _ [] = []
takeWhile p (x:xs)
| p x = x : takeWhile p xs
| otherwise = []
{-# INLINE [0] takeWhileFB #-}
takeWhileFB :: (a -> Bool) -> (a -> b -> b) -> b -> a -> b -> b
takeWhileFB p c n = \x r -> if p x then x `c` r else n
-- The takeWhileFB rule is similar to the filterFB rule. It works like this:
-- takeWhileFB q (takeWhileFB p c n) n =
-- \x r -> if q x then (takeWhileFB p c n) x r else n =
-- \x r -> if q x then (\x' r' -> if p x' then x' `c` r' else n) x r else n =
-- \x r -> if q x then (if p x then x `c` r else n) else n =
-- \x r -> if q x && p x then x `c` r else n =
-- takeWhileFB (\x -> q x && p x) c n
{-# RULES
"takeWhile" [~1] forall p xs. takeWhile p xs =
build (\c n -> foldr (takeWhileFB p c n) n xs)
"takeWhileList" [1] forall p. foldr (takeWhileFB p (:) []) [] = takeWhile p
"takeWhileFB" forall c n p q. takeWhileFB q (takeWhileFB p c n) n =
takeWhileFB (\x -> q x && p x) c n
#-}
-- | 'dropWhile' @p xs@ returns the suffix remaining after 'takeWhile' @p xs@:
--
-- > dropWhile (< 3) [1,2,3,4,5,1,2,3] == [3,4,5,1,2,3]
-- > dropWhile (< 9) [1,2,3] == []
-- > dropWhile (< 0) [1,2,3] == [1,2,3]
--
dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile _ [] = []
dropWhile p xs@(x:xs')
| p x = dropWhile p xs'
| otherwise = xs
-- | 'take' @n@, applied to a list @xs@, returns the prefix of @xs@
-- of length @n@, or @xs@ itself if @n > 'length' xs@:
--
-- > take 5 "Hello World!" == "Hello"
-- > take 3 [1,2,3,4,5] == [1,2,3]
-- > take 3 [1,2] == [1,2]
-- > take 3 [] == []
-- > take (-1) [1,2] == []
-- > take 0 [1,2] == []
--
-- It is an instance of the more general 'Data.List.genericTake',
-- in which @n@ may be of any integral type.
take :: Int -> [a] -> [a]
#ifdef USE_REPORT_PRELUDE
take n _ | n <= 0 = []
take _ [] = []
take n (x:xs) = x : take (n-1) xs
#else
{- We always want to inline this to take advantage of a known length argument
sign. Note, however, that it's important for the RULES to grab take, rather
than trying to INLINE take immediately and then letting the RULES grab
unsafeTake. Presumably the latter approach doesn't grab it early enough; it led
to an allocation regression in nofib/fft2. -}
{-# INLINE [1] take #-}
take n xs | 0 < n = unsafeTake n xs
| otherwise = []
-- A version of take that takes the whole list if it's given an argument less
-- than 1.
{-# NOINLINE [1] unsafeTake #-}
unsafeTake :: Int -> [a] -> [a]
unsafeTake !_ [] = []
unsafeTake 1 (x: _) = [x]
unsafeTake m (x:xs) = x : unsafeTake (m - 1) xs
{-# RULES
"take" [~1] forall n xs . take n xs =
build (\c nil -> if 0 < n
then foldr (takeFB c nil) (flipSeqTake nil) xs n
else nil)
"unsafeTakeList" [1] forall n xs . foldr (takeFB (:) []) (flipSeqTake []) xs n
= unsafeTake n xs
#-}
{-# INLINE [0] flipSeqTake #-}
-- Just flip seq, specialized to Int, but not inlined too early.
-- It's important to force the numeric argument here, even though
-- it's not used. Otherwise, take n [] doesn't force n. This is
-- bad for strictness analysis and unboxing, and leads to increased
-- allocation in T7257.
flipSeqTake :: a -> Int -> a
flipSeqTake x !_n = x
{-# INLINE [0] takeFB #-}
takeFB :: (a -> b -> b) -> b -> a -> (Int -> b) -> Int -> b
-- The \m accounts for the fact that takeFB is used in a higher-order
-- way by takeFoldr, so it's better to inline. A good example is
-- take n (repeat x)
-- for which we get excellent code... but only if we inline takeFB
-- when given four arguments
takeFB c n x xs
= \ m -> case m of
1 -> x `c` n
_ -> x `c` xs (m - 1)
#endif
-- | 'drop' @n xs@ returns the suffix of @xs@
-- after the first @n@ elements, or @[]@ if @n > 'length' xs@:
--
-- > drop 6 "Hello World!" == "World!"
-- > drop 3 [1,2,3,4,5] == [4,5]
-- > drop 3 [1,2] == []
-- > drop 3 [] == []
-- > drop (-1) [1,2] == [1,2]
-- > drop 0 [1,2] == [1,2]
--
-- It is an instance of the more general 'Data.List.genericDrop',
-- in which @n@ may be of any integral type.
drop :: Int -> [a] -> [a]
#ifdef USE_REPORT_PRELUDE
drop n xs | n <= 0 = xs
drop _ [] = []
drop n (_:xs) = drop (n-1) xs
#else /* hack away */
{-# INLINE drop #-}
drop n ls
| n <= 0 = ls
| otherwise = unsafeDrop n ls
where
-- A version of drop that drops the whole list if given an argument
-- less than 1
unsafeDrop :: Int -> [a] -> [a]
unsafeDrop !_ [] = []
unsafeDrop 1 (_:xs) = xs
unsafeDrop m (_:xs) = unsafeDrop (m - 1) xs
#endif
-- | 'splitAt' @n xs@ returns a tuple where first element is @xs@ prefix of
-- length @n@ and second element is the remainder of the list:
--
-- > splitAt 6 "Hello World!" == ("Hello ","World!")
-- > splitAt 3 [1,2,3,4,5] == ([1,2,3],[4,5])
-- > splitAt 1 [1,2,3] == ([1],[2,3])
-- > splitAt 3 [1,2,3] == ([1,2,3],[])
-- > splitAt 4 [1,2,3] == ([1,2,3],[])
-- > splitAt 0 [1,2,3] == ([],[1,2,3])
-- > splitAt (-1) [1,2,3] == ([],[1,2,3])
--
-- It is equivalent to @('take' n xs, 'drop' n xs)@ when @n@ is not @_|_@
-- (@splitAt _|_ xs = _|_@).
-- 'splitAt' is an instance of the more general 'Data.List.genericSplitAt',
-- in which @n@ may be of any integral type.
splitAt :: Int -> [a] -> ([a],[a])
#ifdef USE_REPORT_PRELUDE
splitAt n xs = (take n xs, drop n xs)
#else
splitAt n ls
| n <= 0 = ([], ls)
| otherwise = splitAt' n ls
where
splitAt' :: Int -> [a] -> ([a], [a])
splitAt' _ [] = ([], [])
splitAt' 1 (x:xs) = ([x], xs)
splitAt' m (x:xs) = (x:xs', xs'')
where
(xs', xs'') = splitAt' (m - 1) xs
#endif /* USE_REPORT_PRELUDE */
-- | 'span', applied to a predicate @p@ and a list @xs@, returns a tuple where
-- first element is longest prefix (possibly empty) of @xs@ of elements that
-- satisfy @p@ and second element is the remainder of the list:
--
-- > span (< 3) [1,2,3,4,1,2,3,4] == ([1,2],[3,4,1,2,3,4])
-- > span (< 9) [1,2,3] == ([1,2,3],[])
-- > span (< 0) [1,2,3] == ([],[1,2,3])
--
-- 'span' @p xs@ is equivalent to @('takeWhile' p xs, 'dropWhile' p xs)@
span :: (a -> Bool) -> [a] -> ([a],[a])
span _ xs@[] = (xs, xs)
span p xs@(x:xs')
| p x = let (ys,zs) = span p xs' in (x:ys,zs)
| otherwise = ([],xs)
-- | 'break', applied to a predicate @p@ and a list @xs@, returns a tuple where
-- first element is longest prefix (possibly empty) of @xs@ of elements that
-- /do not satisfy/ @p@ and second element is the remainder of the list:
--
-- > break (> 3) [1,2,3,4,1,2,3,4] == ([1,2,3],[4,1,2,3,4])
-- > break (< 9) [1,2,3] == ([],[1,2,3])
-- > break (> 9) [1,2,3] == ([1,2,3],[])
--
-- 'break' @p@ is equivalent to @'span' ('not' . p)@.
break :: (a -> Bool) -> [a] -> ([a],[a])
#ifdef USE_REPORT_PRELUDE
break p = span (not . p)
#else
-- HBC version (stolen)
break _ xs@[] = (xs, xs)
break p xs@(x:xs')
| p x = ([],xs)
| otherwise = let (ys,zs) = break p xs' in (x:ys,zs)
#endif
-- | 'reverse' @xs@ returns the elements of @xs@ in reverse order.
-- @xs@ must be finite.
reverse :: [a] -> [a]
#ifdef USE_REPORT_PRELUDE
reverse = foldl (flip (:)) []
#else
reverse l = rev l []
where
rev [] a = a
rev (x:xs) a = rev xs (x:a)
#endif
-- | 'and' returns the conjunction of a Boolean list. For the result to be
-- 'True', the list must be finite; 'False', however, results from a 'False'
-- value at a finite index of a finite or infinite list.
and :: [Bool] -> Bool
#ifdef USE_REPORT_PRELUDE
and = foldr (&&) True
#else
and [] = True
and (x:xs) = x && and xs
{-# NOINLINE [1] and #-}
{-# RULES
"and/build" forall (g::forall b.(Bool->b->b)->b->b) .
and (build g) = g (&&) True
#-}
#endif
-- | 'or' returns the disjunction of a Boolean list. For the result to be
-- 'False', the list must be finite; 'True', however, results from a 'True'
-- value at a finite index of a finite or infinite list.
or :: [Bool] -> Bool
#ifdef USE_REPORT_PRELUDE
or = foldr (||) False
#else
or [] = False
or (x:xs) = x || or xs
{-# NOINLINE [1] or #-}
{-# RULES
"or/build" forall (g::forall b.(Bool->b->b)->b->b) .
or (build g) = g (||) False
#-}
#endif
-- | Applied to a predicate and a list, 'any' determines if any element
-- of the list satisfies the predicate. For the result to be
-- 'False', the list must be finite; 'True', however, results from a 'True'
-- value for the predicate applied to an element at a finite index of a finite or infinite list.
any :: (a -> Bool) -> [a] -> Bool
#ifdef USE_REPORT_PRELUDE
any p = or . map p
#else
any _ [] = False
any p (x:xs) = p x || any p xs
{-# NOINLINE [1] any #-}
{-# RULES
"any/build" forall p (g::forall b.(a->b->b)->b->b) .
any p (build g) = g ((||) . p) False
#-}
#endif
-- | Applied to a predicate and a list, 'all' determines if all elements
-- of the list satisfy the predicate. For the result to be
-- 'True', the list must be finite; 'False', however, results from a 'False'
-- value for the predicate applied to an element at a finite index of a finite or infinite list.
all :: (a -> Bool) -> [a] -> Bool
#ifdef USE_REPORT_PRELUDE
all p = and . map p
#else
all _ [] = True
all p (x:xs) = p x && all p xs
{-# NOINLINE [1] all #-}
{-# RULES
"all/build" forall p (g::forall b.(a->b->b)->b->b) .
all p (build g) = g ((&&) . p) True
#-}
#endif
-- | 'elem' is the list membership predicate, usually written in infix form,
-- e.g., @x \`elem\` xs@. For the result to be
-- 'False', the list must be finite; 'True', however, results from an element
-- equal to @x@ found at a finite index of a finite or infinite list.
elem :: (Eq a) => a -> [a] -> Bool
#ifdef USE_REPORT_PRELUDE
elem x = any (== x)
#else
elem _ [] = False
elem x (y:ys) = x==y || elem x ys
{-# NOINLINE [1] elem #-}
{-# RULES
"elem/build" forall x (g :: forall b . Eq a => (a -> b -> b) -> b -> b)
. elem x (build g) = g (\ y r -> (x == y) || r) False
#-}
#endif
-- | 'notElem' is the negation of 'elem'.
notElem :: (Eq a) => a -> [a] -> Bool
#ifdef USE_REPORT_PRELUDE
notElem x = all (/= x)
#else
notElem _ [] = True
notElem x (y:ys)= x /= y && notElem x ys
{-# NOINLINE [1] notElem #-}
{-# RULES
"notElem/build" forall x (g :: forall b . Eq a => (a -> b -> b) -> b -> b)
. notElem x (build g) = g (\ y r -> (x /= y) && r) True
#-}
#endif
-- | 'lookup' @key assocs@ looks up a key in an association list.
lookup :: (Eq a) => a -> [(a,b)] -> Maybe b
lookup _key [] = Nothing
lookup key ((x,y):xys)
| key == x = Just y
| otherwise = lookup key xys
-- | Map a function over a list and concatenate the results.
concatMap :: (a -> [b]) -> [a] -> [b]
concatMap f = foldr ((++) . f) []
{-# NOINLINE [1] concatMap #-}
{-# RULES
"concatMap" forall f xs . concatMap f xs =
build (\c n -> foldr (\x b -> foldr c b (f x)) n xs)
#-}
-- | Concatenate a list of lists.
concat :: [[a]] -> [a]
concat = foldr (++) []
{-# NOINLINE [1] concat #-}
{-# RULES
"concat" forall xs. concat xs =
build (\c n -> foldr (\x y -> foldr c y x) n xs)
-- We don't bother to turn non-fusible applications of concat back into concat
#-}
-- | List index (subscript) operator, starting from 0.
-- It is an instance of the more general 'Data.List.genericIndex',
-- which takes an index of any integral type.
(!!) :: [a] -> Int -> a
#ifdef USE_REPORT_PRELUDE
xs !! n | n < 0 = error "Prelude.!!: negative index"
[] !! _ = error "Prelude.!!: index too large"
(x:_) !! 0 = x
(_:xs) !! n = xs !! (n-1)
#else
-- We don't really want the errors to inline with (!!).
-- We may want to fuss around a bit with NOINLINE, and
-- if so we should be careful not to trip up known-bottom
-- optimizations.
tooLarge :: Int -> a
tooLarge _ = error (prel_list_str ++ "!!: index too large")
negIndex :: a
negIndex = error $ prel_list_str ++ "!!: negative index"
{-# INLINABLE (!!) #-}
xs !! n
| n < 0 = negIndex
| otherwise = foldr (\x r k -> case k of
0 -> x
_ -> r (k-1)) tooLarge xs n
#endif
--------------------------------------------------------------
-- The zip family
--------------------------------------------------------------
foldr2 :: (a -> b -> c -> c) -> c -> [a] -> [b] -> c
foldr2 k z = go
where
go [] _ys = z
go _xs [] = z
go (x:xs) (y:ys) = k x y (go xs ys)
{-# INLINE [0] foldr2 #-}
foldr2_left :: (a -> b -> c -> d) -> d -> a -> ([b] -> c) -> [b] -> d
foldr2_left _k z _x _r [] = z
foldr2_left k _z x r (y:ys) = k x y (r ys)
-- foldr2 k z xs ys = foldr (foldr2_left k z) (\_ -> z) xs ys
{-# RULES
"foldr2/left" forall k z ys (g::forall b.(a->b->b)->b->b) .
foldr2 k z (build g) ys = g (foldr2_left k z) (\_ -> z) ys
#-}
-- There used to be a foldr2/right rule, allowing foldr2 to fuse with a build
-- form on the right. However, this causes trouble if the right list ends in
-- a bottom that is only avoided by the left list ending at that spot. That is,
-- foldr2 f z [a,b,c] (d:e:f:_|_), where the right list is produced by a build
-- form, would cause the foldr2/right rule to introduce bottom. Example:
--
-- zip [1,2,3,4] (unfoldr (\s -> if s > 4 then undefined else Just (s,s+1)) 1)
--
-- should produce
--
-- [(1,1),(2,2),(3,3),(4,4)]
--
-- but with the foldr2/right rule it would instead produce
--
-- (1,1):(2,2):(3,3):(4,4):_|_
-- Zips for larger tuples are in the List module.
----------------------------------------------
-- | 'zip' takes two lists and returns a list of corresponding pairs.
-- If one input list is short, excess elements of the longer list are
-- discarded.
--
-- 'zip' is right-lazy:
--
-- > zip [] _|_ = []
{-# NOINLINE [1] zip #-}
zip :: [a] -> [b] -> [(a,b)]
zip [] _bs = []
zip _as [] = []
zip (a:as) (b:bs) = (a,b) : zip as bs
{-# INLINE [0] zipFB #-}
zipFB :: ((a, b) -> c -> d) -> a -> b -> c -> d
zipFB c = \x y r -> (x,y) `c` r
{-# RULES
"zip" [~1] forall xs ys. zip xs ys = build (\c n -> foldr2 (zipFB c) n xs ys)
"zipList" [1] foldr2 (zipFB (:)) [] = zip
#-}
----------------------------------------------
-- | 'zip3' takes three lists and returns a list of triples, analogous to
-- 'zip'.
zip3 :: [a] -> [b] -> [c] -> [(a,b,c)]
-- Specification
-- zip3 = zipWith3 (,,)
zip3 (a:as) (b:bs) (c:cs) = (a,b,c) : zip3 as bs cs
zip3 _ _ _ = []
-- The zipWith family generalises the zip family by zipping with the
-- function given as the first argument, instead of a tupling function.
----------------------------------------------
-- | 'zipWith' generalises 'zip' by zipping with the function given
-- as the first argument, instead of a tupling function.
-- For example, @'zipWith' (+)@ is applied to two lists to produce the
-- list of corresponding sums.
--
-- 'zipWith' is right-lazy:
--
-- > zipWith f [] _|_ = []
{-# NOINLINE [1] zipWith #-}
zipWith :: (a->b->c) -> [a]->[b]->[c]
zipWith _f [] _bs = []
zipWith _f _as [] = []
zipWith f (a:as) (b:bs) = f a b : zipWith f as bs
-- zipWithFB must have arity 2 since it gets two arguments in the "zipWith"
-- rule; it might not get inlined otherwise
{-# INLINE [0] zipWithFB #-}
zipWithFB :: (a -> b -> c) -> (d -> e -> a) -> d -> e -> b -> c
zipWithFB c f = \x y r -> (x `f` y) `c` r
{-# RULES
"zipWith" [~1] forall f xs ys. zipWith f xs ys = build (\c n -> foldr2 (zipWithFB c f) n xs ys)
"zipWithList" [1] forall f. foldr2 (zipWithFB (:) f) [] = zipWith f
#-}
-- | The 'zipWith3' function takes a function which combines three
-- elements, as well as three lists and returns a list of their point-wise
-- combination, analogous to 'zipWith'.
zipWith3 :: (a->b->c->d) -> [a]->[b]->[c]->[d]
zipWith3 z (a:as) (b:bs) (c:cs)
= z a b c : zipWith3 z as bs cs
zipWith3 _ _ _ _ = []
-- | 'unzip' transforms a list of pairs into a list of first components
-- and a list of second components.
unzip :: [(a,b)] -> ([a],[b])
{-# INLINE unzip #-}
unzip = foldr (\(a,b) ~(as,bs) -> (a:as,b:bs)) ([],[])
-- | The 'unzip3' function takes a list of triples and returns three
-- lists, analogous to 'unzip'.
unzip3 :: [(a,b,c)] -> ([a],[b],[c])
{-# INLINE unzip3 #-}
unzip3 = foldr (\(a,b,c) ~(as,bs,cs) -> (a:as,b:bs,c:cs))
([],[],[])
--------------------------------------------------------------
-- Error code
--------------------------------------------------------------
-- Common up near identical calls to `error' to reduce the number
-- constant strings created when compiled:
errorEmptyList :: String -> a
errorEmptyList fun =
error (prel_list_str ++ fun ++ ": empty list")
prel_list_str :: String
prel_list_str = "Prelude."
|