summaryrefslogtreecommitdiff
path: root/libraries/base/Text/Read/Lex.hs
blob: 7da09164fba039bceae7876c1f2e257da1cbffbc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE NoImplicitPrelude #-}

-----------------------------------------------------------------------------
-- |
-- Module      :  Text.Read.Lex
-- Copyright   :  (c) The University of Glasgow 2002
-- License     :  BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer  :  libraries@haskell.org
-- Stability   :  provisional
-- Portability :  non-portable (uses Text.ParserCombinators.ReadP)
--
-- The cut-down Haskell lexer, used by Text.Read
--
-----------------------------------------------------------------------------

module Text.Read.Lex
  -- lexing types
  ( Lexeme(..), Number

  , numberToInteger, numberToFixed, numberToRational, numberToRangedRational

  -- lexer
  , lex, expect
  , hsLex
  , lexChar

  , readIntP
  , readOctP
  , readDecP
  , readHexP

  , isSymbolChar
  )
 where

import Text.ParserCombinators.ReadP

import GHC.Base
import GHC.Char
import GHC.Num( Num(..), Integer )
import GHC.Show( Show(..) )
import GHC.Unicode
  ( GeneralCategory(..), generalCategory, isSpace, isAlpha, isAlphaNum )
import GHC.Real( Rational, (%), fromIntegral, Integral,
                 toInteger, (^), quot, even )
import GHC.List
import GHC.Enum( minBound, maxBound )
import Data.Maybe

-- local copy to break import-cycle
-- | @'guard' b@ is @'return' ()@ if @b@ is 'True',
-- and 'mzero' if @b@ is 'False'.
guard           :: (MonadPlus m) => Bool -> m ()
guard True      =  return ()
guard False     =  mzero

-- -----------------------------------------------------------------------------
-- Lexing types

-- ^ Haskell lexemes.
data Lexeme
  = Char   Char         -- ^ Character literal
  | String String       -- ^ String literal, with escapes interpreted
  | Punc   String       -- ^ Punctuation or reserved symbol, e.g. @(@, @::@
  | Ident  String       -- ^ Haskell identifier, e.g. @foo@, @Baz@
  | Symbol String       -- ^ Haskell symbol, e.g. @>>@, @:%@
  | Number Number       -- ^ @since 4.6.0.0
  | EOF
 deriving ( Eq   -- ^ @since 2.01
          , Show -- ^ @since 2.01
          )

-- | @since 4.6.0.0
data Number = MkNumber Int              -- Base
                       Digits           -- Integral part
            | MkDecimal Digits          -- Integral part
                        (Maybe Digits)  -- Fractional part
                        (Maybe Integer) -- Exponent
 deriving ( Eq   -- ^ @since 4.6.0.0
          , Show -- ^ @since 4.6.0.0
          )

-- | @since 4.5.1.0
numberToInteger :: Number -> Maybe Integer
numberToInteger (MkNumber base iPart) = Just (val (fromIntegral base) iPart)
numberToInteger (MkDecimal iPart Nothing Nothing) = Just (val 10 iPart)
numberToInteger _ = Nothing

-- | @since 4.7.0.0
numberToFixed :: Integer -> Number -> Maybe (Integer, Integer)
numberToFixed _ (MkNumber base iPart) = Just (val (fromIntegral base) iPart, 0)
numberToFixed _ (MkDecimal iPart Nothing Nothing) = Just (val 10 iPart, 0)
numberToFixed p (MkDecimal iPart (Just fPart) Nothing)
    = let i = val 10 iPart
          f = val 10 (integerTake p (fPart ++ repeat 0))
          -- Sigh, we really want genericTake, but that's above us in
          -- the hierarchy, so we define our own version here (actually
          -- specialised to Integer)
          integerTake             :: Integer -> [a] -> [a]
          integerTake n _ | n <= 0 = []
          integerTake _ []        =  []
          integerTake n (x:xs)    =  x : integerTake (n-1) xs
      in Just (i, f)
numberToFixed _ _ = Nothing

-- This takes a floatRange, and if the Rational would be outside of
-- the floatRange then it may return Nothing. Not that it will not
-- /necessarily/ return Nothing, but it is good enough to fix the
-- space problems in #5688
-- Ways this is conservative:
-- * the floatRange is in base 2, but we pretend it is in base 10
-- * we pad the floateRange a bit, just in case it is very small
--   and we would otherwise hit an edge case
-- * We only worry about numbers that have an exponent. If they don't
--   have an exponent then the Rational won't be much larger than the
--   Number, so there is no problem
-- | @since 4.5.1.0
numberToRangedRational :: (Int, Int) -> Number
                       -> Maybe Rational -- Nothing = Inf
numberToRangedRational (neg, pos) n@(MkDecimal iPart mFPart (Just exp))
    -- if exp is out of integer bounds,
    -- then the number is definitely out of range
    | exp > fromIntegral (maxBound :: Int) ||
      exp < fromIntegral (minBound :: Int)
    = Nothing
    | otherwise
    = let mFirstDigit = case dropWhile (0 ==) iPart of
                        iPart'@(_ : _) -> Just (length iPart')
                        [] -> case mFPart of
                              Nothing -> Nothing
                              Just fPart ->
                                  case span (0 ==) fPart of
                                  (_, []) -> Nothing
                                  (zeroes, _) ->
                                      Just (negate (length zeroes))
      in case mFirstDigit of
         Nothing -> Just 0
         Just firstDigit ->
             let firstDigit' = firstDigit + fromInteger exp
             in if firstDigit' > (pos + 3)
                then Nothing
                else if firstDigit' < (neg - 3)
                then Just 0
                else Just (numberToRational n)
numberToRangedRational _ n = Just (numberToRational n)

-- | @since 4.6.0.0
numberToRational :: Number -> Rational
numberToRational (MkNumber base iPart) = val (fromIntegral base) iPart % 1
numberToRational (MkDecimal iPart mFPart mExp)
 = let i = val 10 iPart
   in case (mFPart, mExp) of
      (Nothing, Nothing)     -> i % 1
      (Nothing, Just exp)
       | exp >= 0            -> (i * (10 ^ exp)) % 1
       | otherwise           -> i % (10 ^ (- exp))
      (Just fPart, Nothing)  -> fracExp 0   i fPart
      (Just fPart, Just exp) -> fracExp exp i fPart
      -- fracExp is a bit more efficient in calculating the Rational.
      -- Instead of calculating the fractional part alone, then
      -- adding the integral part and finally multiplying with
      -- 10 ^ exp if an exponent was given, do it all at once.

-- -----------------------------------------------------------------------------
-- Lexing

lex :: ReadP Lexeme
lex = skipSpaces >> lexToken

-- | @since 4.7.0.0
expect :: Lexeme -> ReadP ()
expect lexeme = do { skipSpaces
                   ; thing <- lexToken
                   ; if thing == lexeme then return () else pfail }

hsLex :: ReadP String
-- ^ Haskell lexer: returns the lexed string, rather than the lexeme
hsLex = do skipSpaces
           (s,_) <- gather lexToken
           return s

lexToken :: ReadP Lexeme
lexToken = lexEOF     +++
           lexLitChar +++
           lexString  +++
           lexPunc    +++
           lexSymbol  +++
           lexId      +++
           lexNumber


-- ----------------------------------------------------------------------
-- End of file
lexEOF :: ReadP Lexeme
lexEOF = do s <- look
            guard (null s)
            return EOF

-- ---------------------------------------------------------------------------
-- Single character lexemes

lexPunc :: ReadP Lexeme
lexPunc =
  do c <- satisfy isPuncChar
     return (Punc [c])

-- | The @special@ character class as defined in the Haskell Report.
isPuncChar :: Char -> Bool
isPuncChar c = c `elem` ",;()[]{}`"

-- ----------------------------------------------------------------------
-- Symbols

lexSymbol :: ReadP Lexeme
lexSymbol =
  do s <- munch1 isSymbolChar
     if s `elem` reserved_ops then
        return (Punc s)         -- Reserved-ops count as punctuation
      else
        return (Symbol s)
  where
    reserved_ops   = ["..", "::", "=", "\\", "|", "<-", "->", "@", "~", "=>"]

isSymbolChar :: Char -> Bool
isSymbolChar c = not (isPuncChar c) && case generalCategory c of
    MathSymbol              -> True
    CurrencySymbol          -> True
    ModifierSymbol          -> True
    OtherSymbol             -> True
    DashPunctuation         -> True
    OtherPunctuation        -> not (c `elem` "'\"")
    ConnectorPunctuation    -> c /= '_'
    _                       -> False
-- ----------------------------------------------------------------------
-- identifiers

lexId :: ReadP Lexeme
lexId = do c <- satisfy isIdsChar
           s <- munch isIdfChar
           return (Ident (c:s))
  where
          -- Identifiers can start with a '_'
    isIdsChar c = isAlpha c || c == '_'
    isIdfChar c = isAlphaNum c || c `elem` "_'"

-- ---------------------------------------------------------------------------
-- Lexing character literals

lexLitChar :: ReadP Lexeme
lexLitChar =
  do _ <- char '\''
     (c,esc) <- lexCharE
     guard (esc || c /= '\'')   -- Eliminate '' possibility
     _ <- char '\''
     return (Char c)

lexChar :: ReadP Char
lexChar = do { (c,_) <- lexCharE; consumeEmpties; return c }
    where
    -- Consumes the string "\&" repeatedly and greedily (will only produce one match)
    consumeEmpties :: ReadP ()
    consumeEmpties = do
        rest <- look
        case rest of
            ('\\':'&':_) -> string "\\&" >> consumeEmpties
            _ -> return ()


lexCharE :: ReadP (Char, Bool)  -- "escaped or not"?
lexCharE =
  do c1 <- get
     if c1 == '\\'
       then do c2 <- lexEsc; return (c2, True)
       else return (c1, False)
 where
  lexEsc =
    lexEscChar
      +++ lexNumeric
        +++ lexCntrlChar
          +++ lexAscii

  lexEscChar =
    do c <- get
       case c of
         'a'  -> return '\a'
         'b'  -> return '\b'
         'f'  -> return '\f'
         'n'  -> return '\n'
         'r'  -> return '\r'
         't'  -> return '\t'
         'v'  -> return '\v'
         '\\' -> return '\\'
         '\"' -> return '\"'
         '\'' -> return '\''
         _    -> pfail

  lexNumeric =
    do base <- lexBaseChar <++ return 10
       n    <- lexInteger base
       guard (n <= toInteger (ord maxBound))
       return (chr (fromInteger n))

  lexCntrlChar =
    do _ <- char '^'
       c <- get
       case c of
         '@'  -> return '\^@'
         'A'  -> return '\^A'
         'B'  -> return '\^B'
         'C'  -> return '\^C'
         'D'  -> return '\^D'
         'E'  -> return '\^E'
         'F'  -> return '\^F'
         'G'  -> return '\^G'
         'H'  -> return '\^H'
         'I'  -> return '\^I'
         'J'  -> return '\^J'
         'K'  -> return '\^K'
         'L'  -> return '\^L'
         'M'  -> return '\^M'
         'N'  -> return '\^N'
         'O'  -> return '\^O'
         'P'  -> return '\^P'
         'Q'  -> return '\^Q'
         'R'  -> return '\^R'
         'S'  -> return '\^S'
         'T'  -> return '\^T'
         'U'  -> return '\^U'
         'V'  -> return '\^V'
         'W'  -> return '\^W'
         'X'  -> return '\^X'
         'Y'  -> return '\^Y'
         'Z'  -> return '\^Z'
         '['  -> return '\^['
         '\\' -> return '\^\'
         ']'  -> return '\^]'
         '^'  -> return '\^^'
         '_'  -> return '\^_'
         _    -> pfail

  lexAscii =
     choice
         [ (string "SOH" >> return '\SOH') <++
           (string "SO"  >> return '\SO')
                -- \SO and \SOH need maximal-munch treatment
                -- See the Haskell report Sect 2.6

         , string "NUL" >> return '\NUL'
         , string "STX" >> return '\STX'
         , string "ETX" >> return '\ETX'
         , string "EOT" >> return '\EOT'
         , string "ENQ" >> return '\ENQ'
         , string "ACK" >> return '\ACK'
         , string "BEL" >> return '\BEL'
         , string "BS"  >> return '\BS'
         , string "HT"  >> return '\HT'
         , string "LF"  >> return '\LF'
         , string "VT"  >> return '\VT'
         , string "FF"  >> return '\FF'
         , string "CR"  >> return '\CR'
         , string "SI"  >> return '\SI'
         , string "DLE" >> return '\DLE'
         , string "DC1" >> return '\DC1'
         , string "DC2" >> return '\DC2'
         , string "DC3" >> return '\DC3'
         , string "DC4" >> return '\DC4'
         , string "NAK" >> return '\NAK'
         , string "SYN" >> return '\SYN'
         , string "ETB" >> return '\ETB'
         , string "CAN" >> return '\CAN'
         , string "EM"  >> return '\EM'
         , string "SUB" >> return '\SUB'
         , string "ESC" >> return '\ESC'
         , string "FS"  >> return '\FS'
         , string "GS"  >> return '\GS'
         , string "RS"  >> return '\RS'
         , string "US"  >> return '\US'
         , string "SP"  >> return '\SP'
         , string "DEL" >> return '\DEL'
         ]


-- ---------------------------------------------------------------------------
-- string literal

lexString :: ReadP Lexeme
lexString =
  do _ <- char '"'
     body id
 where
  body f =
    do (c,esc) <- lexStrItem
       if c /= '"' || esc
         then body (f.(c:))
         else let s = f "" in
              return (String s)

  lexStrItem = (lexEmpty >> lexStrItem)
               +++ lexCharE

  lexEmpty =
    do _ <- char '\\'
       c <- get
       case c of
         '&'           -> return ()
         _ | isSpace c -> do skipSpaces; _ <- char '\\'; return ()
         _             -> pfail

-- ---------------------------------------------------------------------------
--  Lexing numbers

type Base   = Int
type Digits = [Int]

lexNumber :: ReadP Lexeme
lexNumber
  = lexHexOct  <++      -- First try for hex or octal 0x, 0o etc
                        -- If that fails, try for a decimal number
    lexDecNumber        -- Start with ordinary digits

lexHexOct :: ReadP Lexeme
lexHexOct
  = do  _ <- char '0'
        base <- lexBaseChar
        digits <- lexDigits base
        return (Number (MkNumber base digits))

lexBaseChar :: ReadP Int
-- Lex a single character indicating the base; fail if not there
lexBaseChar = do
  c <- get
  case c of
    'o' -> return 8
    'O' -> return 8
    'x' -> return 16
    'X' -> return 16
    _   -> pfail

lexDecNumber :: ReadP Lexeme
lexDecNumber =
  do xs    <- lexDigits 10
     mFrac <- lexFrac <++ return Nothing
     mExp  <- lexExp  <++ return Nothing
     return (Number (MkDecimal xs mFrac mExp))

lexFrac :: ReadP (Maybe Digits)
-- Read the fractional part; fail if it doesn't
-- start ".d" where d is a digit
lexFrac = do _ <- char '.'
             fraction <- lexDigits 10
             return (Just fraction)

lexExp :: ReadP (Maybe Integer)
lexExp = do _ <- char 'e' +++ char 'E'
            exp <- signedExp +++ lexInteger 10
            return (Just exp)
 where
   signedExp
     = do c <- char '-' +++ char '+'
          n <- lexInteger 10
          return (if c == '-' then -n else n)

lexDigits :: Int -> ReadP Digits
-- Lex a non-empty sequence of digits in specified base
lexDigits base =
  do s  <- look
     xs <- scan s id
     guard (not (null xs))
     return xs
 where
  scan (c:cs) f = case valDig base c of
                    Just n  -> do _ <- get; scan cs (f.(n:))
                    Nothing -> return (f [])
  scan []     f = return (f [])

lexInteger :: Base -> ReadP Integer
lexInteger base =
  do xs <- lexDigits base
     return (val (fromIntegral base) xs)

val :: Num a => a -> Digits -> a
val = valSimple
{-# RULES
"val/Integer" val = valInteger
  #-}
{-# INLINE [1] val #-}

-- The following algorithm is only linear for types whose Num operations
-- are in constant time.
valSimple :: (Num a, Integral d) => a -> [d] -> a
valSimple base = go 0
  where
    go r [] = r
    go r (d : ds) = r' `seq` go r' ds
      where
        r' = r * base + fromIntegral d
{-# INLINE valSimple #-}

-- A sub-quadratic algorithm for Integer. Pairs of adjacent radix b
-- digits are combined into a single radix b^2 digit. This process is
-- repeated until we are left with a single digit. This algorithm
-- performs well only on large inputs, so we use the simple algorithm
-- for smaller inputs.
valInteger :: Integer -> Digits -> Integer
valInteger b0 ds0 = go b0 (length ds0) $ map fromIntegral ds0
  where
    go _ _ []  = 0
    go _ _ [d] = d
    go b l ds
        | l > 40 = b' `seq` go b' l' (combine b ds')
        | otherwise = valSimple b ds
      where
        -- ensure that we have an even number of digits
        -- before we call combine:
        ds' = if even l then ds else 0 : ds
        b' = b * b
        l' = (l + 1) `quot` 2
    combine b (d1 : d2 : ds) = d `seq` (d : combine b ds)
      where
        d = d1 * b + d2
    combine _ []  = []
    combine _ [_] = errorWithoutStackTrace "this should not happen"

-- Calculate a Rational from the exponent [of 10 to multiply with],
-- the integral part of the mantissa and the digits of the fractional
-- part. Leaving the calculation of the power of 10 until the end,
-- when we know the effective exponent, saves multiplications.
-- More importantly, this way we need at most one gcd instead of three.
--
-- frac was never used with anything but Integer and base 10, so
-- those are hardcoded now (trivial to change if necessary).
fracExp :: Integer -> Integer -> Digits -> Rational
fracExp exp mant []
  | exp < 0     = mant % (10 ^ (-exp))
  | otherwise   = fromInteger (mant * 10 ^ exp)
fracExp exp mant (d:ds) = exp' `seq` mant' `seq` fracExp exp' mant' ds
  where
    exp'  = exp - 1
    mant' = mant * 10 + fromIntegral d

valDig :: (Eq a, Num a) => a -> Char -> Maybe Int
valDig 8 c
  | '0' <= c && c <= '7' = Just (ord c - ord '0')
  | otherwise            = Nothing

valDig 10 c = valDecDig c

valDig 16 c
  | '0' <= c && c <= '9' = Just (ord c - ord '0')
  | 'a' <= c && c <= 'f' = Just (ord c - ord 'a' + 10)
  | 'A' <= c && c <= 'F' = Just (ord c - ord 'A' + 10)
  | otherwise            = Nothing

valDig _ _ = errorWithoutStackTrace "valDig: Bad base"

valDecDig :: Char -> Maybe Int
valDecDig c
  | '0' <= c && c <= '9' = Just (ord c - ord '0')
  | otherwise            = Nothing

-- ----------------------------------------------------------------------
-- other numeric lexing functions

readIntP :: Num a => a -> (Char -> Bool) -> (Char -> Int) -> ReadP a
readIntP base isDigit valDigit =
  do s <- munch1 isDigit
     return (val base (map valDigit s))
{-# SPECIALISE readIntP
        :: Integer -> (Char -> Bool) -> (Char -> Int) -> ReadP Integer #-}

readIntP' :: (Eq a, Num a) => a -> ReadP a
readIntP' base = readIntP base isDigit valDigit
 where
  isDigit  c = maybe False (const True) (valDig base c)
  valDigit c = maybe 0     id           (valDig base c)
{-# SPECIALISE readIntP' :: Integer -> ReadP Integer #-}

readOctP, readDecP, readHexP :: (Eq a, Num a) => ReadP a
readOctP = readIntP' 8
readDecP = readIntP' 10
readHexP = readIntP' 16
{-# SPECIALISE readOctP :: ReadP Integer #-}
{-# SPECIALISE readDecP :: ReadP Integer #-}
{-# SPECIALISE readHexP :: ReadP Integer #-}