1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
|
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE CPP, NoImplicitPrelude, MagicHash, UnboxedTuples, BangPatterns #-}
{-# OPTIONS_GHC -Wno-orphans #-}
{-# OPTIONS_HADDOCK not-home #-}
-----------------------------------------------------------------------------
-- |
-- Module : GHC.Real
-- Copyright : (c) The University of Glasgow, 1994-2002
-- License : see libraries/base/LICENSE
--
-- Maintainer : cvs-ghc@haskell.org
-- Stability : internal
-- Portability : non-portable (GHC Extensions)
--
-- The types 'Ratio' and 'Rational', and the classes 'Real', 'Fractional',
-- 'Integral', and 'RealFrac'.
--
-----------------------------------------------------------------------------
module GHC.Real where
#include "MachDeps.h"
import GHC.Base
import GHC.Num
import GHC.List
import GHC.Enum
import GHC.Show
import {-# SOURCE #-} GHC.Exception( divZeroException, overflowException
, underflowException
, ratioZeroDenomException )
import GHC.Num.BigNat (gcdInt,gcdWord)
infixr 8 ^, ^^
infixl 7 /, `quot`, `rem`, `div`, `mod`
infixl 7 %
default () -- Double isn't available yet,
-- and we shouldn't be using defaults anyway
------------------------------------------------------------------------
-- Divide by zero and arithmetic overflow
------------------------------------------------------------------------
-- We put them here because they are needed relatively early
-- in the libraries before the Exception type has been defined yet.
{-# NOINLINE divZeroError #-}
divZeroError :: a
divZeroError = raise# divZeroException
{-# NOINLINE ratioZeroDenominatorError #-}
ratioZeroDenominatorError :: a
ratioZeroDenominatorError = raise# ratioZeroDenomException
{-# NOINLINE overflowError #-}
overflowError :: a
overflowError = raise# overflowException
{-# NOINLINE underflowError #-}
underflowError :: a
underflowError = raise# underflowException
--------------------------------------------------------------
-- The Ratio and Rational types
--------------------------------------------------------------
-- | Rational numbers, with numerator and denominator of some 'Integral' type.
--
-- Note that `Ratio`'s instances inherit the deficiencies from the type
-- parameter's. For example, @Ratio Natural@'s 'Num' instance has similar
-- problems to `Numeric.Natural.Natural`'s.
data Ratio a = !a :% !a deriving Eq -- ^ @since 2.01
-- | Arbitrary-precision rational numbers, represented as a ratio of
-- two 'Integer' values. A rational number may be constructed using
-- the '%' operator.
type Rational = Ratio Integer
ratioPrec, ratioPrec1 :: Int
ratioPrec = 7 -- Precedence of ':%' constructor
ratioPrec1 = ratioPrec + 1
infinity, notANumber :: Rational
infinity = 1 :% 0
notANumber = 0 :% 0
-- Use :%, not % for Inf/NaN; the latter would
-- immediately lead to a runtime error, because it normalises.
-- | Forms the ratio of two integral numbers.
{-# SPECIALISE (%) :: Integer -> Integer -> Rational #-}
(%) :: (Integral a) => a -> a -> Ratio a
-- | Extract the numerator of the ratio in reduced form:
-- the numerator and denominator have no common factor and the denominator
-- is positive.
numerator :: Ratio a -> a
-- | Extract the denominator of the ratio in reduced form:
-- the numerator and denominator have no common factor and the denominator
-- is positive.
denominator :: Ratio a -> a
-- | 'reduce' is a subsidiary function used only in this module.
-- It normalises a ratio by dividing both numerator and denominator by
-- their greatest common divisor.
reduce :: (Integral a) => a -> a -> Ratio a
{-# SPECIALISE reduce :: Integer -> Integer -> Rational #-}
reduce _ 0 = ratioZeroDenominatorError
reduce x y = (x `quot` d) :% (y `quot` d)
where d = gcd x y
x % y = reduce (x * signum y) (abs y)
numerator (x :% _) = x
denominator (_ :% y) = y
--------------------------------------------------------------
-- Standard numeric classes
--------------------------------------------------------------
class (Num a, Ord a) => Real a where
-- | the rational equivalent of its real argument with full precision
toRational :: a -> Rational
-- | Integral numbers, supporting integer division.
--
-- The Haskell Report defines no laws for 'Integral'. However, 'Integral'
-- instances are customarily expected to define a Euclidean domain and have the
-- following properties for the 'div'\/'mod' and 'quot'\/'rem' pairs, given
-- suitable Euclidean functions @f@ and @g@:
--
-- * @x@ = @y * quot x y + rem x y@ with @rem x y@ = @fromInteger 0@ or
-- @g (rem x y)@ < @g y@
-- * @x@ = @y * div x y + mod x y@ with @mod x y@ = @fromInteger 0@ or
-- @f (mod x y)@ < @f y@
--
-- An example of a suitable Euclidean function, for 'Integer'\'s instance, is
-- 'abs'.
class (Real a, Enum a) => Integral a where
-- | integer division truncated toward zero
quot :: a -> a -> a
-- | integer remainder, satisfying
--
-- > (x `quot` y)*y + (x `rem` y) == x
rem :: a -> a -> a
-- | integer division truncated toward negative infinity
div :: a -> a -> a
-- | integer modulus, satisfying
--
-- > (x `div` y)*y + (x `mod` y) == x
mod :: a -> a -> a
-- | simultaneous 'quot' and 'rem'
quotRem :: a -> a -> (a,a)
-- | simultaneous 'div' and 'mod'
divMod :: a -> a -> (a,a)
-- | conversion to 'Integer'
toInteger :: a -> Integer
{-# INLINE quot #-}
{-# INLINE rem #-}
{-# INLINE div #-}
{-# INLINE mod #-}
n `quot` d = q where (q,_) = quotRem n d
n `rem` d = r where (_,r) = quotRem n d
n `div` d = q where (q,_) = divMod n d
n `mod` d = r where (_,r) = divMod n d
divMod n d = if signum r == negate (signum d) then (q-1, r+d) else qr
where qr@(q,r) = quotRem n d
-- | Fractional numbers, supporting real division.
--
-- The Haskell Report defines no laws for 'Fractional'. However, @('+')@ and
-- @('*')@ are customarily expected to define a division ring and have the
-- following properties:
--
-- [__'recip' gives the multiplicative inverse__]:
-- @x * recip x@ = @recip x * x@ = @fromInteger 1@
--
-- Note that it /isn't/ customarily expected that a type instance of
-- 'Fractional' implement a field. However, all instances in @base@ do.
class (Num a) => Fractional a where
{-# MINIMAL fromRational, (recip | (/)) #-}
-- | Fractional division.
(/) :: a -> a -> a
-- | Reciprocal fraction.
recip :: a -> a
-- | Conversion from a 'Rational' (that is @'Ratio' 'Integer'@).
-- A floating literal stands for an application of 'fromRational'
-- to a value of type 'Rational', so such literals have type
-- @('Fractional' a) => a@.
fromRational :: Rational -> a
{-# INLINE recip #-}
{-# INLINE (/) #-}
recip x = 1 / x
x / y = x * recip y
-- | Extracting components of fractions.
class (Real a, Fractional a) => RealFrac a where
-- | The function 'properFraction' takes a real fractional number @x@
-- and returns a pair @(n,f)@ such that @x = n+f@, and:
--
-- * @n@ is an integral number with the same sign as @x@; and
--
-- * @f@ is a fraction with the same type and sign as @x@,
-- and with absolute value less than @1@.
--
-- The default definitions of the 'ceiling', 'floor', 'truncate'
-- and 'round' functions are in terms of 'properFraction'.
properFraction :: (Integral b) => a -> (b,a)
-- | @'truncate' x@ returns the integer nearest @x@ between zero and @x@
truncate :: (Integral b) => a -> b
-- | @'round' x@ returns the nearest integer to @x@;
-- the even integer if @x@ is equidistant between two integers
round :: (Integral b) => a -> b
-- | @'ceiling' x@ returns the least integer not less than @x@
ceiling :: (Integral b) => a -> b
-- | @'floor' x@ returns the greatest integer not greater than @x@
floor :: (Integral b) => a -> b
{-# INLINE truncate #-}
truncate x = m where (m,_) = properFraction x
round x = let (n,r) = properFraction x
m = if r < 0 then n - 1 else n + 1
in case signum (abs r - 0.5) of
-1 -> n
0 -> if even n then n else m
1 -> m
_ -> errorWithoutStackTrace "round default defn: Bad value"
ceiling x = if r > 0 then n + 1 else n
where (n,r) = properFraction x
floor x = if r < 0 then n - 1 else n
where (n,r) = properFraction x
-- These 'numeric' enumerations come straight from the Report
numericEnumFrom :: (Fractional a) => a -> [a]
numericEnumFrom n = go 0
where
-- See Note [Numeric Stability of Enumerating Floating Numbers]
go !k = let !n' = n + k
in n' : go (k + 1)
numericEnumFromThen :: (Fractional a) => a -> a -> [a]
numericEnumFromThen n m = go 0
where
step = m - n
-- See Note [Numeric Stability of Enumerating Floating Numbers]
go !k = let !n' = n + k * step
in n' : go (k + 1)
numericEnumFromTo :: (Ord a, Fractional a) => a -> a -> [a]
numericEnumFromTo n m = takeWhile (<= m + 1/2) (numericEnumFrom n)
numericEnumFromThenTo :: (Ord a, Fractional a) => a -> a -> a -> [a]
numericEnumFromThenTo e1 e2 e3
= takeWhile predicate (numericEnumFromThen e1 e2)
where
mid = (e2 - e1) / 2
predicate | e2 >= e1 = (<= e3 + mid)
| otherwise = (>= e3 + mid)
{- Note [Numeric Stability of Enumerating Floating Numbers]
-----------------------------------------------------------
When enumerate floating numbers, we could add the increment to the last number
at every run (as what we did previously):
numericEnumFrom n = n `seq` (n : numericEnumFrom (n + 1))
This approach is concise and really fast, only needs an addition operation.
However when a floating number is large enough, for `n`, `n` and `n+1` will
have the same binary representation. For example (all number has type
`Double`):
9007199254740990 is: 0x433ffffffffffffe
9007199254740990 + 1 is: 0x433fffffffffffff
(9007199254740990 + 1) + 1 is: 0x4340000000000000
((9007199254740990 + 1) + 1) + 1 is: 0x4340000000000000
When we evaluate ([9007199254740990..9007199254740991] :: Double), we would
never reach the condition in `numericEnumFromTo`
9007199254740990 + 1 + 1 + ... > 9007199254740991 + 1/2
We would fall into infinite loop (as reported in #15081).
To remedy the situation, we record the number of `1` that needed to be added
to the start number, rather than increasing `1` at every time. This approach
can improvement the numeric stability greatly at the cost of a multiplication.
Furthermore, we use the type of the enumerated number, `Fractional a => a`,
as the type of multiplier. In rare situations, the multiplier could be very
large and will lead to the enumeration to infinite loop, too, which should
be very rare. Consider the following example:
[1..9007199254740994]
We could fix that by using an Integer as multiplier but we don't do that.
The benchmark on T7954.hs shows that this approach leads to significant
degeneration on performance (33% increase allocation and 300% increase on
elapsed time).
See #15081 and Phab:D4650 for the related discussion about this problem.
-}
--------------------------------------------------------------
-- Instances for Int
--------------------------------------------------------------
-- | @since 2.0.1
instance Real Int where
toRational x = toInteger x :% 1
-- | @since 2.0.1
instance Integral Int where
toInteger (I# i) = IS i
a `quot` b
| b == 0 = divZeroError
| b == (-1) && a == minBound = overflowError -- Note [Order of tests]
-- in GHC.Int
| otherwise = a `quotInt` b
!a `rem` b -- See Note [Special case of mod and rem is lazy]
| b == 0 = divZeroError
| b == (-1) = 0
| otherwise = a `remInt` b
a `div` b
| b == 0 = divZeroError
| b == (-1) && a == minBound = overflowError -- Note [Order of tests]
-- in GHC.Int
| otherwise = a `divInt` b
!a `mod` b -- See Note [Special case of mod and rem is lazy]
| b == 0 = divZeroError
| b == (-1) = 0
| otherwise = a `modInt` b
a `quotRem` b
| b == 0 = divZeroError
-- Note [Order of tests] in GHC.Int
| b == (-1) && a == minBound = (overflowError, 0)
| otherwise = a `quotRemInt` b
a `divMod` b
| b == 0 = divZeroError
-- Note [Order of tests] in GHC.Int
| b == (-1) && a == minBound = (overflowError, 0)
| otherwise = a `divModInt` b
{- Note [Special case of mod and rem is lazy]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The `quotRem`/`divMod` CPU instruction fails for minBound `quotRem` -1, but
minBound `rem` -1 is well-defined (0). We therefore special-case for `b == -1`,
but not for `a == minBound` because of Note [Order of tests] in GHC.Int. But
now we have to make sure the function stays strict in a, to guarantee unboxing.
Hence the bang on a, see #18187.
-}
--------------------------------------------------------------
-- Instances for @Word@
--------------------------------------------------------------
-- | @since 2.01
instance Real Word where
toRational x = toInteger x % 1
-- | @since 2.01
instance Integral Word where
quot (W# x#) y@(W# y#)
| y /= 0 = W# (x# `quotWord#` y#)
| otherwise = divZeroError
rem (W# x#) y@(W# y#)
| y /= 0 = W# (x# `remWord#` y#)
| otherwise = divZeroError
div (W# x#) y@(W# y#)
| y /= 0 = W# (x# `quotWord#` y#)
| otherwise = divZeroError
mod (W# x#) y@(W# y#)
| y /= 0 = W# (x# `remWord#` y#)
| otherwise = divZeroError
quotRem (W# x#) y@(W# y#)
| y /= 0 = case x# `quotRemWord#` y# of
(# q, r #) ->
(W# q, W# r)
| otherwise = divZeroError
divMod (W# x#) y@(W# y#)
| y /= 0 = (W# (x# `quotWord#` y#), W# (x# `remWord#` y#))
| otherwise = divZeroError
toInteger (W# x#) = integerFromWord# x#
--------------------------------------------------------------
-- Instances for Integer
--------------------------------------------------------------
-- | @since 2.0.1
instance Real Integer where
toRational x = x :% 1
-- | @since 4.8.0.0
instance Real Natural where
toRational n = integerFromNatural n :% 1
-- Note [Integer division constant folding]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- Constant folding of quot, rem, div, mod, divMod and quotRem for Integer
-- arguments depends crucially on inlining. Constant folding rules defined in
-- GHC.Core.Opt.ConstantFold trigger for integerQuot, integerRem and so on.
-- So if calls to quot, rem and so on were not inlined the rules would not fire.
--
-- The rules would also not fire if calls to integerQuot and so on were inlined,
-- but this does not happen because they are all marked with NOINLINE pragma.
-- | @since 2.0.1
instance Integral Integer where
toInteger n = n
{-# INLINE quot #-}
_ `quot` 0 = divZeroError
n `quot` d = n `integerQuot` d
{-# INLINE rem #-}
_ `rem` 0 = divZeroError
n `rem` d = n `integerRem` d
{-# INLINE div #-}
_ `div` 0 = divZeroError
n `div` d = n `integerDiv` d
{-# INLINE mod #-}
_ `mod` 0 = divZeroError
n `mod` d = n `integerMod` d
{-# INLINE divMod #-}
_ `divMod` 0 = divZeroError
n `divMod` d = n `integerDivMod` d
{-# INLINE quotRem #-}
_ `quotRem` 0 = divZeroError
n `quotRem` d = n `integerQuotRem` d
-- | @since 4.8.0.0
instance Integral Natural where
toInteger = integerFromNatural
{-# INLINE quot #-}
_ `quot` 0 = divZeroError
n `quot` d = n `naturalQuot` d
{-# INLINE rem #-}
_ `rem` 0 = divZeroError
n `rem` d = n `naturalRem` d
{-# INLINE div #-}
_ `div` 0 = divZeroError
n `div` d = n `naturalQuot` d
{-# INLINE mod #-}
_ `mod` 0 = divZeroError
n `mod` d = n `naturalRem` d
{-# INLINE divMod #-}
_ `divMod` 0 = divZeroError
n `divMod` d = n `naturalQuotRem` d
{-# INLINE quotRem #-}
_ `quotRem` 0 = divZeroError
n `quotRem` d = n `naturalQuotRem` d
--------------------------------------------------------------
-- Instances for @Ratio@
--------------------------------------------------------------
-- | @since 2.0.1
instance (Integral a) => Ord (Ratio a) where
{-# SPECIALIZE instance Ord Rational #-}
(x:%y) <= (x':%y') = x * y' <= x' * y
(x:%y) < (x':%y') = x * y' < x' * y
-- | @since 2.0.1
instance (Integral a) => Num (Ratio a) where
{-# SPECIALIZE instance Num Rational #-}
(x:%y) + (x':%y') = reduce (x*y' + x'*y) (y*y')
(x:%y) - (x':%y') = reduce (x*y' - x'*y) (y*y')
(x:%y) * (x':%y') = reduce (x * x') (y * y')
negate (x:%y) = (-x) :% y
abs (x:%y) = abs x :% y
signum (x:%_) = signum x :% 1
fromInteger x = fromInteger x :% 1
-- | @since 2.0.1
{-# RULES "fromRational/id" fromRational = id :: Rational -> Rational #-}
instance (Integral a) => Fractional (Ratio a) where
{-# SPECIALIZE instance Fractional Rational #-}
(x:%y) / (x':%y') = (x*y') % (y*x')
recip (0:%_) = ratioZeroDenominatorError
recip (x:%y)
| x < 0 = negate y :% negate x
| otherwise = y :% x
fromRational (x:%y) = fromInteger x % fromInteger y
-- | @since 2.0.1
instance (Integral a) => Real (Ratio a) where
{-# SPECIALIZE instance Real Rational #-}
toRational (x:%y) = toInteger x :% toInteger y
-- | @since 2.0.1
instance (Integral a) => RealFrac (Ratio a) where
{-# SPECIALIZE instance RealFrac Rational #-}
properFraction (x:%y) = (fromInteger (toInteger q), r:%y)
where (q,r) = quotRem x y
round r =
let
(n, f) = properFraction r
x = if r < 0 then -1 else 1
in
case (compare (abs f) 0.5, odd n) of
(LT, _) -> n
(EQ, False) -> n
(EQ, True) -> n + x
(GT, _) -> n + x
-- | @since 2.0.1
instance (Show a) => Show (Ratio a) where
{-# SPECIALIZE instance Show Rational #-}
showsPrec p (x:%y) = showParen (p > ratioPrec) $
showsPrec ratioPrec1 x .
showString " % " .
-- H98 report has spaces round the %
-- but we removed them [May 04]
-- and added them again for consistency with
-- Haskell 98 [Sep 08, #1920]
showsPrec ratioPrec1 y
-- | @since 2.0.1
instance (Integral a) => Enum (Ratio a) where
{-# SPECIALIZE instance Enum Rational #-}
succ x = x + 1
pred x = x - 1
toEnum n = fromIntegral n :% 1
fromEnum = fromInteger . truncate
enumFrom = numericEnumFrom
enumFromThen = numericEnumFromThen
enumFromTo = numericEnumFromTo
enumFromThenTo = numericEnumFromThenTo
--------------------------------------------------------------
-- Coercions
--------------------------------------------------------------
-- | general coercion from integral types
{-# NOINLINE [1] fromIntegral #-}
fromIntegral :: (Integral a, Num b) => a -> b
fromIntegral = fromInteger . toInteger
{-# RULES
"fromIntegral/Int->Int" fromIntegral = id :: Int -> Int
#-}
{-# RULES
"fromIntegral/Int->Word" fromIntegral = \(I# x#) -> W# (int2Word# x#)
"fromIntegral/Word->Int" fromIntegral = \(W# x#) -> I# (word2Int# x#)
"fromIntegral/Word->Word" fromIntegral = id :: Word -> Word
#-}
{-# RULES
"fromIntegral/Natural->Natural" fromIntegral = id :: Natural -> Natural
"fromIntegral/Natural->Integer" fromIntegral = toInteger :: Natural -> Integer
"fromIntegral/Natural->Word" fromIntegral = naturalToWord :: Natural -> Word
#-}
-- Don't forget the type signatures in the following rules! Without a type
-- signature we end up with the rule:
--
-- "fromIntegral/Int->Natural" forall a (d::Integral a).
-- fromIntegral @a @Natural = naturalFromWord . fromIntegral @a d
--
-- but this rule is certainly not valid for every Integral type a!
--
-- This rule wraps any Integral input into Word's range. As a consequence,
-- (2^64 :: Integer) was incorrectly wrapped to (0 :: Natural), see #19345.
{-# RULES
"fromIntegral/Word->Natural" fromIntegral = naturalFromWord :: Word -> Natural
"fromIntegral/Int->Natural" fromIntegral = naturalFromWord . fromIntegral :: Int -> Natural
#-}
-- | general coercion to fractional types
realToFrac :: (Real a, Fractional b) => a -> b
{-# NOINLINE [1] realToFrac #-}
realToFrac = fromRational . toRational
--------------------------------------------------------------
-- Overloaded numeric functions
--------------------------------------------------------------
-- | Converts a possibly-negative 'Real' value to a string.
showSigned :: (Real a)
=> (a -> ShowS) -- ^ a function that can show unsigned values
-> Int -- ^ the precedence of the enclosing context
-> a -- ^ the value to show
-> ShowS
showSigned showPos p x
| x < 0 = showParen (p > 6) (showChar '-' . showPos (-x))
| otherwise = showPos x
even, odd :: (Integral a) => a -> Bool
even n = n `rem` 2 == 0
odd = not . even
{-# INLINABLE even #-}
{-# INLINABLE odd #-}
-------------------------------------------------------
-- | raise a number to a non-negative integral power
{-# SPECIALISE [1] (^) ::
Integer -> Integer -> Integer,
Integer -> Int -> Integer,
Int -> Int -> Int #-}
{-# INLINABLE [1] (^) #-} -- See Note [Inlining (^)]
(^) :: (Num a, Integral b) => a -> b -> a
x0 ^ y0 | y0 < 0 = errorWithoutStackTrace "Negative exponent"
| y0 == 0 = 1
| otherwise = f x0 y0
where -- f : x0 ^ y0 = x ^ y
f x y | even y = f (x * x) (y `quot` 2)
| y == 1 = x
| otherwise = g (x * x) (y `quot` 2) x -- See Note [Half of y - 1]
-- g : x0 ^ y0 = (x ^ y) * z
g x y z | even y = g (x * x) (y `quot` 2) z
| y == 1 = x * z
| otherwise = g (x * x) (y `quot` 2) (x * z) -- See Note [Half of y - 1]
-- | raise a number to an integral power
(^^) :: (Fractional a, Integral b) => a -> b -> a
{-# INLINABLE [1] (^^) #-} -- See Note [Inlining (^)
x ^^ n = if n >= 0 then x^n else recip (x^(negate n))
{- Note [Half of y - 1]
~~~~~~~~~~~~~~~~~~~~~
Since y is guaranteed to be odd and positive here,
half of y - 1 can be computed as y `quot` 2, optimising subtraction away.
-}
{- Note [Inlining (^)
~~~~~~~~~~~~~~~~~~~~~
The INLINABLE pragma allows (^) to be specialised at its call sites.
If it is called repeatedly at the same type, that can make a huge
difference, because of those constants which can be repeatedly
calculated.
Currently the fromInteger calls are not floated because we get
\d1 d2 x y -> blah
after the gentle round of simplification. -}
{- Rules for powers with known small exponent
see #5237
For small exponents, (^) is inefficient compared to manually
expanding the multiplication tree.
Here, rules for the most common exponent types are given.
The range of exponents for which rules are given is quite
arbitrary and kept small to not unduly increase the number of rules.
0 and 1 are excluded based on the assumption that nobody would
write x^0 or x^1 in code and the cases where an exponent could
be statically resolved to 0 or 1 are rare.
It might be desirable to have corresponding rules also for
exponents of other types (e. g., Word), but it's doubtful they
would fire, since the exponents of other types tend to get
floated out before the rule has a chance to fire.
Also desirable would be rules for (^^), but I haven't managed
to get those to fire.
Note: Trying to save multiplications by sharing the square for
exponents 4 and 5 does not save time, indeed, for Double, it is
up to twice slower, so the rules contain flat sequences of
multiplications.
-}
{-# RULES
"^2/Int" forall x. x ^ (2 :: Int) = let u = x in u*u
"^3/Int" forall x. x ^ (3 :: Int) = let u = x in u*u*u
"^4/Int" forall x. x ^ (4 :: Int) = let u = x in u*u*u*u
"^5/Int" forall x. x ^ (5 :: Int) = let u = x in u*u*u*u*u
"^2/Integer" forall x. x ^ (2 :: Integer) = let u = x in u*u
"^3/Integer" forall x. x ^ (3 :: Integer) = let u = x in u*u*u
"^4/Integer" forall x. x ^ (4 :: Integer) = let u = x in u*u*u*u
"^5/Integer" forall x. x ^ (5 :: Integer) = let u = x in u*u*u*u*u
#-}
-------------------------------------------------------
-- Special power functions for Rational
--
-- see #4337
--
-- Rationale:
-- For a legitimate Rational (n :% d), the numerator and denominator are
-- coprime, i.e. they have no common prime factor.
-- Therefore all powers (n ^ a) and (d ^ b) are also coprime, so it is
-- not necessary to compute the greatest common divisor, which would be
-- done in the default implementation at each multiplication step.
-- Since exponentiation quickly leads to very large numbers and
-- calculation of gcds is generally very slow for large numbers,
-- avoiding the gcd leads to an order of magnitude speedup relatively
-- soon (and an asymptotic improvement overall).
--
-- Note:
-- We cannot use these functions for general Ratio a because that would
-- change results in a multitude of cases.
-- The cause is that if a and b are coprime, their remainders by any
-- positive modulus generally aren't, so in the default implementation
-- reduction occurs.
--
-- Example:
-- (17 % 3) ^ 3 :: Ratio Word8
-- Default:
-- (17 % 3) ^ 3 = ((17 % 3) ^ 2) * (17 % 3)
-- = ((289 `mod` 256) % 9) * (17 % 3)
-- = (33 % 9) * (17 % 3)
-- = (11 % 3) * (17 % 3)
-- = (187 % 9)
-- But:
-- ((17^3) `mod` 256) % (3^3) = (4913 `mod` 256) % 27
-- = 49 % 27
--
-- TODO:
-- Find out whether special-casing for numerator, denominator or
-- exponent = 1 (or -1, where that may apply) gains something.
-- Special version of (^) for Rational base
{-# RULES "(^)/Rational" (^) = (^%^) #-}
(^%^) :: Integral a => Rational -> a -> Rational
(n :% d) ^%^ e
| e < 0 = errorWithoutStackTrace "Negative exponent"
| e == 0 = 1 :% 1
| otherwise = (n ^ e) :% (d ^ e)
-- Special version of (^^) for Rational base
{-# RULES "(^^)/Rational" (^^) = (^^%^^) #-}
(^^%^^) :: Integral a => Rational -> a -> Rational
(n :% d) ^^%^^ e
| e > 0 = (n ^ e) :% (d ^ e)
| e == 0 = 1 :% 1
| n > 0 = (d ^ (negate e)) :% (n ^ (negate e))
| n == 0 = ratioZeroDenominatorError
| otherwise = let nn = d ^ (negate e)
dd = (negate n) ^ (negate e)
in if even e then (nn :% dd) else (negate nn :% dd)
-------------------------------------------------------
-- | @'gcd' x y@ is the non-negative factor of both @x@ and @y@ of which
-- every common factor of @x@ and @y@ is also a factor; for example
-- @'gcd' 4 2 = 2@, @'gcd' (-4) 6 = 2@, @'gcd' 0 4@ = @4@. @'gcd' 0 0@ = @0@.
-- (That is, the common divisor that is \"greatest\" in the divisibility
-- preordering.)
--
-- Note: Since for signed fixed-width integer types, @'abs' 'minBound' < 0@,
-- the result may be negative if one of the arguments is @'minBound'@ (and
-- necessarily is if the other is @0@ or @'minBound'@) for such types.
gcd :: (Integral a) => a -> a -> a
{-# NOINLINE [1] gcd #-}
gcd x y = gcd' (abs x) (abs y)
where gcd' a 0 = a
gcd' a b = gcd' b (a `rem` b)
-- | @'lcm' x y@ is the smallest positive integer that both @x@ and @y@ divide.
lcm :: (Integral a) => a -> a -> a
{-# SPECIALISE lcm :: Int -> Int -> Int #-}
{-# SPECIALISE lcm :: Word -> Word -> Word #-}
{-# NOINLINE [1] lcm #-}
lcm _ 0 = 0
lcm 0 _ = 0
lcm x y = abs ((x `quot` (gcd x y)) * y)
{-# RULES
"gcd/Integer->Integer->Integer" gcd = integerGcd
"lcm/Integer->Integer->Integer" lcm = integerLcm
"gcd/Natural->Natural->Natural" gcd = naturalGcd
"lcm/Natural->Natural->Natural" lcm = naturalLcm
#-}
{-# RULES
"gcd/Int->Int->Int" gcd = gcdInt
"gcd/Word->Word->Word" gcd = gcdWord
#-}
integralEnumFrom :: (Integral a, Bounded a) => a -> [a]
integralEnumFrom n = map fromInteger [toInteger n .. toInteger (maxBound `asTypeOf` n)]
integralEnumFromThen :: (Integral a, Bounded a) => a -> a -> [a]
integralEnumFromThen n1 n2
| i_n2 >= i_n1 = map fromInteger [i_n1, i_n2 .. toInteger (maxBound `asTypeOf` n1)]
| otherwise = map fromInteger [i_n1, i_n2 .. toInteger (minBound `asTypeOf` n1)]
where
i_n1 = toInteger n1
i_n2 = toInteger n2
integralEnumFromTo :: Integral a => a -> a -> [a]
integralEnumFromTo n m = map fromInteger [toInteger n .. toInteger m]
integralEnumFromThenTo :: Integral a => a -> a -> a -> [a]
integralEnumFromThenTo n1 n2 m
= map fromInteger [toInteger n1, toInteger n2 .. toInteger m]
|