1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
{-# OPTIONS_GHC -fno-implicit-prelude #-}
-----------------------------------------------------------------------------
-- |
-- Module : Text.ParserCombinators.ReadPrec
-- Copyright : (c) The University of Glasgow 2002
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : provisional
-- Portability : non-portable (uses Text.ParserCombinators.ReadP)
--
-- This library defines parser combinators for precedence parsing.
-----------------------------------------------------------------------------
module Text.ParserCombinators.ReadPrec
(
ReadPrec, -- :: * -> *; instance Functor, Monad, MonadPlus
-- * Precedences
Prec, -- :: *; = Int
minPrec, -- :: Prec; = 0
-- * Precedence operations
lift, -- :: ReadP a -> ReadPrec a
prec, -- :: Prec -> ReadPrec a -> ReadPrec a
step, -- :: ReadPrec a -> ReadPrec a
reset, -- :: ReadPrec a -> ReadPrec a
-- * Other operations
-- All are based directly on their similarly-naned 'ReadP' counterparts.
get, -- :: ReadPrec Char
look, -- :: ReadPrec String
(+++), -- :: ReadPrec a -> ReadPrec a -> ReadPrec a
(<++), -- :: ReadPrec a -> ReadPrec a -> ReadPrec a
pfail, -- :: ReadPrec a
choice, -- :: [ReadPrec a] -> ReadPrec a
-- * Converters
readPrec_to_P, -- :: ReadPrec a -> (Int -> ReadP a)
readP_to_Prec, -- :: (Int -> ReadP a) -> ReadPrec a
readPrec_to_S, -- :: ReadPrec a -> (Int -> ReadS a)
readS_to_Prec, -- :: (Int -> ReadS a) -> ReadPrec a
)
where
import Text.ParserCombinators.ReadP
( ReadP
, ReadS
, readP_to_S
, readS_to_P
)
import qualified Text.ParserCombinators.ReadP as ReadP
( get
, look
, (+++), (<++)
, pfail
)
import Control.Monad( MonadPlus(..) )
#ifdef __GLASGOW_HASKELL__
import GHC.Num( Num(..) )
import GHC.Base
#endif
-- ---------------------------------------------------------------------------
-- The readPrec type
newtype ReadPrec a = P { unP :: Prec -> ReadP a }
-- Functor, Monad, MonadPlus
instance Functor ReadPrec where
fmap h (P f) = P (\n -> fmap h (f n))
instance Monad ReadPrec where
return x = P (\_ -> return x)
fail s = P (\_ -> fail s)
P f >>= k = P (\n -> do a <- f n; let P f' = k a in f' n)
instance MonadPlus ReadPrec where
mzero = pfail
mplus = (+++)
-- precedences
type Prec = Int
minPrec :: Prec
minPrec = 0
-- ---------------------------------------------------------------------------
-- Operations over ReadPrec
lift :: ReadP a -> ReadPrec a
-- ^ Lift a precedence-insensitive 'ReadP' to a 'ReadPrec'
lift m = P (\_ -> m)
step :: ReadPrec a -> ReadPrec a
-- ^ Increases the precedence context by one
step (P f) = P (\n -> f (n+1))
reset :: ReadPrec a -> ReadPrec a
-- ^ Resets the precedence context to zero
reset (P f) = P (\n -> f minPrec)
prec :: Prec -> ReadPrec a -> ReadPrec a
-- ^ @(prec n p)@ checks that the precedence context is
-- less than or equal to n,
-- * if not, fails
-- * if so, parses p in context n
prec n (P f) = P (\c -> if c <= n then f n else ReadP.pfail)
-- ---------------------------------------------------------------------------
-- Derived operations
get :: ReadPrec Char
get = lift ReadP.get
look :: ReadPrec String
look = lift ReadP.look
(+++) :: ReadPrec a -> ReadPrec a -> ReadPrec a
P f1 +++ P f2 = P (\n -> f1 n ReadP.+++ f2 n)
(<++) :: ReadPrec a -> ReadPrec a -> ReadPrec a
P f1 <++ P f2 = P (\n -> f1 n ReadP.<++ f2 n)
pfail :: ReadPrec a
pfail = lift ReadP.pfail
choice :: [ReadPrec a] -> ReadPrec a
choice ps = foldr (+++) pfail ps
-- ---------------------------------------------------------------------------
-- Converting between ReadPrec and Read
readPrec_to_P :: ReadPrec a -> (Int -> ReadP a)
readPrec_to_P (P f) = f
readP_to_Prec :: (Int -> ReadP a) -> ReadPrec a
readP_to_Prec f = P f
readPrec_to_S :: ReadPrec a -> (Int -> ReadS a)
readPrec_to_S (P f) n = readP_to_S (f n)
readS_to_Prec :: (Int -> ReadS a) -> ReadPrec a
readS_to_Prec f = P (\n -> readS_to_P (f n))
|