1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
|
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE UnboxedTuples #-}
{-# LANGUAGE Unsafe #-}
{-# OPTIONS_HADDOCK not-home #-}
-----------------------------------------------------------------------------
-- |
-- Module : GHC.Natural
-- Copyright : (C) 2014 Herbert Valerio Riedel,
-- (C) 2011 Edward Kmett
-- License : see libraries/base/LICENSE
--
-- Maintainer : libraries@haskell.org
-- Stability : internal
-- Portability : non-portable (GHC Extensions)
--
-- The arbitrary-precision 'Natural' number type.
--
-- __Note__: This is an internal GHC module with an API subject to
-- change. It's recommended use the "Numeric.Natural" module to import
-- the 'Natural' type.
--
-- @since 4.8.0.0
-----------------------------------------------------------------------------
module GHC.Natural
( -- * The 'Natural' number type
--
-- | __Warning__: The internal implementation of 'Natural'
-- (i.e. which constructors are available) depends on the
-- 'Integer' backend used!
Natural(..)
, isValidNatural
-- * Conversions
, wordToNatural
, naturalToWordMaybe
-- * Checked subtraction
, minusNaturalMaybe
-- * Modular arithmetic
, powModNatural
) where
#include "MachDeps.h"
#if defined(MIN_VERSION_integer_gmp)
# define HAVE_GMP_BIGNAT MIN_VERSION_integer_gmp(1,0,0)
#else
# define HAVE_GMP_BIGNAT 0
#endif
import GHC.Arr
import GHC.Base
import GHC.Exception
#if HAVE_GMP_BIGNAT
import GHC.Integer.GMP.Internals
import Data.Word
import Data.Int
#endif
import GHC.Num
import GHC.Real
import GHC.Read
import GHC.Show
import GHC.Enum
import GHC.List
import Data.Bits
import Data.Data
default ()
#if HAVE_GMP_BIGNAT
-- TODO: if saturated arithmetic is to used, replace 'throw Underflow' by '0'
-- | Type representing arbitrary-precision non-negative integers.
--
-- Operations whose result would be negative
-- @'throw' ('Underflow' :: 'ArithException')@.
--
-- @since 4.8.0.0
data Natural = NatS# GmpLimb# -- ^ in @[0, maxBound::Word]@
| NatJ# {-# UNPACK #-} !BigNat -- ^ in @]maxBound::Word, +inf[@
--
-- __Invariant__: 'NatJ#' is used
-- /iff/ value doesn't fit in
-- 'NatS#' constructor.
deriving (Eq,Ord) -- NB: Order of constructors *must*
-- coincide with 'Ord' relation
-- | Test whether all internal invariants are satisfied by 'Natural' value
--
-- This operation is mostly useful for test-suites and/or code which
-- constructs 'Integer' values directly.
--
-- @since 4.8.0.0
isValidNatural :: Natural -> Bool
isValidNatural (NatS# _) = True
isValidNatural (NatJ# bn) = isTrue# (isValidBigNat# bn)
&& I# (sizeofBigNat# bn) > 0
{-# RULES
"fromIntegral/Natural->Natural" fromIntegral = id :: Natural -> Natural
"fromIntegral/Natural->Integer" fromIntegral = toInteger :: Natural->Integer
"fromIntegral/Natural->Word" fromIntegral = naturalToWord
"fromIntegral/Natural->Word8"
fromIntegral = (fromIntegral :: Word -> Word8) . naturalToWord
"fromIntegral/Natural->Word16"
fromIntegral = (fromIntegral :: Word -> Word16) . naturalToWord
"fromIntegral/Natural->Word32"
fromIntegral = (fromIntegral :: Word -> Word32) . naturalToWord
"fromIntegral/Natural->Int8"
fromIntegral = (fromIntegral :: Int -> Int8) . naturalToInt
"fromIntegral/Natural->Int16"
fromIntegral = (fromIntegral :: Int -> Int16) . naturalToInt
"fromIntegral/Natural->Int32"
fromIntegral = (fromIntegral :: Int -> Int32) . naturalToInt
#-}
{-# RULES
"fromIntegral/Word->Natural" fromIntegral = wordToNatural
"fromIntegral/Word8->Natural"
fromIntegral = wordToNatural . (fromIntegral :: Word8 -> Word)
"fromIntegral/Word16->Natural"
fromIntegral = wordToNatural . (fromIntegral :: Word16 -> Word)
"fromIntegral/Word32->Natural"
fromIntegral = wordToNatural . (fromIntegral :: Word32 -> Word)
"fromIntegral/Int->Natural" fromIntegral = intToNatural
"fromIntegral/Int8->Natural"
fromIntegral = intToNatural . (fromIntegral :: Int8 -> Int)
"fromIntegral/Int16->Natural"
fromIntegral = intToNatural . (fromIntegral :: Int16 -> Int)
"fromIntegral/Int32->Natural"
fromIntegral = intToNatural . (fromIntegral :: Int32 -> Int)
#-}
#if WORD_SIZE_IN_BITS == 64
-- these RULES are valid for Word==Word64 & Int==Int64
{-# RULES
"fromIntegral/Natural->Word64"
fromIntegral = (fromIntegral :: Word -> Word64) . naturalToWord
"fromIntegral/Natural->Int64"
fromIntegral = (fromIntegral :: Int -> Int64) . naturalToInt
"fromIntegral/Word64->Natural"
fromIntegral = wordToNatural . (fromIntegral :: Word64 -> Word)
"fromIntegral/Int64->Natural"
fromIntegral = intToNatural . (fromIntegral :: Int64 -> Int)
#-}
#endif
instance Show Natural where
showsPrec p (NatS# w#) = showsPrec p (W# w#)
showsPrec p (NatJ# bn) = showsPrec p (Jp# bn)
instance Read Natural where
readsPrec d = map (\(n, s) -> (fromInteger n, s))
. filter ((>= 0) . (\(x,_)->x)) . readsPrec d
instance Num Natural where
fromInteger (S# i#) | I# i# >= 0 = NatS# (int2Word# i#)
fromInteger (Jp# bn) = bigNatToNatural bn
fromInteger _ = throw Underflow
(+) = plusNatural
(*) = timesNatural
(-) = minusNatural
abs = id
signum (NatS# 0##) = NatS# 0##
signum _ = NatS# 1##
negate (NatS# 0##) = NatS# 0##
negate _ = throw Underflow
instance Real Natural where
toRational (NatS# w) = toRational (W# w)
toRational (NatJ# bn) = toRational (Jp# bn)
#if OPTIMISE_INTEGER_GCD_LCM
{-# RULES
"gcd/Natural->Natural->Natural" gcd = gcdNatural
"lcm/Natural->Natural->Natural" lcm = lcmNatural
#-}
-- | Compute greatest common divisor.
gcdNatural :: Natural -> Natural -> Natural
gcdNatural (NatS# 0##) y = y
gcdNatural x (NatS# 0##) = x
gcdNatural (NatS# 1##) _ = (NatS# 1##)
gcdNatural _ (NatS# 1##) = (NatS# 1##)
gcdNatural (NatJ# x) (NatJ# y) = bigNatToNatural (gcdBigNat x y)
gcdNatural (NatJ# x) (NatS# y) = NatS# (gcdBigNatWord x y)
gcdNatural (NatS# x) (NatJ# y) = NatS# (gcdBigNatWord y x)
gcdNatural (NatS# x) (NatS# y) = NatS# (gcdWord x y)
-- | compute least common multiplier.
lcmNatural :: Natural -> Natural -> Natural
lcmNatural (NatS# 0##) _ = (NatS# 0##)
lcmNatural _ (NatS# 0##) = (NatS# 0##)
lcmNatural (NatS# 1##) y = y
lcmNatural x (NatS# 1##) = x
lcmNatural x y = (x `quot` (gcdNatural x y)) * y
#endif
instance Enum Natural where
succ n = n `plusNatural` NatS# 1##
pred n = n `minusNatural` NatS# 1##
toEnum = intToNatural
fromEnum (NatS# w) | i >= 0 = i
where
i = fromIntegral (W# w)
fromEnum _ = error "fromEnum: out of Int range"
enumFrom x = enumDeltaNatural x (NatS# 1##)
enumFromThen x y
| x <= y = enumDeltaNatural x (y-x)
| otherwise = enumNegDeltaToNatural x (x-y) (NatS# 0##)
enumFromTo x lim = enumDeltaToNatural x (NatS# 1##) lim
enumFromThenTo x y lim
| x <= y = enumDeltaToNatural x (y-x) lim
| otherwise = enumNegDeltaToNatural x (x-y) lim
----------------------------------------------------------------------------
-- Helpers for 'Enum Natural'; TODO: optimise & make fusion work
enumDeltaNatural :: Natural -> Natural -> [Natural]
enumDeltaNatural !x d = x : enumDeltaNatural (x+d) d
enumDeltaToNatural :: Natural -> Natural -> Natural -> [Natural]
enumDeltaToNatural x0 delta lim = go x0
where
go x | x > lim = []
| otherwise = x : go (x+delta)
enumNegDeltaToNatural :: Natural -> Natural -> Natural -> [Natural]
enumNegDeltaToNatural x0 ndelta lim = go x0
where
go x | x < lim = []
| x >= ndelta = x : go (x-ndelta)
| otherwise = [x]
----------------------------------------------------------------------------
instance Integral Natural where
toInteger (NatS# w) = wordToInteger w
toInteger (NatJ# bn) = Jp# bn
divMod = quotRem
div = quot
mod = rem
quotRem _ (NatS# 0##) = throw DivideByZero
quotRem n (NatS# 1##) = (n,NatS# 0##)
quotRem n@(NatS# _) (NatJ# _) = (NatS# 0##, n)
quotRem (NatS# n) (NatS# d) = case quotRem (W# n) (W# d) of
(q,r) -> (wordToNatural q, wordToNatural r)
quotRem (NatJ# n) (NatS# d) = case quotRemBigNatWord n d of
(# q,r #) -> (bigNatToNatural q, NatS# r)
quotRem (NatJ# n) (NatJ# d) = case quotRemBigNat n d of
(# q,r #) -> (bigNatToNatural q, bigNatToNatural r)
quot _ (NatS# 0##) = throw DivideByZero
quot n (NatS# 1##) = n
quot (NatS# _) (NatJ# _) = NatS# 0##
quot (NatS# n) (NatS# d) = wordToNatural (quot (W# n) (W# d))
quot (NatJ# n) (NatS# d) = bigNatToNatural (quotBigNatWord n d)
quot (NatJ# n) (NatJ# d) = bigNatToNatural (quotBigNat n d)
rem _ (NatS# 0##) = throw DivideByZero
rem _ (NatS# 1##) = NatS# 0##
rem n@(NatS# _) (NatJ# _) = n
rem (NatS# n) (NatS# d) = wordToNatural (rem (W# n) (W# d))
rem (NatJ# n) (NatS# d) = NatS# (remBigNatWord n d)
rem (NatJ# n) (NatJ# d) = bigNatToNatural (remBigNat n d)
instance Ix Natural where
range (m,n) = [m..n]
inRange (m,n) i = m <= i && i <= n
unsafeIndex (m,_) i = fromIntegral (i-m)
index b i | inRange b i = unsafeIndex b i
| otherwise = indexError b i "Natural"
instance Bits Natural where
NatS# n .&. NatS# m = wordToNatural (W# n .&. W# m)
NatS# n .&. NatJ# m = wordToNatural (W# n .&. W# (bigNatToWord m))
NatJ# n .&. NatS# m = wordToNatural (W# (bigNatToWord n) .&. W# m)
NatJ# n .&. NatJ# m = bigNatToNatural (andBigNat n m)
NatS# n .|. NatS# m = wordToNatural (W# n .|. W# m)
NatS# n .|. NatJ# m = NatJ# (orBigNat (wordToBigNat n) m)
NatJ# n .|. NatS# m = NatJ# (orBigNat n (wordToBigNat m))
NatJ# n .|. NatJ# m = NatJ# (orBigNat n m)
NatS# n `xor` NatS# m = wordToNatural (W# n `xor` W# m)
NatS# n `xor` NatJ# m = NatJ# (xorBigNat (wordToBigNat n) m)
NatJ# n `xor` NatS# m = NatJ# (xorBigNat n (wordToBigNat m))
NatJ# n `xor` NatJ# m = bigNatToNatural (xorBigNat n m)
complement _ = error "Bits.complement: Natural complement undefined"
bitSizeMaybe _ = Nothing
bitSize = error "Natural: bitSize"
isSigned _ = False
bit i@(I# i#) | i < finiteBitSize (0::Word) = wordToNatural (bit i)
| otherwise = NatJ# (bitBigNat i#)
testBit (NatS# w) i = testBit (W# w) i
testBit (NatJ# bn) (I# i#) = testBitBigNat bn i#
-- TODO: setBit, clearBit, complementBit (needs more primitives)
shiftL n 0 = n
shiftL (NatS# 0##) _ = NatS# 0##
shiftL (NatS# 1##) i = bit i
shiftL (NatS# w) (I# i#)
= bigNatToNatural $ shiftLBigNat (wordToBigNat w) i#
shiftL (NatJ# bn) (I# i#)
= bigNatToNatural $ shiftLBigNat bn i#
shiftR n 0 = n
shiftR (NatS# w) i = wordToNatural $ shiftR (W# w) i
shiftR (NatJ# bn) (I# i#) = bigNatToNatural (shiftRBigNat bn i#)
rotateL = shiftL
rotateR = shiftR
popCount (NatS# w) = popCount (W# w)
popCount (NatJ# bn) = I# (popCountBigNat bn)
zeroBits = NatS# 0##
----------------------------------------------------------------------------
-- | 'Natural' Addition
plusNatural :: Natural -> Natural -> Natural
plusNatural (NatS# 0##) y = y
plusNatural x (NatS# 0##) = x
plusNatural (NatS# x) (NatS# y)
= case plusWord2# x y of
(# 0##, l #) -> NatS# l
(# h, l #) -> NatJ# (wordToBigNat2 h l)
plusNatural (NatS# x) (NatJ# y) = NatJ# (plusBigNatWord y x)
plusNatural (NatJ# x) (NatS# y) = NatJ# (plusBigNatWord x y)
plusNatural (NatJ# x) (NatJ# y) = NatJ# (plusBigNat x y)
-- | 'Natural' multiplication
timesNatural :: Natural -> Natural -> Natural
timesNatural _ (NatS# 0##) = NatS# 0##
timesNatural (NatS# 0##) _ = NatS# 0##
timesNatural x (NatS# 1##) = x
timesNatural (NatS# 1##) y = y
timesNatural (NatS# x) (NatS# y) = case timesWord2# x y of
(# 0##, 0## #) -> NatS# 0##
(# 0##, xy #) -> NatS# xy
(# h , l #) -> NatJ# $ wordToBigNat2 h l
timesNatural (NatS# x) (NatJ# y) = NatJ# $ timesBigNatWord y x
timesNatural (NatJ# x) (NatS# y) = NatJ# $ timesBigNatWord x y
timesNatural (NatJ# x) (NatJ# y) = NatJ# $ timesBigNat x y
-- | 'Natural' subtraction. May @'throw' 'Underflow'@.
minusNatural :: Natural -> Natural -> Natural
minusNatural x (NatS# 0##) = x
minusNatural (NatS# x) (NatS# y) = case subWordC# x y of
(# l, 0# #) -> NatS# l
_ -> throw Underflow
minusNatural (NatS# _) (NatJ# _) = throw Underflow
minusNatural (NatJ# x) (NatS# y)
= bigNatToNatural $ minusBigNatWord x y
minusNatural (NatJ# x) (NatJ# y)
= bigNatToNatural $ minusBigNat x y
-- | 'Natural' subtraction. Returns 'Nothing's for non-positive results.
--
-- @since 4.8.0.0
minusNaturalMaybe :: Natural -> Natural -> Maybe Natural
minusNaturalMaybe x (NatS# 0##) = Just x
minusNaturalMaybe (NatS# x) (NatS# y) = case subWordC# x y of
(# l, 0# #) -> Just (NatS# l)
_ -> Nothing
where
minusNaturalMaybe (NatS# _) (NatJ# _) = Nothing
minusNaturalMaybe (NatJ# x) (NatS# y)
= Just $ bigNatToNatural $ minusBigNatWord x y
minusNaturalMaybe (NatJ# x) (NatJ# y)
| isTrue# (isNullBigNat# res) = Nothing
| otherwise = Just (bigNatToNatural res)
where
res = minusBigNat x y
-- | Helper for 'minusNatural' and 'minusNaturalMaybe'
subWordC# :: Word# -> Word# -> (# Word#, Int# #)
subWordC# x# y# = (# d#, c# #)
where
d# = x# `minusWord#` y#
c# = d# `gtWord#` x#
-- | Convert 'BigNat' to 'Natural'.
-- Throws 'Underflow' if passed a 'nullBigNat'.
bigNatToNatural :: BigNat -> Natural
bigNatToNatural bn
| isTrue# (sizeofBigNat# bn ==# 1#) = NatS# (bigNatToWord bn)
| isTrue# (isNullBigNat# bn) = throw Underflow
| otherwise = NatJ# bn
naturalToBigNat :: Natural -> BigNat
naturalToBigNat (NatS# w#) = wordToBigNat w#
naturalToBigNat (NatJ# bn) = bn
-- | Convert 'Int' to 'Natural'.
-- Throws 'Underflow' when passed a negative 'Int'.
intToNatural :: Int -> Natural
intToNatural i | i<0 = throw Underflow
intToNatural (I# i#) = NatS# (int2Word# i#)
naturalToWord :: Natural -> Word
naturalToWord (NatS# w#) = W# w#
naturalToWord (NatJ# bn) = W# (bigNatToWord bn)
naturalToInt :: Natural -> Int
naturalToInt (NatS# w#) = I# (word2Int# w#)
naturalToInt (NatJ# bn) = I# (bigNatToInt bn)
#else /* !HAVE_GMP_BIGNAT */
----------------------------------------------------------------------------
-- Use wrapped 'Integer' as fallback; taken from Edward Kmett's nats package
-- | Type representing arbitrary-precision non-negative integers.
--
-- Operations whose result would be negative
-- @'throw' ('Underflow' :: 'ArithException')@.
--
-- @since 4.8.0.0
newtype Natural = Natural Integer -- ^ __Invariant__: non-negative 'Integer'
deriving (Eq,Ord,Ix)
-- | Test whether all internal invariants are satisfied by 'Natural' value
--
-- This operation is mostly useful for test-suites and/or code which
-- constructs 'Integer' values directly.
--
-- @since 4.8.0.0
isValidNatural :: Natural -> Bool
isValidNatural (Natural i) = i >= 0
instance Read Natural where
readsPrec d = map (\(n, s) -> (Natural n, s))
. filter ((>= 0) . (\(x,_)->x)) . readsPrec d
instance Show Natural where
showsPrec d (Natural i) = showsPrec d i
instance Num Natural where
Natural n + Natural m = Natural (n + m)
{-# INLINE (+) #-}
Natural n * Natural m = Natural (n * m)
{-# INLINE (*) #-}
Natural n - Natural m | result < 0 = throw Underflow
| otherwise = Natural result
where result = n - m
{-# INLINE (-) #-}
abs (Natural n) = Natural n
{-# INLINE abs #-}
signum (Natural n) = Natural (signum n)
{-# INLINE signum #-}
fromInteger n
| n >= 0 = Natural n
| otherwise = throw Underflow
{-# INLINE fromInteger #-}
-- | 'Natural' subtraction. Returns 'Nothing's for non-positive results.
--
-- @since 4.8.0.0
minusNaturalMaybe :: Natural -> Natural -> Maybe Natural
minusNaturalMaybe x y
| x >= y = Just (x - y)
| otherwise = Nothing
instance Bits Natural where
Natural n .&. Natural m = Natural (n .&. m)
{-# INLINE (.&.) #-}
Natural n .|. Natural m = Natural (n .|. m)
{-# INLINE (.|.) #-}
xor (Natural n) (Natural m) = Natural (xor n m)
{-# INLINE xor #-}
complement _ = error "Bits.complement: Natural complement undefined"
{-# INLINE complement #-}
shift (Natural n) = Natural . shift n
{-# INLINE shift #-}
rotate (Natural n) = Natural . rotate n
{-# INLINE rotate #-}
bit = Natural . bit
{-# INLINE bit #-}
setBit (Natural n) = Natural . setBit n
{-# INLINE setBit #-}
clearBit (Natural n) = Natural . clearBit n
{-# INLINE clearBit #-}
complementBit (Natural n) = Natural . complementBit n
{-# INLINE complementBit #-}
testBit (Natural n) = testBit n
{-# INLINE testBit #-}
bitSizeMaybe _ = Nothing
{-# INLINE bitSizeMaybe #-}
bitSize = error "Natural: bitSize"
{-# INLINE bitSize #-}
isSigned _ = False
{-# INLINE isSigned #-}
shiftL (Natural n) = Natural . shiftL n
{-# INLINE shiftL #-}
shiftR (Natural n) = Natural . shiftR n
{-# INLINE shiftR #-}
rotateL (Natural n) = Natural . rotateL n
{-# INLINE rotateL #-}
rotateR (Natural n) = Natural . rotateR n
{-# INLINE rotateR #-}
popCount (Natural n) = popCount n
{-# INLINE popCount #-}
zeroBits = Natural 0
instance Real Natural where
toRational (Natural a) = toRational a
{-# INLINE toRational #-}
instance Enum Natural where
pred (Natural 0) = error "Natural.pred: 0"
pred (Natural n) = Natural (pred n)
{-# INLINE pred #-}
succ (Natural n) = Natural (succ n)
{-# INLINE succ #-}
fromEnum (Natural n) = fromEnum n
{-# INLINE fromEnum #-}
toEnum n | n < 0 = error "Natural.toEnum: negative"
| otherwise = Natural (toEnum n)
{-# INLINE toEnum #-}
enumFrom = coerce (enumFrom :: Integer -> [Integer])
enumFromThen x y
| x <= y = coerce (enumFromThen :: Integer -> Integer -> [Integer]) x y
| otherwise = enumFromThenTo x y 0
enumFromTo = coerce (enumFromTo :: Integer -> Integer -> [Integer])
enumFromThenTo
= coerce (enumFromThenTo :: Integer -> Integer -> Integer -> [Integer])
instance Integral Natural where
quot (Natural a) (Natural b) = Natural (quot a b)
{-# INLINE quot #-}
rem (Natural a) (Natural b) = Natural (rem a b)
{-# INLINE rem #-}
div (Natural a) (Natural b) = Natural (div a b)
{-# INLINE div #-}
mod (Natural a) (Natural b) = Natural (mod a b)
{-# INLINE mod #-}
divMod (Natural a) (Natural b) = (Natural q, Natural r)
where (q,r) = divMod a b
{-# INLINE divMod #-}
quotRem (Natural a) (Natural b) = (Natural q, Natural r)
where (q,r) = quotRem a b
{-# INLINE quotRem #-}
toInteger (Natural a) = a
{-# INLINE toInteger #-}
#endif
-- | Construct 'Natural' from 'Word' value.
--
-- @since 4.8.0.0
wordToNatural :: Word -> Natural
#if HAVE_GMP_BIGNAT
wordToNatural (W# w#) = NatS# w#
#else
wordToNatural w = Natural (fromIntegral w)
#endif
-- | Try downcasting 'Natural' to 'Word' value.
-- Returns 'Nothing' if value doesn't fit in 'Word'.
--
-- @since 4.8.0.0
naturalToWordMaybe :: Natural -> Maybe Word
#if HAVE_GMP_BIGNAT
naturalToWordMaybe (NatS# w#) = Just (W# w#)
naturalToWordMaybe (NatJ# _) = Nothing
#else
naturalToWordMaybe (Natural i)
| i <= maxw = Just (fromIntegral i)
| otherwise = Nothing
where
maxw = toInteger (maxBound :: Word)
#endif
-- This follows the same style as the other integral 'Data' instances
-- defined in "Data.Data"
naturalType :: DataType
naturalType = mkIntType "Numeric.Natural.Natural"
instance Data Natural where
toConstr x = mkIntegralConstr naturalType x
gunfold _ z c = case constrRep c of
(IntConstr x) -> z (fromIntegral x)
_ -> error $ "Data.Data.gunfold: Constructor " ++ show c
++ " is not of type Natural"
dataTypeOf _ = naturalType
-- | \"@'powModNatural' /b/ /e/ /m/@\" computes base @/b/@ raised to
-- exponent @/e/@ modulo @/m/@.
--
-- @since 4.8.0.0
powModNatural :: Natural -> Natural -> Natural -> Natural
#if HAVE_GMP_BIGNAT
powModNatural _ _ (NatS# 0##) = throw DivideByZero
powModNatural _ _ (NatS# 1##) = NatS# 0##
powModNatural _ (NatS# 0##) _ = NatS# 1##
powModNatural (NatS# 0##) _ _ = NatS# 0##
powModNatural (NatS# 1##) _ _ = NatS# 1##
powModNatural (NatS# b) (NatS# e) (NatS# m) = NatS# (powModWord b e m)
powModNatural b e (NatS# m)
= NatS# (powModBigNatWord (naturalToBigNat b) (naturalToBigNat e) m)
powModNatural b e (NatJ# m)
= bigNatToNatural (powModBigNat (naturalToBigNat b) (naturalToBigNat e) m)
#else
-- Portable reference fallback implementation
powModNatural _ _ 0 = throw DivideByZero
powModNatural _ _ 1 = 0
powModNatural _ 0 _ = 1
powModNatural 0 _ _ = 0
powModNatural 1 _ _ = 1
powModNatural b0 e0 m = go b0 e0 1
where
go !b e !r
| odd e = go b' e' (r*b `mod` m)
| e == 0 = r
| otherwise = go b' e' r
where
b' = b*b `mod` m
e' = e `unsafeShiftR` 1 -- slightly faster than "e `div` 2"
#endif
|