1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
|
{-# LANGUAGE CPP, MagicHash, ScopedTypeVariables #-}
-- Get definitions for the structs, constants & config etc.
#include "Rts.h"
-- |
-- Run-time info table support. This module provides support for
-- creating and reading info tables /in the running program/.
-- We use the RTS data structures directly via hsc2hs.
--
module GHCi.InfoTable
(
mkConInfoTable
) where
import Prelude hiding (fail) -- See note [Why do we import Prelude here?]
import Foreign
import Foreign.C
import GHC.Ptr
import GHC.Exts
import GHC.Exts.Heap
import Data.ByteString (ByteString)
import Control.Monad.Fail
import qualified Data.ByteString as BS
import GHC.Platform.Host (hostPlatformArch)
import GHC.Platform.ArchOS
-- NOTE: Must return a pointer acceptable for use in the header of a closure.
-- If tables_next_to_code is enabled, then it must point the 'code' field.
-- Otherwise, it should point to the start of the StgInfoTable.
mkConInfoTable
:: Bool -- TABLES_NEXT_TO_CODE
-> Int -- ptr words
-> Int -- non-ptr words
-> Int -- constr tag
-> Int -- pointer tag
-> ByteString -- con desc
-> IO (Ptr StgInfoTable)
-- resulting info table is allocated with allocateExecPage(), and
-- should be freed with freeExecPage().
mkConInfoTable tables_next_to_code ptr_words nonptr_words tag ptrtag con_desc = do
let entry_addr = interpConstrEntry !! ptrtag
code' <- if tables_next_to_code
then Just <$> mkJumpToAddr entry_addr
else pure Nothing
let
itbl = StgInfoTable {
entry = if tables_next_to_code
then Nothing
else Just entry_addr,
ptrs = fromIntegral ptr_words,
nptrs = fromIntegral nonptr_words,
tipe = CONSTR,
srtlen = fromIntegral tag,
code = code'
}
castFunPtrToPtr <$> newExecConItbl tables_next_to_code itbl con_desc
-- -----------------------------------------------------------------------------
-- Building machine code fragments for a constructor's entry code
funPtrToInt :: FunPtr a -> Int
funPtrToInt (FunPtr a) = I## (addr2Int## a)
mkJumpToAddr :: MonadFail m => EntryFunPtr-> m ItblCodes
mkJumpToAddr a = case hostPlatformArch of
ArchPPC -> pure $
-- We'll use r12, for no particular reason.
-- 0xDEADBEEF stands for the address:
-- 3D80DEAD lis r12,0xDEAD
-- 618CBEEF ori r12,r12,0xBEEF
-- 7D8903A6 mtctr r12
-- 4E800420 bctr
let w32 = fromIntegral (funPtrToInt a)
hi16 x = (x `shiftR` 16) .&. 0xFFFF
lo16 x = x .&. 0xFFFF
in Right [ 0x3D800000 .|. hi16 w32,
0x618C0000 .|. lo16 w32,
0x7D8903A6, 0x4E800420 ]
ArchX86 -> pure $
-- Let the address to jump to be 0xWWXXYYZZ.
-- Generate movl $0xWWXXYYZZ,%eax ; jmp *%eax
-- which is
-- B8 ZZ YY XX WW FF E0
let w32 = fromIntegral (funPtrToInt a) :: Word32
insnBytes :: [Word8]
insnBytes
= [0xB8, byte0 w32, byte1 w32,
byte2 w32, byte3 w32,
0xFF, 0xE0]
in
Left insnBytes
ArchX86_64 -> pure $
-- Generates:
-- jmpq *.L1(%rip)
-- .align 8
-- .L1:
-- .quad <addr>
--
-- which looks like:
-- 8: ff 25 02 00 00 00 jmpq *0x2(%rip) # 10 <f+0x10>
-- with addr at 10.
--
-- We need a full 64-bit pointer (we can't assume the info table is
-- allocated in low memory). Assuming the info pointer is aligned to
-- an 8-byte boundary, the addr will also be aligned.
let w64 = fromIntegral (funPtrToInt a) :: Word64
insnBytes :: [Word8]
insnBytes
= [0xff, 0x25, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,
byte0 w64, byte1 w64, byte2 w64, byte3 w64,
byte4 w64, byte5 w64, byte6 w64, byte7 w64]
in
Left insnBytes
ArchAlpha -> pure $
let w64 = fromIntegral (funPtrToInt a) :: Word64
in Right [ 0xc3800000 -- br at, .+4
, 0xa79c000c -- ldq at, 12(at)
, 0x6bfc0000 -- jmp (at) # with zero hint -- oh well
, 0x47ff041f -- nop
, fromIntegral (w64 .&. 0x0000FFFF)
, fromIntegral ((w64 `shiftR` 32) .&. 0x0000FFFF) ]
ArchARM {} -> pure $
-- Generates Arm sequence,
-- ldr r1, [pc, #0]
-- bx r1
--
-- which looks like:
-- 00000000 <.addr-0x8>:
-- 0: 00109fe5 ldr r1, [pc] ; 8 <.addr>
-- 4: 11ff2fe1 bx r1
let w32 = fromIntegral (funPtrToInt a) :: Word32
in Left [ 0x00, 0x10, 0x9f, 0xe5
, 0x11, 0xff, 0x2f, 0xe1
, byte0 w32, byte1 w32, byte2 w32, byte3 w32]
ArchAArch64 {} -> pure $
-- Generates:
--
-- ldr x1, label
-- br x1
-- label:
-- .quad <addr>
--
-- which looks like:
-- 0: 58000041 ldr x1, <label>
-- 4: d61f0020 br x1
let w64 = fromIntegral (funPtrToInt a) :: Word64
in Right [ 0x58000041
, 0xd61f0020
, fromIntegral w64
, fromIntegral (w64 `shiftR` 32) ]
ArchPPC_64 ELF_V1 -> pure $
-- We use the compiler's register r12 to read the function
-- descriptor and the linker's register r11 as a temporary
-- register to hold the function entry point.
-- In the medium code model the function descriptor
-- is located in the first two gigabytes, i.e. the address
-- of the function pointer is a non-negative 32 bit number.
-- 0x0EADBEEF stands for the address of the function pointer:
-- 0: 3d 80 0e ad lis r12,0x0EAD
-- 4: 61 8c be ef ori r12,r12,0xBEEF
-- 8: e9 6c 00 00 ld r11,0(r12)
-- c: e8 4c 00 08 ld r2,8(r12)
-- 10: 7d 69 03 a6 mtctr r11
-- 14: e9 6c 00 10 ld r11,16(r12)
-- 18: 4e 80 04 20 bctr
let w32 = fromIntegral (funPtrToInt a)
hi16 x = (x `shiftR` 16) .&. 0xFFFF
lo16 x = x .&. 0xFFFF
in Right [ 0x3D800000 .|. hi16 w32,
0x618C0000 .|. lo16 w32,
0xE96C0000,
0xE84C0008,
0x7D6903A6,
0xE96C0010,
0x4E800420]
ArchPPC_64 ELF_V2 -> pure $
-- The ABI requires r12 to point to the function's entry point.
-- We use the medium code model where code resides in the first
-- two gigabytes, so loading a non-negative32 bit address
-- with lis followed by ori is fine.
-- 0x0EADBEEF stands for the address:
-- 3D800EAD lis r12,0x0EAD
-- 618CBEEF ori r12,r12,0xBEEF
-- 7D8903A6 mtctr r12
-- 4E800420 bctr
let w32 = fromIntegral (funPtrToInt a)
hi16 x = (x `shiftR` 16) .&. 0xFFFF
lo16 x = x .&. 0xFFFF
in Right [ 0x3D800000 .|. hi16 w32,
0x618C0000 .|. lo16 w32,
0x7D8903A6, 0x4E800420 ]
ArchS390X -> pure $
-- Let 0xAABBCCDDEEFFGGHH be the address to jump to.
-- The following code loads the address into scratch
-- register r1 and jumps to it.
--
-- 0: C0 1E AA BB CC DD llihf %r1,0xAABBCCDD
-- 6: C0 19 EE FF GG HH iilf %r1,0xEEFFGGHH
-- 12: 07 F1 br %r1
let w64 = fromIntegral (funPtrToInt a) :: Word64
in Left [ 0xC0, 0x1E, byte7 w64, byte6 w64, byte5 w64, byte4 w64,
0xC0, 0x19, byte3 w64, byte2 w64, byte1 w64, byte0 w64,
0x07, 0xF1 ]
ArchRISCV64 -> pure $
let w64 = fromIntegral (funPtrToInt a) :: Word64
in Right [ 0x00000297 -- auipc t0,0
, 0x01053283 -- ld t0,16(t0)
, 0x00028067 -- jr t0
, 0x00000013 -- nop
, fromIntegral w64
, fromIntegral (w64 `shiftR` 32) ]
arch ->
-- The arch isn't supported. You either need to add your architecture as a
-- distinct case, or use non-TABLES_NEXT_TO_CODE mode.
fail $ "mkJumpToAddr: arch is not supported with TABLES_NEXT_TO_CODE ("
++ show arch ++ ")"
byte0 :: (Integral w) => w -> Word8
byte0 w = fromIntegral w
byte1, byte2, byte3, byte4, byte5, byte6, byte7
:: (Integral w, Bits w) => w -> Word8
byte1 w = fromIntegral (w `shiftR` 8)
byte2 w = fromIntegral (w `shiftR` 16)
byte3 w = fromIntegral (w `shiftR` 24)
byte4 w = fromIntegral (w `shiftR` 32)
byte5 w = fromIntegral (w `shiftR` 40)
byte6 w = fromIntegral (w `shiftR` 48)
byte7 w = fromIntegral (w `shiftR` 56)
-- -----------------------------------------------------------------------------
-- read & write intfo tables
-- entry point for direct returns for created constr itbls
foreign import ccall "&stg_interp_constr1_entry" stg_interp_constr1_entry :: EntryFunPtr
foreign import ccall "&stg_interp_constr2_entry" stg_interp_constr2_entry :: EntryFunPtr
foreign import ccall "&stg_interp_constr3_entry" stg_interp_constr3_entry :: EntryFunPtr
foreign import ccall "&stg_interp_constr4_entry" stg_interp_constr4_entry :: EntryFunPtr
foreign import ccall "&stg_interp_constr5_entry" stg_interp_constr5_entry :: EntryFunPtr
foreign import ccall "&stg_interp_constr6_entry" stg_interp_constr6_entry :: EntryFunPtr
foreign import ccall "&stg_interp_constr7_entry" stg_interp_constr7_entry :: EntryFunPtr
interpConstrEntry :: [EntryFunPtr]
interpConstrEntry = [ error "pointer tag 0"
, stg_interp_constr1_entry
, stg_interp_constr2_entry
, stg_interp_constr3_entry
, stg_interp_constr4_entry
, stg_interp_constr5_entry
, stg_interp_constr6_entry
, stg_interp_constr7_entry ]
data StgConInfoTable = StgConInfoTable {
conDesc :: Ptr Word8,
infoTable :: StgInfoTable
}
pokeConItbl
:: Bool -> Ptr StgConInfoTable -> Ptr StgConInfoTable -> StgConInfoTable
-> IO ()
pokeConItbl tables_next_to_code wr_ptr _ex_ptr itbl = do
if tables_next_to_code
then do
-- Write the offset to the con_desc from the end of the standard InfoTable
-- at the first byte.
let con_desc_offset = conDesc itbl `minusPtr` (_ex_ptr `plusPtr` conInfoTableSizeB)
(#poke StgConInfoTable, con_desc) wr_ptr con_desc_offset
else do
-- Write the con_desc address after the end of the info table.
-- Use itblSize because CPP will not pick up PROFILING when calculating
-- the offset.
pokeByteOff wr_ptr itblSize (conDesc itbl)
pokeItbl (wr_ptr `plusPtr` (#offset StgConInfoTable, i)) (infoTable itbl)
sizeOfEntryCode :: MonadFail m => Bool -> m Int
sizeOfEntryCode tables_next_to_code
| not tables_next_to_code = pure 0
| otherwise = do
code' <- mkJumpToAddr undefined
pure $ case code' of
Left xs -> sizeOf (head xs) * length xs
Right xs -> sizeOf (head xs) * length xs
-- Note: Must return proper pointer for use in a closure
newExecConItbl :: Bool -> StgInfoTable -> ByteString -> IO (FunPtr ())
newExecConItbl tables_next_to_code obj con_desc = do
sz0 <- sizeOfEntryCode tables_next_to_code
let lcon_desc = BS.length con_desc + 1{- null terminator -}
-- SCARY
-- This size represents the number of bytes in an StgConInfoTable.
sz = fromIntegral $ conInfoTableSizeB + sz0
-- Note: we need to allocate the conDesc string next to the info
-- table, because on a 64-bit platform we reference this string
-- with a 32-bit offset relative to the info table, so if we
-- allocated the string separately it might be out of range.
ex_ptr <- fillExecBuffer (sz + fromIntegral lcon_desc) $ \wr_ptr ex_ptr -> do
let cinfo = StgConInfoTable { conDesc = ex_ptr `plusPtr` fromIntegral sz
, infoTable = obj }
pokeConItbl tables_next_to_code wr_ptr ex_ptr cinfo
BS.useAsCStringLen con_desc $ \(src, len) ->
copyBytes (castPtr wr_ptr `plusPtr` fromIntegral sz) src len
let null_off = fromIntegral sz + fromIntegral (BS.length con_desc)
poke (castPtr wr_ptr `plusPtr` null_off) (0 :: Word8)
pure $ if tables_next_to_code
then castPtrToFunPtr $ ex_ptr `plusPtr` conInfoTableSizeB
else castPtrToFunPtr ex_ptr
-- | Allocate a buffer of a given size, use the given action to fill it with
-- data, and mark it as executable. The action is given a writable pointer and
-- the executable pointer. Returns a pointer to the executable code.
fillExecBuffer :: CSize -> (Ptr a -> Ptr a -> IO ()) -> IO (Ptr a)
#if MIN_VERSION_rts(1,0,2)
data ExecPage
foreign import ccall unsafe "allocateExecPage"
_allocateExecPage :: IO (Ptr ExecPage)
foreign import ccall unsafe "freezeExecPage"
_freezeExecPage :: Ptr ExecPage -> IO ()
fillExecBuffer sz cont
-- we can only allocate single pages. This assumes a 4k page size which
-- isn't strictly correct but is a reasonable conservative lower bound.
| sz > 4096 = fail "withExecBuffer: Too large"
| otherwise = do
pg <- _allocateExecPage
cont (castPtr pg) (castPtr pg)
_freezeExecPage pg
return (castPtr pg)
#elif MIN_VERSION_rts(1,0,1)
foreign import ccall unsafe "allocateExec"
_allocateExec :: CUInt -> Ptr (Ptr a) -> IO (Ptr a)
foreign import ccall unsafe "flushExec"
_flushExec :: CUInt -> Ptr a -> IO ()
fillExecBuffer sz cont = alloca $ \pcode -> do
wr_ptr <- _allocateExec (fromIntegral sz) pcode
ex_ptr <- peek pcode
cont wr_ptr ex_ptr
_flushExec (fromIntegral sz) ex_ptr -- Cache flush (if needed)
return (ex_ptr)
#else
#error Sorry, rts versions <= 1.0 are not supported
#endif
-- -----------------------------------------------------------------------------
-- Constants and config
wORD_SIZE :: Int
wORD_SIZE = (#const SIZEOF_HSINT)
conInfoTableSizeB :: Int
conInfoTableSizeB = wORD_SIZE + itblSize
|