summaryrefslogtreecommitdiff
path: root/libraries/compact/Data/Compact/Serialized.hs
blob: e58f9eef838bde529d44eae70f9ecc2fcfe87d83 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnboxedTuples #-}

-----------------------------------------------------------------------------
-- |
-- Module      :  Data.Compact.Serialized
-- Copyright   :  (c) The University of Glasgow 2001-2009
--                (c) Giovanni Campagna <gcampagn@cs.stanford.edu> 2015
-- License     :  BSD-style (see the file LICENSE)
--
-- Maintainer  :  libraries@haskell.org
-- Stability   :  unstable
-- Portability :  non-portable (GHC Extensions)
--
-- This module provides a data structure, called a Compact, for
-- holding fully evaluated data in a consecutive block of memory.
--
-- This module contains support for serializing a Compact for network
-- transmission and on-disk storage.
--
-- /Since: 1.0.0/

module Data.Compact.Serialized(
  SerializedCompact(..),
  withSerializedCompact,
  importCompact,
  importCompactByteStrings,
) where

-- Write down all GHC.Prim deps explicitly to keep them at minimum
import GHC.Prim (Compact#,
                 compactGetFirstBlock#,
                 compactGetNextBlock#,
                 compactAllocateBlock#,
                 compactFixupPointers#,
                 touch#,
                 Addr#,
                 nullAddr#,
                 eqAddr#,
                 addrToAny#,
                 anyToAddr#,
                 State#,
                 RealWorld,
                 Word#,
                 )

-- We need to import Word from GHC.Types to see the representation
-- and to able to access the Word# to pass down the primops
import GHC.Types (IO(..), Word(..), isTrue#)
import GHC.Word (Word8)

import GHC.Ptr (Ptr(..), plusPtr)

import qualified Data.ByteString as ByteString
import Data.ByteString.Internal(toForeignPtr)
import Data.IORef(newIORef, readIORef, writeIORef)
import Foreign.ForeignPtr(withForeignPtr)
import Foreign.Marshal.Utils(copyBytes)
import Control.DeepSeq(NFData, force)

import Data.Compact.Internal(Compact(..))

-- |A serialized version of the 'Compact' metadata (each block with
-- address and size and the address of the root). This structure is
-- meant to be sent alongside the actual 'Compact' data. It can be
-- sent out of band in advance if the data is to be sent over RDMA
-- (which requires both sender and receiver to have pinned buffers).
data SerializedCompact a = SerializedCompact {
  serializedCompactBlockList :: [(Ptr a, Word)],
  serializedCompactRoot :: Ptr a
  }

addrIsNull :: Addr# -> Bool
addrIsNull addr = isTrue# (nullAddr# `eqAddr#` addr)


compactGetFirstBlock :: Compact# -> IO (Ptr a, Word)
compactGetFirstBlock buffer =
  IO (\s -> case compactGetFirstBlock# buffer s of
         (# s', addr, size #) -> (# s', (Ptr addr, W# size) #) )

compactGetNextBlock :: Compact# -> Addr# -> IO (Ptr a, Word)
compactGetNextBlock buffer block =
  IO (\s -> case compactGetNextBlock# buffer block s of
         (# s', addr, size #) -> (# s', (Ptr addr, W# size) #) )

mkBlockList :: Compact# -> IO [(Ptr a, Word)]
mkBlockList buffer = compactGetFirstBlock buffer >>= go
  where
    go :: (Ptr a, Word) -> IO [(Ptr a, Word)]
    go (Ptr block, _) | addrIsNull block = return []
    go item@(Ptr block, _) = do
      next <- compactGetNextBlock buffer block
      rest <- go next
      return $ item : rest

-- We MUST mark withSerializedCompact as NOINLINE
-- Otherwise the compiler will eliminate the call to touch#
-- causing the Compact# to be potentially GCed too eagerly,
-- before func had a chance to copy everything into its own
-- buffers/sockets/whatever

-- |Serialize the 'Compact', and call the provided function with
-- with the 'Compact' serialized representation. The resulting
-- action will be executed synchronously before this function
-- completes.
{-# NOINLINE withSerializedCompact #-}
withSerializedCompact :: NFData c => Compact a ->
                         (SerializedCompact a -> IO c) -> IO c
withSerializedCompact (Compact buffer root) func = do
  rootPtr <- IO (\s -> case anyToAddr# root s of
                    (# s', rootAddr #) -> (# s', Ptr rootAddr #) )
  blockList <- mkBlockList buffer
  let serialized = SerializedCompact blockList rootPtr
  -- we must be strict, to avoid smart uses of ByteStrict.Lazy that
  -- return a thunk instead of a ByteString (but the thunk references
  -- the Ptr, not the Compact#, so it will point to garbage if GC
  -- happens)
  !r <- fmap force $ func serialized
  IO (\s -> case touch# buffer s of
         s' -> (# s', r #) )

fixupPointers :: Addr# -> Addr# -> State# RealWorld ->
                 (# State# RealWorld, Maybe (Compact a) #)
fixupPointers firstBlock rootAddr s =
  case compactFixupPointers# firstBlock rootAddr s of
    (# s', buffer, adjustedRoot #) ->
      if addrIsNull adjustedRoot then (# s', Nothing #)
      else case addrToAny# adjustedRoot of
        (# root #) -> (# s', Just $ Compact buffer root #)

-- |Deserialize a 'SerializedCompact' into a in-memory 'Compact'. The
-- provided function will be called with the address and size of each
-- newly allocated block in succession, and should fill the memory
-- from the external source (eg. by reading from a socket or from disk)
-- 'importCompact' can return Nothing if the 'Compact' was corrupt
-- or it had pointers that could not be adjusted.
importCompact :: SerializedCompact a -> (Ptr b -> Word -> IO ()) ->
                 IO (Maybe (Compact a))

-- what we would like is
{-
 importCompactPtrs ((firstAddr, firstSize):rest) = do
   (firstBlock, compact) <- compactAllocateAt firstAddr firstSize
 #nullAddr
   fillBlock firstBlock firstAddr firstSize
   let go prev [] = return ()
       go prev ((addr, size):rest) = do
         (block, _) <- compactAllocateAt addr size prev
         fillBlock block addr size
         go block rest
   go firstBlock rest
   if isTrue# (compactFixupPointers compact) then
     return $ Just compact
     else
     return Nothing

But we can't do that because IO Addr# is not valid (kind mismatch)
This check exists to prevent a polymorphic data constructor from using
an unlifted type (which would break GC) - it would not a problem for IO
because IO stores a function, not a value, but the kind check is there
anyway.
Note that by the reasoning, we cannot do IO (# Addr#, Word# #), nor
we can do IO (Addr#, Word#) (that would break the GC for real!)

And therefore we need to do everything with State# explicitly.
-}

-- just do shut up GHC
importCompact (SerializedCompact [] _) _ = return Nothing
importCompact (SerializedCompact blocks root) filler = do
  -- I'm not sure why we need a bang pattern here, given that
  -- these are obviously strict lets, but ghc complains otherwise
  let !((_, W# firstSize):otherBlocks) = blocks
  let !(Ptr rootAddr) = root
  IO (\s0 -> case compactAllocateBlock# firstSize nullAddr# s0 of
         (# s1, firstBlock #) ->
           case fillBlock firstBlock firstSize s1 of
             s2 -> case go firstBlock otherBlocks s2 of
               s3-> fixupPointers firstBlock rootAddr s3 )
  where
    -- note that the case statements above are strict even though
    -- they don't seem to inspect their argument because State#
    -- is an unlifted type
    fillBlock :: Addr# -> Word# -> State# RealWorld -> State# RealWorld
    fillBlock addr size s = case filler (Ptr addr) (W# size) of
      IO action -> case action s of
        (# s', _ #) -> s'

    go :: Addr# -> [(Ptr a, Word)] -> State# RealWorld -> State# RealWorld
    go _ [] s = s
    go previous ((_, W# size):rest) s =
      case compactAllocateBlock# size previous s of
        (# s', block #) -> case fillBlock block size s' of
          s'' -> go block rest s''

sanityCheckByteStrings :: SerializedCompact a -> [ByteString.ByteString] -> Bool
sanityCheckByteStrings (SerializedCompact scl _) bsl = go scl bsl
  where
    go [] [] = True
    go (_:_) [] = False
    go [] (_:_) = False
    go ((_, size):scs) (bs:bss) =
      fromIntegral size == ByteString.length bs && go scs bss

importCompactByteStrings :: SerializedCompact a -> [ByteString.ByteString] ->
                            IO (Maybe (Compact a))
importCompactByteStrings serialized stringList =
  -- sanity check stringList first - if we throw an exception later we leak
  -- memory!
  if not (sanityCheckByteStrings serialized stringList) then
    return Nothing
  else do
    state <- newIORef stringList
    let filler :: Ptr Word8 -> Word -> IO ()
        filler to size = do
          -- this pattern match will never fail
          (next:rest) <- readIORef state
          let (fp, off, _) = toForeignPtr next
          withForeignPtr fp $ \from -> do
            copyBytes to (from `plusPtr` off) (fromIntegral size)
          writeIORef state rest
    importCompact serialized filler