1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnboxedTuples #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE UnliftedFFITypes #-}
{-|
Module : GHC.Exts.Heap
Copyright : (c) 2012 Joachim Breitner
License : BSD3
Maintainer : Joachim Breitner <mail@joachim-breitner.de>
With this module, you can investigate the heap representation of Haskell
values, i.e. to investigate sharing and lazy evaluation.
-}
module GHC.Exts.Heap (
-- * Closure types
Closure
, GenClosure(..)
, ClosureType(..)
, PrimType(..)
, WhatNext(..)
, WhyBlocked(..)
, TsoFlags(..)
, HasHeapRep(getClosureData)
, getClosureDataFromHeapRep
, getClosureDataFromHeapRepPrim
-- * Info Table types
, StgInfoTable(..)
, EntryFunPtr
, HalfWord
, ItblCodes
, itblSize
, peekItbl
, pokeItbl
-- * Cost Centre (profiling) types
, StgTSOProfInfo(..)
, IndexTable(..)
, CostCentre(..)
, CostCentreStack(..)
-- * Closure inspection
, getBoxedClosureData
, allClosures
-- * Boxes
, Box(..)
, asBox
, areBoxesEqual
) where
import Prelude
import GHC.Exts.Heap.Closures
import GHC.Exts.Heap.ClosureTypes
import GHC.Exts.Heap.Constants
import GHC.Exts.Heap.ProfInfo.Types
#if defined(PROFILING)
import GHC.Exts.Heap.InfoTableProf
#else
import GHC.Exts.Heap.InfoTable
#endif
import GHC.Exts.Heap.Utils
import qualified GHC.Exts.Heap.FFIClosures as FFIClosures
import qualified GHC.Exts.Heap.ProfInfo.PeekProfInfo as PPI
import Control.Monad
import Data.Bits
import Foreign
import GHC.Exts
import GHC.Int
import GHC.Word
#include "ghcconfig.h"
class HasHeapRep (a :: TYPE rep) where
-- | Decode a closure to it's heap representation ('GenClosure').
getClosureData
:: a
-- ^ Closure to decode.
-> IO Closure
-- ^ Heap representation of the closure.
#if __GLASGOW_HASKELL__ >= 901
instance HasHeapRep (a :: TYPE ('BoxedRep 'Lifted)) where
#else
instance HasHeapRep (a :: TYPE 'LiftedRep) where
#endif
getClosureData = getClosureDataFromHeapObject
#if __GLASGOW_HASKELL__ >= 901
instance HasHeapRep (a :: TYPE ('BoxedRep 'Unlifted)) where
#else
instance HasHeapRep (a :: TYPE 'UnliftedRep) where
#endif
getClosureData x = getClosureDataFromHeapObject (unsafeCoerce# x)
instance Int# ~ a => HasHeapRep (a :: TYPE 'IntRep) where
getClosureData x = return $
IntClosure { ptipe = PInt, intVal = I# x }
instance Word# ~ a => HasHeapRep (a :: TYPE 'WordRep) where
getClosureData x = return $
WordClosure { ptipe = PWord, wordVal = W# x }
instance Int64# ~ a => HasHeapRep (a :: TYPE 'Int64Rep) where
getClosureData x = return $
Int64Closure { ptipe = PInt64, int64Val = I64# (unsafeCoerce# x) }
instance Word64# ~ a => HasHeapRep (a :: TYPE 'Word64Rep) where
getClosureData x = return $
Word64Closure { ptipe = PWord64, word64Val = W64# (unsafeCoerce# x) }
instance Addr# ~ a => HasHeapRep (a :: TYPE 'AddrRep) where
getClosureData x = return $
AddrClosure { ptipe = PAddr, addrVal = I# (unsafeCoerce# x) }
instance Float# ~ a => HasHeapRep (a :: TYPE 'FloatRep) where
getClosureData x = return $
FloatClosure { ptipe = PFloat, floatVal = F# x }
instance Double# ~ a => HasHeapRep (a :: TYPE 'DoubleRep) where
getClosureData x = return $
DoubleClosure { ptipe = PDouble, doubleVal = D# x }
-- | Get the heap representation of a closure _at this moment_, even if it is
-- unevaluated or an indirection or other exotic stuff. Beware when passing
-- something to this function, the same caveats as for
-- 'GHC.Exts.Heap.Closures.asBox' apply.
--
-- For most use cases 'getClosureData' is an easier to use alternative.
--
-- Currently TSO and STACK objects will return `UnsupportedClosure`. This is
-- because it is not memory safe to extract TSO and STACK objects (done via
-- `unpackClosure#`). Other threads may be mutating those objects and interleave
-- with reads in `unpackClosure#`. This is particularly problematic with STACKs
-- where pointer values may be overwritten by non-pointer values as the
-- corresponding haskell thread runs.
getClosureDataFromHeapObject
:: a
-- ^ Heap object to decode.
-> IO Closure
-- ^ Heap representation of the closure.
getClosureDataFromHeapObject x = do
case unpackClosure# x of
(# infoTableAddr, heapRep, pointersArray #) -> do
let infoTablePtr = Ptr infoTableAddr
ptrList = [case indexArray# pointersArray i of
(# ptr #) -> Box ptr
| I# i <- [0..I# (sizeofArray# pointersArray) - 1]
]
infoTable <- peekItbl infoTablePtr
case tipe infoTable of
TSO -> pure $ UnsupportedClosure infoTable
STACK -> pure $ UnsupportedClosure infoTable
_ -> getClosureDataFromHeapRep heapRep infoTablePtr ptrList
-- | Convert an unpacked heap object, to a `GenClosure b`. The inputs to this
-- function can be generated from a heap object using `unpackClosure#`.
getClosureDataFromHeapRep :: ByteArray# -> Ptr StgInfoTable -> [b] -> IO (GenClosure b)
getClosureDataFromHeapRep heapRep infoTablePtr pts = do
itbl <- peekItbl infoTablePtr
getClosureDataFromHeapRepPrim (dataConNames infoTablePtr) PPI.peekTopCCS itbl heapRep pts
getClosureDataFromHeapRepPrim
:: IO (String, String, String)
-- ^ A continuation used to decode the constructor description field,
-- in ghc-debug this code can lead to segfaults because dataConNames
-- will dereference a random part of memory.
-> (Ptr a -> IO (Maybe CostCentreStack))
-- ^ A continuation which is used to decode a cost centre stack
-- In ghc-debug, this code will need to call back into the debuggee to
-- fetch the representation of the CCS before decoding it. Using
-- `peekTopCCS` for this argument can lead to segfaults in ghc-debug as
-- the CCS argument will point outside the copied closure.
-> StgInfoTable
-- ^ The `StgInfoTable` of the closure, extracted from the heap
-- representation.
-> ByteArray#
-- ^ Heap representation of the closure as returned by `unpackClosure#`.
-- This includes all of the object including the header, info table
-- pointer, pointer data, and non-pointer data. The ByteArray# may be
-- pinned or unpinned.
-> [b]
-- ^ Pointers in the payload of the closure, extracted from the heap
-- representation as returned by `collect_pointers()` in `Heap.c`. The type
-- `b` is some representation of a pointer e.g. `Any` or `Ptr Any`.
-> IO (GenClosure b)
-- ^ Heap representation of the closure.
getClosureDataFromHeapRepPrim getConDesc decodeCCS itbl heapRep pts = do
let -- heapRep as a list of words.
rawHeapWords :: [Word]
rawHeapWords = [W# (indexWordArray# heapRep i) | I# i <- [0.. end] ]
where
nelems = I# (sizeofByteArray# heapRep) `div` wORD_SIZE
end = fromIntegral nelems - 1
-- Just the payload of rawHeapWords (no header).
payloadWords :: [Word]
payloadWords = drop (closureTypeHeaderSize (tipe itbl)) rawHeapWords
-- The non-pointer words in the payload. Only valid for closures with a
-- "pointers first" layout. Not valid for bit field layout.
npts :: [Word]
npts = drop (closureTypeHeaderSize (tipe itbl) + length pts) rawHeapWords
case tipe itbl of
t | t >= CONSTR && t <= CONSTR_NOCAF -> do
(p, m, n) <- getConDesc
pure $ ConstrClosure itbl pts npts p m n
t | t >= THUNK && t <= THUNK_STATIC -> do
pure $ ThunkClosure itbl pts npts
THUNK_SELECTOR -> do
unless (length pts >= 1) $
fail "Expected at least 1 ptr argument to THUNK_SELECTOR"
pure $ SelectorClosure itbl (head pts)
t | t >= FUN && t <= FUN_STATIC -> do
pure $ FunClosure itbl pts npts
AP -> do
unless (length pts >= 1) $
fail "Expected at least 1 ptr argument to AP"
-- We expect at least the arity, n_args, and fun fields
unless (length payloadWords >= 2) $
fail "Expected at least 2 raw words to AP"
let splitWord = payloadWords !! 0
pure $ APClosure itbl
#if defined(WORDS_BIGENDIAN)
(fromIntegral $ shiftR splitWord (wORD_SIZE_IN_BITS `div` 2))
(fromIntegral splitWord)
#else
(fromIntegral splitWord)
(fromIntegral $ shiftR splitWord (wORD_SIZE_IN_BITS `div` 2))
#endif
(head pts) (tail pts)
PAP -> do
unless (length pts >= 1) $
fail "Expected at least 1 ptr argument to PAP"
-- We expect at least the arity, n_args, and fun fields
unless (length payloadWords >= 2) $
fail "Expected at least 2 raw words to PAP"
let splitWord = payloadWords !! 0
pure $ PAPClosure itbl
#if defined(WORDS_BIGENDIAN)
(fromIntegral $ shiftR splitWord (wORD_SIZE_IN_BITS `div` 2))
(fromIntegral splitWord)
#else
(fromIntegral splitWord)
(fromIntegral $ shiftR splitWord (wORD_SIZE_IN_BITS `div` 2))
#endif
(head pts) (tail pts)
AP_STACK -> do
unless (length pts >= 1) $
fail "Expected at least 1 ptr argument to AP_STACK"
pure $ APStackClosure itbl (head pts) (tail pts)
IND -> do
unless (length pts >= 1) $
fail "Expected at least 1 ptr argument to IND"
pure $ IndClosure itbl (head pts)
IND_STATIC -> do
unless (length pts >= 1) $
fail "Expected at least 1 ptr argument to IND_STATIC"
pure $ IndClosure itbl (head pts)
BLACKHOLE -> do
unless (length pts >= 1) $
fail "Expected at least 1 ptr argument to BLACKHOLE"
pure $ BlackholeClosure itbl (head pts)
BCO -> do
unless (length pts >= 3) $
fail $ "Expected at least 3 ptr argument to BCO, found "
++ show (length pts)
unless (length payloadWords >= 4) $
fail $ "Expected at least 4 words to BCO, found "
++ show (length payloadWords)
let splitWord = payloadWords !! 3
pure $ BCOClosure itbl (pts !! 0) (pts !! 1) (pts !! 2)
#if defined(WORDS_BIGENDIAN)
(fromIntegral $ shiftR splitWord (wORD_SIZE_IN_BITS `div` 2))
(fromIntegral splitWord)
#else
(fromIntegral splitWord)
(fromIntegral $ shiftR splitWord (wORD_SIZE_IN_BITS `div` 2))
#endif
(drop 4 payloadWords)
ARR_WORDS -> do
unless (length payloadWords >= 1) $
fail $ "Expected at least 1 words to ARR_WORDS, found "
++ show (length payloadWords)
pure $ ArrWordsClosure itbl (head payloadWords) (tail payloadWords)
t | t >= MUT_ARR_PTRS_CLEAN && t <= MUT_ARR_PTRS_FROZEN_CLEAN -> do
unless (length payloadWords >= 2) $
fail $ "Expected at least 2 words to MUT_ARR_PTRS_* "
++ "found " ++ show (length payloadWords)
pure $ MutArrClosure itbl (payloadWords !! 0) (payloadWords !! 1) pts
t | t >= SMALL_MUT_ARR_PTRS_CLEAN && t <= SMALL_MUT_ARR_PTRS_FROZEN_CLEAN -> do
unless (length payloadWords >= 1) $
fail $ "Expected at least 1 word to SMALL_MUT_ARR_PTRS_* "
++ "found " ++ show (length payloadWords)
pure $ SmallMutArrClosure itbl (payloadWords !! 0) pts
t | t == MUT_VAR_CLEAN || t == MUT_VAR_DIRTY -> do
unless (length pts >= 1) $
fail $ "Expected at least 1 words to MUT_VAR, found "
++ show (length pts)
pure $ MutVarClosure itbl (head pts)
t | t == MVAR_CLEAN || t == MVAR_DIRTY -> do
unless (length pts >= 3) $
fail $ "Expected at least 3 ptrs to MVAR, found "
++ show (length pts)
pure $ MVarClosure itbl (pts !! 0) (pts !! 1) (pts !! 2)
BLOCKING_QUEUE ->
pure $ OtherClosure itbl pts rawHeapWords
-- pure $ BlockingQueueClosure itbl
-- (pts !! 0) (pts !! 1) (pts !! 2) (pts !! 3)
-- pure $ OtherClosure itbl pts rawHeapWords
--
WEAK ->
pure $ WeakClosure
{ info = itbl
, cfinalizers = pts !! 0
, key = pts !! 1
, value = pts !! 2
, finalizer = pts !! 3
, link = pts !! 4
}
TSO | [ u_lnk, u_gbl_lnk, tso_stack, u_trec, u_blk_ex, u_bq] <- pts
-> withArray rawHeapWords (\ptr -> do
fields <- FFIClosures.peekTSOFields decodeCCS ptr
pure $ TSOClosure
{ info = itbl
, link = u_lnk
, global_link = u_gbl_lnk
, tsoStack = tso_stack
, trec = u_trec
, blocked_exceptions = u_blk_ex
, bq = u_bq
, what_next = FFIClosures.tso_what_next fields
, why_blocked = FFIClosures.tso_why_blocked fields
, flags = FFIClosures.tso_flags fields
, threadId = FFIClosures.tso_threadId fields
, saved_errno = FFIClosures.tso_saved_errno fields
, tso_dirty = FFIClosures.tso_dirty fields
, alloc_limit = FFIClosures.tso_alloc_limit fields
, tot_stack_size = FFIClosures.tso_tot_stack_size fields
, prof = FFIClosures.tso_prof fields
})
| otherwise
-> fail $ "Expected 6 ptr arguments to TSO, found "
++ show (length pts)
STACK
| [] <- pts
-> withArray rawHeapWords (\ptr -> do
fields <- FFIClosures.peekStackFields ptr
pure $ StackClosure
{ info = itbl
, stack_size = FFIClosures.stack_size fields
, stack_dirty = FFIClosures.stack_dirty fields
#if __GLASGOW_HASKELL__ >= 811
, stack_marking = FFIClosures.stack_marking fields
#endif
})
| otherwise
-> fail $ "Expected 0 ptr argument to STACK, found "
++ show (length pts)
_ ->
pure $ UnsupportedClosure itbl
-- | Like 'getClosureData', but taking a 'Box', so it is easier to work with.
getBoxedClosureData :: Box -> IO Closure
getBoxedClosureData (Box a) = getClosureData a
|