1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
|
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE CPP, NoImplicitPrelude, MagicHash, UnboxedTuples #-}
{-# OPTIONS_HADDOCK hide #-}
-----------------------------------------------------------------------------
-- |
-- Module : GHC.Num
-- Copyright : (c) The University of Glasgow 1994-2002
-- License : see libraries/base/LICENSE
--
-- Maintainer : cvs-ghc@haskell.org
-- Stability : internal
-- Portability : non-portable (GHC Extensions)
--
-- The 'Num' class and the 'Integer' type.
--
-----------------------------------------------------------------------------
module GHC.Num (module GHC.Num, module GHC.Integer, module GHC.Natural) where
#include "MachDeps.h"
import GHC.Base
import GHC.Integer
import GHC.Natural
#if !defined(MIN_VERSION_integer_gmp)
import {-# SOURCE #-} GHC.Exception.Type (underflowException)
#endif
infixl 7 *
infixl 6 +, -
default () -- Double isn't available yet,
-- and we shouldn't be using defaults anyway
-- | Basic numeric class.
--
-- The Haskell Report defines no laws for 'Num'. However, '(+)' and '(*)' are
-- customarily expected to define a ring and have the following properties:
--
-- [__Associativity of (+)__]: @(x + y) + z@ = @x + (y + z)@
-- [__Commutativity of (+)__]: @x + y@ = @y + x@
-- [__@fromInteger 0@ is the additive identity__]: @x + fromInteger 0@ = @x@
-- [__'negate' gives the additive inverse__]: @x + negate x@ = @fromInteger 0@
-- [__Associativity of (*)__]: @(x * y) * z@ = @x * (y * z)@
-- [__@fromInteger 1@ is the multiplicative identity__]:
-- @x * fromInteger 1@ = @x@ and @fromInteger 1 * x@ = @x@
-- [__Distributivity of (*) with respect to (+)__]:
-- @a * (b + c)@ = @(a * b) + (a * c)@ and @(b + c) * a@ = @(b * a) + (c * a)@
--
-- Note that it /isn't/ customarily expected that a type instance of both 'Num'
-- and 'Ord' implement an ordered ring. Indeed, in 'base' only 'Integer' and
-- 'Rational' do.
class Num a where
{-# MINIMAL (+), (*), abs, signum, fromInteger, (negate | (-)) #-}
(+), (-), (*) :: a -> a -> a
-- | Unary negation.
negate :: a -> a
-- | Absolute value.
abs :: a -> a
-- | Sign of a number.
-- The functions 'abs' and 'signum' should satisfy the law:
--
-- > abs x * signum x == x
--
-- For real numbers, the 'signum' is either @-1@ (negative), @0@ (zero)
-- or @1@ (positive).
signum :: a -> a
-- | Conversion from an 'Integer'.
-- An integer literal represents the application of the function
-- 'fromInteger' to the appropriate value of type 'Integer',
-- so such literals have type @('Num' a) => a@.
fromInteger :: Integer -> a
{-# INLINE (-) #-}
{-# INLINE negate #-}
x - y = x + negate y
negate x = 0 - x
-- | the same as @'flip' ('-')@.
--
-- Because @-@ is treated specially in the Haskell grammar,
-- @(-@ /e/@)@ is not a section, but an application of prefix negation.
-- However, @('subtract'@ /exp/@)@ is equivalent to the disallowed section.
{-# INLINE subtract #-}
subtract :: (Num a) => a -> a -> a
subtract x y = y - x
-- | @since 2.01
instance Num Int where
I# x + I# y = I# (x +# y)
I# x - I# y = I# (x -# y)
negate (I# x) = I# (negateInt# x)
I# x * I# y = I# (x *# y)
abs n = if n `geInt` 0 then n else negate n
signum n | n `ltInt` 0 = negate 1
| n `eqInt` 0 = 0
| otherwise = 1
{-# INLINE fromInteger #-} -- Just to be sure!
fromInteger i = I# (integerToInt i)
-- | @since 2.01
instance Num Word where
(W# x#) + (W# y#) = W# (x# `plusWord#` y#)
(W# x#) - (W# y#) = W# (x# `minusWord#` y#)
(W# x#) * (W# y#) = W# (x# `timesWord#` y#)
negate (W# x#) = W# (int2Word# (negateInt# (word2Int# x#)))
abs x = x
signum 0 = 0
signum _ = 1
fromInteger i = W# (integerToWord i)
-- | @since 2.01
instance Num Integer where
(+) = plusInteger
(-) = minusInteger
(*) = timesInteger
negate = negateInteger
fromInteger x = x
abs = absInteger
signum = signumInteger
#if defined(MIN_VERSION_integer_gmp)
-- | Note that `Natural`'s 'Num' instance isn't a ring: no element but 0 has an
-- additive inverse. It is a semiring though.
--
-- @since 4.8.0.0
instance Num Natural where
(+) = plusNatural
(-) = minusNatural
(*) = timesNatural
negate = negateNatural
fromInteger = naturalFromInteger
abs = id
signum = signumNatural
#else
-- | Note that `Natural`'s 'Num' instance isn't a ring: no element but 0 has an
-- additive inverse. It is a semiring though.
--
-- @since 4.8.0.0
instance Num Natural where
Natural n + Natural m = Natural (n + m)
{-# INLINE (+) #-}
Natural n * Natural m = Natural (n * m)
{-# INLINE (*) #-}
Natural n - Natural m
| m > n = raise# underflowException
| otherwise = Natural (n - m)
{-# INLINE (-) #-}
abs (Natural n) = Natural n
{-# INLINE abs #-}
signum (Natural n) = Natural (signum n)
{-# INLINE signum #-}
fromInteger = naturalFromInteger
{-# INLINE fromInteger #-}
#endif
|