1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
|
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnboxedTuples #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.Compact.Serialized
-- Copyright : (c) The University of Glasgow 2001-2009
-- (c) Giovanni Campagna <gcampagn@cs.stanford.edu> 2015
-- License : BSD-style (see the file LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : unstable
-- Portability : non-portable (GHC Extensions)
--
-- This module provides a data structure, called a Compact, for
-- holding fully evaluated data in a consecutive block of memory.
--
-- This module contains support for serializing a Compact for network
-- transmission and on-disk storage.
--
-- /Since: 1.0.0/
module Data.Compact.Serialized(
SerializedCompact(..),
withSerializedCompact,
importCompact,
importCompactByteStrings,
) where
-- Write down all GHC.Prim deps explicitly to keep them at minimum
import GHC.Prim (Compact#,
compactGetFirstBlock#,
compactGetNextBlock#,
compactAllocateBlock#,
compactFixupPointers#,
touch#,
Addr#,
nullAddr#,
eqAddr#,
addrToAny#,
anyToAddr#,
State#,
RealWorld,
Word#,
)
-- We need to import Word from GHC.Types to see the representation
-- and to able to access the Word# to pass down the primops
import GHC.Types (IO(..), Word(..), isTrue#)
import GHC.Word (Word8)
import GHC.Ptr (Ptr(..), plusPtr)
import qualified Data.ByteString as ByteString
import Data.ByteString.Internal(toForeignPtr)
import Data.IORef(newIORef, readIORef, writeIORef)
import Foreign.ForeignPtr(withForeignPtr)
import Foreign.Marshal.Utils(copyBytes)
import Control.DeepSeq(NFData, force)
import Data.Compact.Internal(Compact(..))
-- |A serialized version of the 'Compact' metadata (each block with
-- address and size and the address of the root). This structure is
-- meant to be sent alongside the actual 'Compact' data. It can be
-- sent out of band in advance if the data is to be sent over RDMA
-- (which requires both sender and receiver to have pinned buffers).
data SerializedCompact a = SerializedCompact {
serializedCompactBlockList :: [(Ptr a, Word)],
serializedCompactRoot :: Ptr a
}
addrIsNull :: Addr# -> Bool
addrIsNull addr = isTrue# (nullAddr# `eqAddr#` addr)
compactGetFirstBlock :: Compact# -> IO (Ptr a, Word)
compactGetFirstBlock buffer =
IO (\s -> case compactGetFirstBlock# buffer s of
(# s', addr, size #) -> (# s', (Ptr addr, W# size) #) )
compactGetNextBlock :: Compact# -> Addr# -> IO (Ptr a, Word)
compactGetNextBlock buffer block =
IO (\s -> case compactGetNextBlock# buffer block s of
(# s', addr, size #) -> (# s', (Ptr addr, W# size) #) )
mkBlockList :: Compact# -> IO [(Ptr a, Word)]
mkBlockList buffer = compactGetFirstBlock buffer >>= go
where
go :: (Ptr a, Word) -> IO [(Ptr a, Word)]
go (Ptr block, _) | addrIsNull block = return []
go item@(Ptr block, _) = do
next <- compactGetNextBlock buffer block
rest <- go next
return $ item : rest
-- We MUST mark withSerializedCompact as NOINLINE
-- Otherwise the compiler will eliminate the call to touch#
-- causing the Compact# to be potentially GCed too eagerly,
-- before func had a chance to copy everything into its own
-- buffers/sockets/whatever
-- |Serialize the 'Compact', and call the provided function with
-- with the 'Compact' serialized representation. The resulting
-- action will be executed synchronously before this function
-- completes.
{-# NOINLINE withSerializedCompact #-}
withSerializedCompact :: NFData c => Compact a ->
(SerializedCompact a -> IO c) -> IO c
withSerializedCompact (Compact buffer root) func = do
rootPtr <- IO (\s -> case anyToAddr# root s of
(# s', rootAddr #) -> (# s', Ptr rootAddr #) )
blockList <- mkBlockList buffer
let serialized = SerializedCompact blockList rootPtr
-- we must be strict, to avoid smart uses of ByteStrict.Lazy that
-- return a thunk instead of a ByteString (but the thunk references
-- the Ptr, not the Compact#, so it will point to garbage if GC
-- happens)
!r <- fmap force $ func serialized
IO (\s -> case touch# buffer s of
s' -> (# s', r #) )
fixupPointers :: Addr# -> Addr# -> State# RealWorld ->
(# State# RealWorld, Maybe (Compact a) #)
fixupPointers firstBlock rootAddr s =
case compactFixupPointers# firstBlock rootAddr s of
(# s', buffer, adjustedRoot #) ->
if addrIsNull adjustedRoot then (# s', Nothing #)
else case addrToAny# adjustedRoot of
(# root #) -> (# s', Just $ Compact buffer root #)
-- |Deserialize a 'SerializedCompact' into a in-memory 'Compact'. The
-- provided function will be called with the address and size of each
-- newly allocated block in succession, and should fill the memory
-- from the external source (eg. by reading from a socket or from disk)
-- 'importCompact' can return Nothing if the 'Compact' was corrupt
-- or it had pointers that could not be adjusted.
importCompact :: SerializedCompact a -> (Ptr b -> Word -> IO ()) ->
IO (Maybe (Compact a))
-- what we would like is
{-
importCompactPtrs ((firstAddr, firstSize):rest) = do
(firstBlock, compact) <- compactAllocateAt firstAddr firstSize
#nullAddr
fillBlock firstBlock firstAddr firstSize
let go prev [] = return ()
go prev ((addr, size):rest) = do
(block, _) <- compactAllocateAt addr size prev
fillBlock block addr size
go block rest
go firstBlock rest
if isTrue# (compactFixupPointers compact) then
return $ Just compact
else
return Nothing
But we can't do that because IO Addr# is not valid (kind mismatch)
This check exists to prevent a polymorphic data constructor from using
an unlifted type (which would break GC) - it would not a problem for IO
because IO stores a function, not a value, but the kind check is there
anyway.
Note that by the reasoning, we cannot do IO (# Addr#, Word# #), nor
we can do IO (Addr#, Word#) (that would break the GC for real!)
And therefore we need to do everything with State# explicitly.
-}
-- just do shut up GHC
importCompact (SerializedCompact [] _) _ = return Nothing
importCompact (SerializedCompact blocks root) filler = do
-- I'm not sure why we need a bang pattern here, given that
-- these are obviously strict lets, but ghc complains otherwise
let !((_, W# firstSize):otherBlocks) = blocks
let !(Ptr rootAddr) = root
IO (\s0 -> case compactAllocateBlock# firstSize nullAddr# s0 of
(# s1, firstBlock #) ->
case fillBlock firstBlock firstSize s1 of
s2 -> case go firstBlock otherBlocks s2 of
s3-> fixupPointers firstBlock rootAddr s3 )
where
-- note that the case statements above are strict even though
-- they don't seem to inspect their argument because State#
-- is an unlifted type
fillBlock :: Addr# -> Word# -> State# RealWorld -> State# RealWorld
fillBlock addr size s = case filler (Ptr addr) (W# size) of
IO action -> case action s of
(# s', _ #) -> s'
go :: Addr# -> [(Ptr a, Word)] -> State# RealWorld -> State# RealWorld
go _ [] s = s
go previous ((_, W# size):rest) s =
case compactAllocateBlock# size previous s of
(# s', block #) -> case fillBlock block size s' of
s'' -> go block rest s''
sanityCheckByteStrings :: SerializedCompact a -> [ByteString.ByteString] -> Bool
sanityCheckByteStrings (SerializedCompact scl _) bsl = go scl bsl
where
go [] [] = True
go (_:_) [] = False
go [] (_:_) = False
go ((_, size):scs) (bs:bss) =
fromIntegral size == ByteString.length bs && go scs bss
importCompactByteStrings :: SerializedCompact a -> [ByteString.ByteString] ->
IO (Maybe (Compact a))
importCompactByteStrings serialized stringList =
-- sanity check stringList first - if we throw an exception later we leak
-- memory!
if not (sanityCheckByteStrings serialized stringList) then
return Nothing
else do
state <- newIORef stringList
let filler :: Ptr Word8 -> Word -> IO ()
filler to size = do
-- this pattern match will never fail
(next:rest) <- readIORef state
let (fp, off, _) = toForeignPtr next
withForeignPtr fp $ \from -> do
copyBytes to (from `plusPtr` off) (fromIntegral size)
writeIORef state rest
importCompact serialized filler
|