1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
|
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE CPP, NoImplicitPrelude #-}
-----------------------------------------------------------------------------
-- |
-- Module : Text.Read.Lex
-- Copyright : (c) The University of Glasgow 2002
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : provisional
-- Portability : non-portable (uses Text.ParserCombinators.ReadP)
--
-- The cut-down Haskell lexer, used by Text.Read
--
-----------------------------------------------------------------------------
module Text.Read.Lex
-- lexing types
( Lexeme(..) -- :: *; Show, Eq
-- lexer
, lex -- :: ReadP Lexeme Skips leading spaces
, hsLex -- :: ReadP String
, lexChar -- :: ReadP Char Reads just one char, with H98 escapes
, readIntP -- :: Num a => a -> (Char -> Bool) -> (Char -> Int) -> ReadP a
, readOctP -- :: Num a => ReadP a
, readDecP -- :: Num a => ReadP a
, readHexP -- :: Num a => ReadP a
)
where
import Text.ParserCombinators.ReadP
#ifdef __GLASGOW_HASKELL__
import GHC.Base
import GHC.Num( Num(..), Integer )
import GHC.Show( Show(..) )
#ifndef __HADDOCK__
import {-# SOURCE #-} GHC.Unicode ( isSpace, isAlpha, isAlphaNum )
#endif
import GHC.Real( Integral, Rational, (%), fromIntegral,
toInteger, (^), infinity, notANumber )
import GHC.List
import GHC.Enum( maxBound )
#else
import Prelude hiding ( lex )
import Data.Char( chr, ord, isSpace, isAlpha, isAlphaNum )
import Data.Ratio( Ratio, (%) )
#endif
#ifdef __HUGS__
import Hugs.Prelude( Ratio(..) )
#endif
import Data.Maybe
import Control.Monad
-- -----------------------------------------------------------------------------
-- Lexing types
-- ^ Haskell lexemes.
data Lexeme
= Char Char -- ^ Character literal
| String String -- ^ String literal, with escapes interpreted
| Punc String -- ^ Punctuation or reserved symbol, e.g. @(@, @::@
| Ident String -- ^ Haskell identifier, e.g. @foo@, @Baz@
| Symbol String -- ^ Haskell symbol, e.g. @>>@, @:%@
| Int Integer -- ^ Integer literal
| Rat Rational -- ^ Floating point literal
| EOF
deriving (Eq, Show)
-- -----------------------------------------------------------------------------
-- Lexing
lex :: ReadP Lexeme
lex = skipSpaces >> lexToken
hsLex :: ReadP String
-- ^ Haskell lexer: returns the lexed string, rather than the lexeme
hsLex = do skipSpaces
(s,_) <- gather lexToken
return s
lexToken :: ReadP Lexeme
lexToken = lexEOF +++
lexLitChar +++
lexString +++
lexPunc +++
lexSymbol +++
lexId +++
lexNumber
-- ----------------------------------------------------------------------
-- End of file
lexEOF :: ReadP Lexeme
lexEOF = do s <- look
guard (null s)
return EOF
-- ---------------------------------------------------------------------------
-- Single character lexemes
lexPunc :: ReadP Lexeme
lexPunc =
do c <- satisfy isPuncChar
return (Punc [c])
where
isPuncChar c = c `elem` ",;()[]{}`"
-- ----------------------------------------------------------------------
-- Symbols
lexSymbol :: ReadP Lexeme
lexSymbol =
do s <- munch1 isSymbolChar
if s `elem` reserved_ops then
return (Punc s) -- Reserved-ops count as punctuation
else
return (Symbol s)
where
isSymbolChar c = c `elem` "!@#$%&*+./<=>?\\^|:-~"
reserved_ops = ["..", "::", "=", "\\", "|", "<-", "->", "@", "~", "=>"]
-- ----------------------------------------------------------------------
-- identifiers
lexId :: ReadP Lexeme
lexId = lex_nan <++ lex_id
where
-- NaN and Infinity look like identifiers, so
-- we parse them first.
lex_nan = (string "NaN" >> return (Rat notANumber)) +++
(string "Infinity" >> return (Rat infinity))
lex_id = do c <- satisfy isIdsChar
s <- munch isIdfChar
return (Ident (c:s))
-- Identifiers can start with a '_'
isIdsChar c = isAlpha c || c == '_'
isIdfChar c = isAlphaNum c || c `elem` "_'"
#ifndef __GLASGOW_HASKELL__
infinity, notANumber :: Rational
infinity = 1 :% 0
notANumber = 0 :% 0
#endif
-- ---------------------------------------------------------------------------
-- Lexing character literals
lexLitChar :: ReadP Lexeme
lexLitChar =
do _ <- char '\''
(c,esc) <- lexCharE
guard (esc || c /= '\'') -- Eliminate '' possibility
_ <- char '\''
return (Char c)
lexChar :: ReadP Char
lexChar = do { (c,_) <- lexCharE; return c }
lexCharE :: ReadP (Char, Bool) -- "escaped or not"?
lexCharE =
do c1 <- get
if c1 == '\\'
then do c2 <- lexEsc; return (c2, True)
else do return (c1, False)
where
lexEsc =
lexEscChar
+++ lexNumeric
+++ lexCntrlChar
+++ lexAscii
lexEscChar =
do c <- get
case c of
'a' -> return '\a'
'b' -> return '\b'
'f' -> return '\f'
'n' -> return '\n'
'r' -> return '\r'
't' -> return '\t'
'v' -> return '\v'
'\\' -> return '\\'
'\"' -> return '\"'
'\'' -> return '\''
_ -> pfail
lexNumeric =
do base <- lexBaseChar <++ return 10
n <- lexInteger base
guard (n <= toInteger (ord maxBound))
return (chr (fromInteger n))
lexCntrlChar =
do _ <- char '^'
c <- get
case c of
'@' -> return '\^@'
'A' -> return '\^A'
'B' -> return '\^B'
'C' -> return '\^C'
'D' -> return '\^D'
'E' -> return '\^E'
'F' -> return '\^F'
'G' -> return '\^G'
'H' -> return '\^H'
'I' -> return '\^I'
'J' -> return '\^J'
'K' -> return '\^K'
'L' -> return '\^L'
'M' -> return '\^M'
'N' -> return '\^N'
'O' -> return '\^O'
'P' -> return '\^P'
'Q' -> return '\^Q'
'R' -> return '\^R'
'S' -> return '\^S'
'T' -> return '\^T'
'U' -> return '\^U'
'V' -> return '\^V'
'W' -> return '\^W'
'X' -> return '\^X'
'Y' -> return '\^Y'
'Z' -> return '\^Z'
'[' -> return '\^['
'\\' -> return '\^\'
']' -> return '\^]'
'^' -> return '\^^'
'_' -> return '\^_'
_ -> pfail
lexAscii =
do choice
[ (string "SOH" >> return '\SOH') <++
(string "SO" >> return '\SO')
-- \SO and \SOH need maximal-munch treatment
-- See the Haskell report Sect 2.6
, string "NUL" >> return '\NUL'
, string "STX" >> return '\STX'
, string "ETX" >> return '\ETX'
, string "EOT" >> return '\EOT'
, string "ENQ" >> return '\ENQ'
, string "ACK" >> return '\ACK'
, string "BEL" >> return '\BEL'
, string "BS" >> return '\BS'
, string "HT" >> return '\HT'
, string "LF" >> return '\LF'
, string "VT" >> return '\VT'
, string "FF" >> return '\FF'
, string "CR" >> return '\CR'
, string "SI" >> return '\SI'
, string "DLE" >> return '\DLE'
, string "DC1" >> return '\DC1'
, string "DC2" >> return '\DC2'
, string "DC3" >> return '\DC3'
, string "DC4" >> return '\DC4'
, string "NAK" >> return '\NAK'
, string "SYN" >> return '\SYN'
, string "ETB" >> return '\ETB'
, string "CAN" >> return '\CAN'
, string "EM" >> return '\EM'
, string "SUB" >> return '\SUB'
, string "ESC" >> return '\ESC'
, string "FS" >> return '\FS'
, string "GS" >> return '\GS'
, string "RS" >> return '\RS'
, string "US" >> return '\US'
, string "SP" >> return '\SP'
, string "DEL" >> return '\DEL'
]
-- ---------------------------------------------------------------------------
-- string literal
lexString :: ReadP Lexeme
lexString =
do _ <- char '"'
body id
where
body f =
do (c,esc) <- lexStrItem
if c /= '"' || esc
then body (f.(c:))
else let s = f "" in
return (String s)
lexStrItem = (lexEmpty >> lexStrItem)
+++ lexCharE
lexEmpty =
do _ <- char '\\'
c <- get
case c of
'&' -> do return ()
_ | isSpace c -> do skipSpaces; _ <- char '\\'; return ()
_ -> do pfail
-- ---------------------------------------------------------------------------
-- Lexing numbers
type Base = Int
type Digits = [Int]
lexNumber :: ReadP Lexeme
lexNumber
= lexHexOct <++ -- First try for hex or octal 0x, 0o etc
-- If that fails, try for a decimal number
lexDecNumber -- Start with ordinary digits
lexHexOct :: ReadP Lexeme
lexHexOct
= do _ <- char '0'
base <- lexBaseChar
digits <- lexDigits base
return (Int (val (fromIntegral base) 0 digits))
lexBaseChar :: ReadP Int
-- Lex a single character indicating the base; fail if not there
lexBaseChar = do { c <- get;
case c of
'o' -> return 8
'O' -> return 8
'x' -> return 16
'X' -> return 16
_ -> pfail }
lexDecNumber :: ReadP Lexeme
lexDecNumber =
do xs <- lexDigits 10
mFrac <- lexFrac <++ return Nothing
mExp <- lexExp <++ return Nothing
return (value xs mFrac mExp)
where
value xs mFrac mExp = valueFracExp (val 10 0 xs) mFrac mExp
valueFracExp :: Integer -> Maybe Digits -> Maybe Integer
-> Lexeme
valueFracExp a Nothing Nothing
= Int a -- 43
valueFracExp a Nothing (Just exp)
| exp >= 0 = Int (a * (10 ^ exp)) -- 43e7
| otherwise = Rat (a % (10 ^ (-exp))) -- 43e-7
valueFracExp a (Just fs) mExp -- 4.3[e2]
= Rat (fracExp (fromMaybe 0 mExp) a fs)
-- Be a bit more efficient in calculating the Rational.
-- Instead of calculating the fractional part alone, then
-- adding the integral part and finally multiplying with
-- 10 ^ exp if an exponent was given, do it all at once.
lexFrac :: ReadP (Maybe Digits)
-- Read the fractional part; fail if it doesn't
-- start ".d" where d is a digit
lexFrac = do _ <- char '.'
fraction <- lexDigits 10
return (Just fraction)
lexExp :: ReadP (Maybe Integer)
lexExp = do _ <- char 'e' +++ char 'E'
exp <- signedExp +++ lexInteger 10
return (Just exp)
where
signedExp
= do c <- char '-' +++ char '+'
n <- lexInteger 10
return (if c == '-' then -n else n)
lexDigits :: Int -> ReadP Digits
-- Lex a non-empty sequence of digits in specified base
lexDigits base =
do s <- look
xs <- scan s id
guard (not (null xs))
return xs
where
scan (c:cs) f = case valDig base c of
Just n -> do _ <- get; scan cs (f.(n:))
Nothing -> do return (f [])
scan [] f = do return (f [])
lexInteger :: Base -> ReadP Integer
lexInteger base =
do xs <- lexDigits base
return (val (fromIntegral base) 0 xs)
val :: Num a => a -> a -> Digits -> a
-- val base y [d1,..,dn] = y ++ [d1,..,dn], as it were
val _ y [] = y
val base y (x:xs) = y' `seq` val base y' xs
where
y' = y * base + fromIntegral x
-- Calculate a Rational from the exponent [of 10 to multiply with],
-- the integral part of the mantissa and the digits of the fractional
-- part. Leaving the calculation of the power of 10 until the end,
-- when we know the effective exponent, saves multiplications.
-- More importantly, this way we need at most one gcd instead of three.
--
-- frac was never used with anything but Integer and base 10, so
-- those are hardcoded now (trivial to change if necessary).
fracExp :: Integer -> Integer -> Digits -> Rational
fracExp exp mant []
| exp < 0 = mant % (10 ^ (-exp))
| otherwise = fromInteger (mant * 10 ^ exp)
fracExp exp mant (d:ds) = exp' `seq` mant' `seq` fracExp exp' mant' ds
where
exp' = exp - 1
mant' = mant * 10 + fromIntegral d
valDig :: (Eq a, Num a) => a -> Char -> Maybe Int
valDig 8 c
| '0' <= c && c <= '7' = Just (ord c - ord '0')
| otherwise = Nothing
valDig 10 c = valDecDig c
valDig 16 c
| '0' <= c && c <= '9' = Just (ord c - ord '0')
| 'a' <= c && c <= 'f' = Just (ord c - ord 'a' + 10)
| 'A' <= c && c <= 'F' = Just (ord c - ord 'A' + 10)
| otherwise = Nothing
valDig _ _ = error "valDig: Bad base"
valDecDig :: Char -> Maybe Int
valDecDig c
| '0' <= c && c <= '9' = Just (ord c - ord '0')
| otherwise = Nothing
-- ----------------------------------------------------------------------
-- other numeric lexing functions
readIntP :: Num a => a -> (Char -> Bool) -> (Char -> Int) -> ReadP a
readIntP base isDigit valDigit =
do s <- munch1 isDigit
return (val base 0 (map valDigit s))
readIntP' :: (Eq a, Num a) => a -> ReadP a
readIntP' base = readIntP base isDigit valDigit
where
isDigit c = maybe False (const True) (valDig base c)
valDigit c = maybe 0 id (valDig base c)
readOctP, readDecP, readHexP :: (Eq a, Num a) => ReadP a
readOctP = readIntP' 8
readDecP = readIntP' 10
readHexP = readIntP' 16
|