1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE UnboxedTuples #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE BlockArguments #-}
#include "MachDeps.h"
#include "WordSize.h"
module GHC.Num.Natural where
import GHC.Prim
import GHC.Types
import GHC.Classes
import GHC.Num.BigNat
import GHC.Num.Primitives
default ()
-- | Natural number
--
-- Invariant: numbers <= WORD_MAXBOUND use the `NS` constructor
data Natural
= NS !Word#
| NB !BigNat#
instance Eq Natural where
(==) = naturalEq
(/=) = naturalNe
instance Ord Natural where
compare = naturalCompare
(>) = naturalGt
(>=) = naturalGe
(<) = naturalLt
(<=) = naturalLe
-- | Check Natural invariants
naturalCheck# :: Natural -> Bool#
naturalCheck# (NS _) = 1#
naturalCheck# (NB bn) = bigNatCheck# bn &&# bigNatSize# bn ># 1#
-- | Check Natural invariants
naturalCheck :: Natural -> Bool
naturalCheck !n = isTrue# (naturalCheck# n)
-- | Zero Natural
naturalZero :: Natural
naturalZero = NS 0##
-- | One Natural
naturalOne :: Natural
naturalOne = NS 1##
-- | Test Zero Natural
naturalIsZero :: Natural -> Bool
naturalIsZero (NS 0##) = True
naturalIsZero _ = False
-- | Test One Natural
naturalIsOne :: Natural -> Bool
naturalIsOne (NS 1##) = True
naturalIsOne _ = False
-- | Indicate if the value is a power of two and which one
naturalIsPowerOf2# :: Natural -> (# (# #) | Word# #)
naturalIsPowerOf2# (NS w) = wordIsPowerOf2# w
naturalIsPowerOf2# (NB w) = bigNatIsPowerOf2# w
-- | Create a Natural from a BigNat# (respect the invariants)
naturalFromBigNat# :: BigNat# -> Natural
{-# NOINLINE naturalFromBigNat# #-}
naturalFromBigNat# x = case bigNatSize# x of
0# -> naturalZero
1# -> NS (bigNatIndex# x 0#)
_ -> NB x
-- | Convert a Natural into a BigNat#
naturalToBigNat# :: Natural -> BigNat#
{-# NOINLINE naturalToBigNat# #-}
naturalToBigNat# (NS w) = bigNatFromWord# w
naturalToBigNat# (NB bn) = bn
-- | Create a Natural from a Word#
naturalFromWord# :: Word# -> Natural
naturalFromWord# x = NS x
-- | Convert two Word# (most-significant first) into a Natural
naturalFromWord2# :: Word# -> Word# -> Natural
naturalFromWord2# 0## 0## = naturalZero
naturalFromWord2# 0## l = NS l
naturalFromWord2# h l = NB (bigNatFromWord2# h l)
-- | Create a Natural from a Word
naturalFromWord :: Word -> Natural
naturalFromWord (W# x) = NS x
-- | Create a Natural from a list of Word
naturalFromWordList :: [Word] -> Natural
naturalFromWordList xs = naturalFromBigNat# (bigNatFromWordList xs)
-- | Convert the lower bits of a Natural into a Word#
naturalToWord# :: Natural -> Word#
{-# NOINLINE naturalToWord# #-}
naturalToWord# (NS x) = x
naturalToWord# (NB b) = bigNatIndex# b 0#
-- | Convert the lower bits of a Natural into a Word
naturalToWord :: Natural -> Word
naturalToWord !n = W# (naturalToWord# n)
-- | Convert a Natural into a Word# clamping to (maxBound :: Word#).
naturalToWordClamp# :: Natural -> Word#
naturalToWordClamp# (NS x) = x
naturalToWordClamp# (NB _) = WORD_MAXBOUND##
-- | Convert a Natural into a Word# clamping to (maxBound :: Word).
naturalToWordClamp :: Natural -> Word
naturalToWordClamp !n = W# (naturalToWordClamp# n)
-- | Try downcasting 'Natural' to 'Word' value.
-- Returns '(##)' if value doesn't fit in 'Word'.
naturalToWordMaybe# :: Natural -> (# (# #) | Word# #)
naturalToWordMaybe# (NS w) = (# | w #)
naturalToWordMaybe# _ = (# (# #) | #)
-- | Encode (# Natural mantissa, Int# exponent #) into a Double#
naturalEncodeDouble# :: Natural -> Int# -> Double#
naturalEncodeDouble# (NS w) 0# = word2Double# w
naturalEncodeDouble# (NS w) e = wordEncodeDouble# w e
naturalEncodeDouble# (NB b) e = bigNatEncodeDouble# b e
-- | Encode (# Natural mantissa, Int# exponent #) into a Float#
--
-- TODO: Not sure if it's worth to write 'Float' optimized versions here
naturalEncodeFloat# :: Natural -> Int# -> Float#
naturalEncodeFloat# !m e = double2Float# (naturalEncodeDouble# m e)
-- | Equality test for Natural
naturalEq# :: Natural -> Natural -> Bool#
naturalEq# (NS x) (NS y) = x `eqWord#` y
naturalEq# (NB x) (NB y) = bigNatEq# x y
naturalEq# _ _ = 0#
-- | Equality test for Natural
naturalEq :: Natural -> Natural -> Bool
naturalEq !x !y = isTrue# (naturalEq# x y)
-- | Inequality test for Natural
naturalNe# :: Natural -> Natural -> Bool#
naturalNe# (NS x) (NS y) = x `neWord#` y
naturalNe# (NB x) (NB y) = bigNatNe# x y
naturalNe# _ _ = 1#
-- | Inequality test for Natural
naturalNe :: Natural -> Natural -> Bool
naturalNe !x !y = isTrue# (naturalNe# x y)
-- | Greater or equal test for Natural
naturalGe# :: Natural -> Natural -> Bool#
naturalGe# (NS x) (NS y) = x `geWord#` y
naturalGe# (NS _) (NB _) = 0#
naturalGe# (NB _) (NS _) = 1#
naturalGe# (NB x) (NB y) = bigNatGe# x y
-- | Greater or equal test for Natural
naturalGe :: Natural -> Natural -> Bool
naturalGe !x !y = isTrue# (naturalGe# x y)
-- | Lower or equal test for Natural
naturalLe# :: Natural -> Natural -> Bool#
naturalLe# (NS x) (NS y) = x `leWord#` y
naturalLe# (NS _) (NB _) = 1#
naturalLe# (NB _) (NS _) = 0#
naturalLe# (NB x) (NB y) = bigNatLe# x y
-- | Lower or equal test for Natural
naturalLe :: Natural -> Natural -> Bool
naturalLe !x !y = isTrue# (naturalLe# x y)
-- | Greater test for Natural
naturalGt# :: Natural -> Natural -> Bool#
naturalGt# (NS x) (NS y) = x `gtWord#` y
naturalGt# (NS _) (NB _) = 0#
naturalGt# (NB _) (NS _) = 1#
naturalGt# (NB x) (NB y) = bigNatGt# x y
-- | Greater test for Natural
naturalGt :: Natural -> Natural -> Bool
naturalGt !x !y = isTrue# (naturalGt# x y)
-- | Lower test for Natural
naturalLt# :: Natural -> Natural -> Bool#
naturalLt# (NS x) (NS y) = x `ltWord#` y
naturalLt# (NS _) (NB _) = 1#
naturalLt# (NB _) (NS _) = 0#
naturalLt# (NB x) (NB y) = bigNatLt# x y
-- | Lower test for Natural
naturalLt :: Natural -> Natural -> Bool
naturalLt !x !y = isTrue# (naturalLt# x y)
-- | Compare two Natural
naturalCompare :: Natural -> Natural -> Ordering
naturalCompare (NS x) (NS y) = cmpW# x y
naturalCompare (NB x) (NB y) = bigNatCompare x y
naturalCompare (NS _) (NB _) = LT
naturalCompare (NB _) (NS _) = GT
-- | PopCount for Natural
naturalPopCount# :: Natural -> Word#
{-# NOINLINE naturalPopCount# #-}
naturalPopCount# (NS x) = popCnt# x
naturalPopCount# (NB x) = bigNatPopCount# x
-- | PopCount for Natural
naturalPopCount :: Natural -> Word
naturalPopCount (NS x) = W# (popCnt# x)
naturalPopCount (NB x) = bigNatPopCount x
-- | Right shift for Natural
naturalShiftR# :: Natural -> Word# -> Natural
{-# NOINLINE naturalShiftR# #-}
naturalShiftR# (NS x) n = NS (x `shiftRW#` n)
naturalShiftR# (NB x) n = naturalFromBigNat# (x `bigNatShiftR#` n)
-- | Right shift for Natural
naturalShiftR :: Natural -> Word -> Natural
naturalShiftR x (W# n) = naturalShiftR# x n
-- | Left shift
naturalShiftL# :: Natural -> Word# -> Natural
{-# NOINLINE naturalShiftL# #-}
naturalShiftL# v@(NS x) n
| 0## <- x = v
| isTrue# (clz# x `geWord#` n) = NS (x `uncheckedShiftL#` word2Int# n)
| True = NB (bigNatFromWord# x `bigNatShiftL#` n)
naturalShiftL# (NB x) n = NB (x `bigNatShiftL#` n)
-- | Left shift
naturalShiftL :: Natural -> Word -> Natural
naturalShiftL !x (W# n) = naturalShiftL# x n
-- | Add two naturals
naturalAdd :: Natural -> Natural -> Natural
{-# NOINLINE naturalAdd #-}
naturalAdd (NS x) (NB y) = NB (bigNatAddWord# y x)
naturalAdd (NB x) (NS y) = NB (bigNatAddWord# x y)
naturalAdd (NB x) (NB y) = NB (bigNatAdd x y)
naturalAdd (NS x) (NS y) =
case addWordC# x y of
(# l,0# #) -> NS l
(# l,c #) -> NB (bigNatFromWord2# (int2Word# c) l)
-- | Sub two naturals
naturalSub :: Natural -> Natural -> (# (# #) | Natural #)
{-# NOINLINE naturalSub #-}
naturalSub (NS _) (NB _) = (# (# #) | #)
naturalSub (NB x) (NS y) = (# | naturalFromBigNat# (bigNatSubWordUnsafe# x y) #)
naturalSub (NS x) (NS y) =
case subWordC# x y of
(# l,0# #) -> (# | NS l #)
(# _,_ #) -> (# (# #) | #)
naturalSub (NB x) (NB y) =
case bigNatSub x y of
(# (# #) | #) -> (# (# #) | #)
(# | z #) -> (# | naturalFromBigNat# z #)
-- | Sub two naturals
--
-- Throw an Underflow exception if x < y
naturalSubThrow :: Natural -> Natural -> Natural
{-# NOINLINE naturalSubThrow #-}
naturalSubThrow (NS _) (NB _) = raiseUnderflow
naturalSubThrow (NB x) (NS y) = naturalFromBigNat# (bigNatSubWordUnsafe# x y)
naturalSubThrow (NS x) (NS y) =
case subWordC# x y of
(# l,0# #) -> NS l
(# _,_ #) -> raiseUnderflow
naturalSubThrow (NB x) (NB y) =
case bigNatSub x y of
(# (# #) | #) -> raiseUnderflow
(# | z #) -> naturalFromBigNat# z
-- | Sub two naturals
--
-- Unsafe: don't check that x >= y
-- Undefined results if it happens
naturalSubUnsafe :: Natural -> Natural -> Natural
{-# NOINLINE naturalSubUnsafe #-}
naturalSubUnsafe (NS x) (NS y) = NS (minusWord# x y)
naturalSubUnsafe (NS _) (NB _) = naturalZero
naturalSubUnsafe (NB x) (NS y) = naturalFromBigNat# (bigNatSubWordUnsafe# x y)
naturalSubUnsafe (NB x) (NB y) =
case bigNatSub x y of
(# (# #) | #) -> naturalZero
(# | z #) -> naturalFromBigNat# z
-- | Multiplication
naturalMul :: Natural -> Natural -> Natural
{-# NOINLINE naturalMul #-}
naturalMul a b = case a of
NS 0## -> NS 0##
NS 1## -> b
NS x -> case b of
NS 0## -> NS 0##
NS 1## -> a
NS y -> case timesWord2# x y of
(# h,l #) -> naturalFromWord2# h l
NB y -> NB (bigNatMulWord# y x)
NB x -> case b of
NS 0## -> NS 0##
NS 1## -> a
NS y -> NB (bigNatMulWord# x y)
NB y -> NB (bigNatMul x y)
-- | Square a Natural
naturalSqr :: Natural -> Natural
naturalSqr !a = naturalMul a a
-- | Signum for Natural
naturalSignum :: Natural -> Natural
naturalSignum (NS 0##) = NS 0##
naturalSignum _ = NS 1##
-- | Negate for Natural
naturalNegate :: Natural -> Natural
naturalNegate (NS 0##) = NS 0##
naturalNegate _ = raiseUnderflow
-- | Return division quotient and remainder
--
-- Division by zero is handled by BigNat
naturalQuotRem# :: Natural -> Natural -> (# Natural, Natural #)
{-# NOINLINE naturalQuotRem# #-}
naturalQuotRem# (NS n) (NS d) = case quotRemWord# n d of
(# q, r #) -> (# NS q, NS r #)
naturalQuotRem# (NB n) (NS d) = case bigNatQuotRemWord# n d of
(# q, r #) -> (# naturalFromBigNat# q, NS r #)
naturalQuotRem# (NS n) (NB d) = case bigNatQuotRem# (bigNatFromWord# n) d of
(# q, r #) -> (# naturalFromBigNat# q, naturalFromBigNat# r #)
naturalQuotRem# (NB n) (NB d) = case bigNatQuotRem# n d of
(# q, r #) -> (# naturalFromBigNat# q, naturalFromBigNat# r #)
-- | Return division quotient and remainder
naturalQuotRem :: Natural -> Natural -> (Natural, Natural)
naturalQuotRem !n !d = case naturalQuotRem# n d of
(# q, r #) -> (q,r)
-- | Return division quotient
naturalQuot :: Natural -> Natural -> Natural
{-# NOINLINE naturalQuot #-}
naturalQuot (NS n) (NS d) = case quotWord# n d of
q -> NS q
naturalQuot (NB n) (NS d) = case bigNatQuotWord# n d of
q -> naturalFromBigNat# q
naturalQuot (NS n) (NB d) = case bigNatQuot (bigNatFromWord# n) d of
q -> naturalFromBigNat# q
naturalQuot (NB n) (NB d) = case bigNatQuot n d of
q -> naturalFromBigNat# q
-- | Return division remainder
naturalRem :: Natural -> Natural -> Natural
{-# NOINLINE naturalRem #-}
naturalRem (NS n) (NS d) = case remWord# n d of
r -> NS r
naturalRem (NB n) (NS d) = case bigNatRemWord# n d of
r -> NS r
naturalRem (NS n) (NB d) = case bigNatRem (bigNatFromWord# n) d of
r -> naturalFromBigNat# r
naturalRem (NB n) (NB d) = case bigNatRem n d of
r -> naturalFromBigNat# r
naturalAnd :: Natural -> Natural -> Natural
{-# NOINLINE naturalAnd #-}
naturalAnd (NS n) (NS m) = NS (n `and#` m)
naturalAnd (NS n) (NB m) = NS (n `and#` bigNatToWord# m)
naturalAnd (NB n) (NS m) = NS (bigNatToWord# n `and#` m)
naturalAnd (NB n) (NB m) = naturalFromBigNat# (bigNatAnd n m)
naturalAndNot :: Natural -> Natural -> Natural
{-# NOINLINE naturalAndNot #-}
naturalAndNot (NS n) (NS m) = NS (n `and#` not# m)
naturalAndNot (NS n) (NB m) = NS (n `and#` not# (bigNatToWord# m))
naturalAndNot (NB n) (NS m) = NS (bigNatToWord# n `and#` not# m)
naturalAndNot (NB n) (NB m) = naturalFromBigNat# (bigNatAndNot n m)
naturalOr :: Natural -> Natural -> Natural
{-# NOINLINE naturalOr #-}
naturalOr (NS n) (NS m) = NS (n `or#` m)
naturalOr (NS n) (NB m) = NB (bigNatOrWord# m n)
naturalOr (NB n) (NS m) = NB (bigNatOrWord# n m)
naturalOr (NB n) (NB m) = NB (bigNatOr n m)
naturalXor :: Natural -> Natural -> Natural
{-# NOINLINE naturalXor #-}
naturalXor (NS n) (NS m) = NS (n `xor#` m)
naturalXor (NS n) (NB m) = NB (bigNatXorWord# m n)
naturalXor (NB n) (NS m) = NB (bigNatXorWord# n m)
naturalXor (NB n) (NB m) = naturalFromBigNat# (bigNatXor n m)
naturalTestBit# :: Natural -> Word# -> Bool#
{-# NOINLINE naturalTestBit# #-}
naturalTestBit# (NS w) i = (i `ltWord#` WORD_SIZE_IN_BITS##) &&#
((w `and#` (1## `uncheckedShiftL#` word2Int# i)) `neWord#` 0##)
naturalTestBit# (NB bn) i = bigNatTestBit# bn i
naturalTestBit :: Natural -> Word -> Bool
naturalTestBit !n (W# i) = isTrue# (naturalTestBit# n i)
naturalBit# :: Word# -> Natural
{-# NOINLINE naturalBit# #-}
naturalBit# i
| isTrue# (i `ltWord#` WORD_SIZE_IN_BITS##) = NS (1## `uncheckedShiftL#` word2Int# i)
| True = NB (bigNatBit# i)
naturalBit :: Word -> Natural
naturalBit (W# i) = naturalBit# i
-- | @since 1.3
naturalSetBit# :: Natural -> Word# -> Natural
naturalSetBit# (NS n) i
| isTrue# (i `ltWord#` WORD_SIZE_IN_BITS##) = NS (n `or#` (1## `uncheckedShiftL#` word2Int# i))
| True = NB (bigNatSetBit# (bigNatFromWord# n) i)
naturalSetBit# (NB n) i = NB (bigNatSetBit# n i)
-- | @since 1.3
naturalSetBit :: Natural -> Word -> Natural
naturalSetBit !n (W# i) = naturalSetBit# n i
-- | @since 1.3
naturalClearBit# :: Natural -> Word# -> Natural
naturalClearBit# x@(NS n) i
| isTrue# (i `ltWord#` WORD_SIZE_IN_BITS##) = NS (n `and#` not# (1## `uncheckedShiftL#` word2Int# i))
| True = x
naturalClearBit# (NB n) i = naturalFromBigNat# (bigNatClearBit# n i)
-- | @since 1.3
naturalClearBit :: Natural -> Word -> Natural
naturalClearBit !n (W# i) = naturalClearBit# n i
-- | @since 1.3
naturalComplementBit# :: Natural -> Word# -> Natural
naturalComplementBit# (NS n) i
| isTrue# (i `ltWord#` WORD_SIZE_IN_BITS##) = NS (n `xor#` (1## `uncheckedShiftL#` word2Int# i))
| True = NB (bigNatSetBit# (bigNatFromWord# n) i)
naturalComplementBit# (NB n) i = naturalFromBigNat# (bigNatComplementBit# n i)
-- | @since 1.3
naturalComplementBit :: Natural -> Word -> Natural
naturalComplementBit !n (W# i) = naturalComplementBit# n i
-- | Compute greatest common divisor.
naturalGcd :: Natural -> Natural -> Natural
{-# NOINLINE naturalGcd #-}
naturalGcd (NS 0##) !y = y
naturalGcd x (NS 0##) = x
naturalGcd (NS 1##) _ = NS 1##
naturalGcd _ (NS 1##) = NS 1##
naturalGcd (NB x) (NB y) = naturalFromBigNat# (bigNatGcd x y)
naturalGcd (NB x) (NS y) = NS (bigNatGcdWord# x y)
naturalGcd (NS x) (NB y) = NS (bigNatGcdWord# y x)
naturalGcd (NS x) (NS y) = NS (gcdWord# x y)
-- | Compute least common multiple.
naturalLcm :: Natural -> Natural -> Natural
{-# NOINLINE naturalLcm #-}
naturalLcm (NS 0##) !_ = NS 0##
naturalLcm _ (NS 0##) = NS 0##
naturalLcm (NS 1##) y = y
naturalLcm x (NS 1##) = x
naturalLcm (NS a ) (NS b ) = naturalFromBigNat# (bigNatLcmWordWord# a b)
naturalLcm (NB a ) (NS b ) = naturalFromBigNat# (bigNatLcmWord# a b)
naturalLcm (NS a ) (NB b ) = naturalFromBigNat# (bigNatLcmWord# b a)
naturalLcm (NB a ) (NB b ) = naturalFromBigNat# (bigNatLcm a b)
-- | Base 2 logarithm
naturalLog2# :: Natural -> Word#
{-# NOINLINE naturalLog2# #-}
naturalLog2# (NS w) = wordLog2# w
naturalLog2# (NB b) = bigNatLog2# b
-- | Base 2 logarithm
naturalLog2 :: Natural -> Word
naturalLog2 !n = W# (naturalLog2# n)
-- | Logarithm for an arbitrary base
naturalLogBaseWord# :: Word# -> Natural -> Word#
{-# NOINLINE naturalLogBaseWord# #-}
naturalLogBaseWord# base (NS a) = wordLogBase# base a
naturalLogBaseWord# base (NB a) = bigNatLogBaseWord# base a
-- | Logarithm for an arbitrary base
naturalLogBaseWord :: Word -> Natural -> Word
naturalLogBaseWord (W# base) !a = W# (naturalLogBaseWord# base a)
-- | Logarithm for an arbitrary base
naturalLogBase# :: Natural -> Natural -> Word#
{-# NOINLINE naturalLogBase# #-}
naturalLogBase# (NS base) !a = naturalLogBaseWord# base a
naturalLogBase# (NB _ ) (NS _) = 0##
naturalLogBase# (NB base) (NB a) = bigNatLogBase# base a
-- | Logarithm for an arbitrary base
naturalLogBase :: Natural -> Natural -> Word
naturalLogBase !base !a = W# (naturalLogBase# base a)
-- | \"@'naturalPowMod' /b/ /e/ /m/@\" computes base @/b/@ raised to
-- exponent @/e/@ modulo @/m/@.
naturalPowMod :: Natural -> Natural -> Natural -> Natural
{-# NOINLINE naturalPowMod #-}
naturalPowMod !_ !_ (NS 0##) = raiseDivZero
naturalPowMod _ _ (NS 1##) = NS 0##
naturalPowMod _ (NS 0##) _ = NS 1##
naturalPowMod (NS 0##) _ _ = NS 0##
naturalPowMod (NS 1##) _ _ = NS 1##
naturalPowMod (NS b) (NS e) (NS m) = NS (powModWord# b e m)
naturalPowMod b e (NS m) = NS (bigNatPowModWord#
(naturalToBigNat# b)
(naturalToBigNat# e)
m)
naturalPowMod b e (NB m) = naturalFromBigNat#
(bigNatPowMod (naturalToBigNat# b)
(naturalToBigNat# e)
m)
-- | Compute the number of digits of the Natural in the given base.
--
-- `base` must be > 1
naturalSizeInBase# :: Word# -> Natural -> Word#
{-# NOINLINE naturalSizeInBase# #-}
naturalSizeInBase# base (NS w) = wordSizeInBase# base w
naturalSizeInBase# base (NB n) = bigNatSizeInBase# base n
-- | Write a 'Natural' to @/addr/@ in base-256 representation and return the
-- number of bytes written.
--
-- The endianness is selected with the Bool# parameter: write most significant
-- byte first (big-endian) if @1#@ or least significant byte first
-- (little-endian) if @0#@.
naturalToAddr# :: Natural -> Addr# -> Bool# -> State# s -> (# State# s, Word# #)
naturalToAddr# (NS i) = wordToAddr# i
naturalToAddr# (NB n) = bigNatToAddr# n
-- | Write a 'Natural' to @/addr/@ in base-256 representation and return the
-- number of bytes written.
--
-- The endianness is selected with the Bool# parameter: write most significant
-- byte first (big-endian) if @1#@ or least significant byte first
-- (little-endian) if @0#@.
naturalToAddr :: Natural -> Addr# -> Bool# -> IO Word
naturalToAddr a addr e = IO \s -> case naturalToAddr# a addr e s of
(# s', w #) -> (# s', W# w #)
-- | Read a Natural in base-256 representation from an Addr#.
--
-- The size is given in bytes.
--
-- The endianness is selected with the Bool# parameter: most significant
-- byte first (big-endian) if @1#@ or least significant byte first
-- (little-endian) if @0#@.
--
-- Null higher limbs are automatically trimed.
naturalFromAddr# :: Word# -> Addr# -> Bool# -> State# s -> (# State# s, Natural #)
naturalFromAddr# sz addr e s =
case bigNatFromAddr# sz addr e s of
(# s', n #) -> (# s', naturalFromBigNat# n #)
-- | Read a Natural in base-256 representation from an Addr#.
--
-- The size is given in bytes.
--
-- The endianness is selected with the Bool# parameter: most significant
-- byte first (big-endian) if @1#@ or least significant byte first
-- (little-endian) if @0#@.
--
-- Null higher limbs are automatically trimed.
naturalFromAddr :: Word# -> Addr# -> Bool# -> IO Natural
naturalFromAddr sz addr e = IO (naturalFromAddr# sz addr e)
-- | Write a Natural in base-256 representation and return the
-- number of bytes written.
--
-- The endianness is selected with the Bool# parameter: most significant
-- byte first (big-endian) if @1#@ or least significant byte first
-- (little-endian) if @0#@.
naturalToMutableByteArray# :: Natural -> MutableByteArray# s -> Word# -> Bool# -> State# s -> (# State# s, Word# #)
naturalToMutableByteArray# (NS w) = wordToMutableByteArray# w
naturalToMutableByteArray# (NB a) = bigNatToMutableByteArray# a
-- | Read a Natural in base-256 representation from a ByteArray#.
--
-- The size is given in bytes.
--
-- The endianness is selected with the Bool# parameter: most significant
-- byte first (big-endian) if @1#@ or least significant byte first
-- (little-endian) if @0#@.
--
-- Null higher limbs are automatically trimed.
naturalFromByteArray# :: Word# -> ByteArray# -> Word# -> Bool# -> State# s -> (# State# s, Natural #)
naturalFromByteArray# sz ba off e s = case bigNatFromByteArray# sz ba off e s of
(# s', a #) -> (# s', naturalFromBigNat# a #)
-- See Note [Optimising conversions between numeric types]
-- in GHC.Num.Integer
{-# RULES
"Word# -> Natural -> Word#"
forall x. naturalToWord# (NS x) = x
"BigNat# -> Natural -> BigNat#"
forall x. naturalToBigNat# (naturalFromBigNat# x) = x
#-}
|