1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
|
/*
* `integer-gmp` GMP FFI wrappers
*
* Copyright (c) 2014, Herbert Valerio Riedel <hvr@gnu.org>
*
* BSD3 licensed, see ../LICENSE file for details
*
*/
#define _ISOC99_SOURCE
#include "HsFFI.h"
#include "MachDeps.h"
#include <assert.h>
#include <stdbool.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <math.h>
#include <float.h>
#include <stdio.h>
#include <gmp.h>
// GMP 4.x compatibility
#if !defined(__GNU_MP_VERSION)
# error __GNU_MP_VERSION not defined
#elif __GNU_MP_VERSION < 4
# error need GMP 4.0 or later
#elif __GNU_MP_VERSION < 5
typedef unsigned long int mp_bitcnt_t;
#endif
#if (GMP_NUMB_BITS) != (GMP_LIMB_BITS)
# error GMP_NUMB_BITS != GMP_LIMB_BITS not supported
#endif
#if (WORD_SIZE_IN_BITS) != (GMP_LIMB_BITS)
# error WORD_SIZE_IN_BITS != GMP_LIMB_BITS not supported
#endif
// sanity check
#if (SIZEOF_HSWORD*8) != WORD_SIZE_IN_BITS
# error (SIZEOF_HSWORD*8) != WORD_SIZE_IN_BITS
#endif
// Turn a (const) {xp,xn} pair into static initializer
#define CONST_MPZ_INIT(xp,xn) \
{{ ._mp_alloc = 0, ._mp_size = (xn), ._mp_d = (mp_limb_t*)(xp) }}
// Test if {sp,sn} represents a zero value
static inline int
mp_limb_zero_p(const mp_limb_t sp[], mp_size_t sn)
{
return !sn || ((sn == 1 || sn == -1) && !sp[0]);
}
static inline mp_size_t
mp_size_abs(const mp_size_t x)
{
return x>=0 ? x : -x;
}
static inline mp_size_t
mp_size_min(const mp_size_t x, const mp_size_t y)
{
return x<y ? x : y;
}
static inline mp_size_t
mp_size_minabs(const mp_size_t x, const mp_size_t y)
{
return mp_size_min(mp_size_abs(x), mp_size_abs(y));
}
/* Perform arithmetic right shift on MPNs (multi-precision naturals)
*
* pre-conditions:
* - 0 < count < sn*GMP_NUMB_BITS
* - rn = sn - floor(count / GMP_NUMB_BITS)
* - sn > 0
*
* write {sp,sn} right-shifted by count bits into {rp,rn}
*
* return value: most-significant limb stored in {rp,rn} result
*/
mp_limb_t
integer_gmp_mpn_rshift (mp_limb_t rp[], const mp_limb_t sp[], mp_size_t sn,
mp_bitcnt_t count)
{
const mp_size_t limb_shift = count / GMP_NUMB_BITS;
const unsigned int bit_shift = count % GMP_NUMB_BITS;
const mp_size_t rn = sn - limb_shift;
if (bit_shift)
mpn_rshift(rp, &sp[limb_shift], rn, bit_shift);
else
memcpy(rp, &sp[limb_shift], rn*sizeof(mp_limb_t));
return rp[rn-1];
}
/* Twos-complement version of 'integer_gmp_mpn_rshift' for performing
* arithmetic right shifts on "negative" MPNs.
*
* pre-conditions:
* - 0 < count < sn*GMP_NUMB_BITS
* - rn = sn - floor((count - 1) / GMP_NUMB_BITS)
* - sn > 0
*
* This variant is needed to operate on MPNs interpreted as negative
* numbers, which require "rounding" towards minus infinity iff a
* non-zero bit is shifted out.
*/
mp_limb_t
integer_gmp_mpn_rshift_2c (mp_limb_t rp[], const mp_limb_t sp[],
const mp_size_t sn, const mp_bitcnt_t count)
{
const mp_size_t limb_shift = count / GMP_NUMB_BITS;
const unsigned int bit_shift = count % GMP_NUMB_BITS;
mp_size_t rn = sn - limb_shift;
// whether non-zero bits were shifted out
bool nz_shift_out = false;
if (bit_shift) {
if (mpn_rshift(rp, &sp[limb_shift], rn, bit_shift))
nz_shift_out = true;
} else {
// rp was allocated (rn + 1) limbs, to prevent carry
// on mpn_add_1 when all the bits of {rp, rn} are 1.
memset(&rp[rn], 0, sizeof(mp_limb_t));
memcpy(rp, &sp[limb_shift], rn*sizeof(mp_limb_t));
rn++;
}
if (!nz_shift_out)
for (unsigned i = 0; i < limb_shift; i++)
if (sp[i]) {
nz_shift_out = true;
break;
}
// round if non-zero bits were shifted out
if (nz_shift_out)
if (mpn_add_1(rp, rp, rn, 1))
abort(); /* should never happen */
return rp[rn-1];
}
/* Perform left-shift operation on MPN
*
* pre-conditions:
* - 0 < count
* - rn = sn + ceil(count / GMP_NUMB_BITS)
* - sn > 0
*
* return value: most-significant limb stored in {rp,rn} result
*/
mp_limb_t
integer_gmp_mpn_lshift (mp_limb_t rp[], const mp_limb_t sp[],
const mp_size_t sn, const mp_bitcnt_t count)
{
const mp_size_t limb_shift = count / GMP_NUMB_BITS;
const unsigned int bit_shift = count % GMP_NUMB_BITS;
const mp_size_t rn0 = sn + limb_shift;
memset(rp, 0, limb_shift*sizeof(mp_limb_t));
if (bit_shift) {
const mp_limb_t msl = mpn_lshift(&rp[limb_shift], sp, sn, bit_shift);
rp[rn0] = msl;
return msl;
} else {
memcpy(&rp[limb_shift], sp, sn*sizeof(mp_limb_t));
return rp[rn0-1];
}
}
/* Convert bignum to a `double`, truncating if necessary
* (i.e. rounding towards zero).
*
* sign of mp_size_t argument controls sign of converted double
*/
HsDouble
integer_gmp_mpn_get_d (const mp_limb_t sp[], const mp_size_t sn,
const HsInt exponent)
{
if (mp_limb_zero_p(sp, sn))
return 0.0;
const mpz_t mpz = CONST_MPZ_INIT(sp, sn);
if (!exponent)
return mpz_get_d(mpz);
long e = 0;
double d = mpz_get_d_2exp (&e, mpz);
// TODO: over/underflow handling?
return ldexp(d, e+exponent);
}
mp_limb_t
integer_gmp_gcd_word(const mp_limb_t x, const mp_limb_t y)
{
if (!x) return y;
if (!y) return x;
return mpn_gcd_1(&x, 1, y);
}
mp_limb_t
integer_gmp_mpn_gcd_1(const mp_limb_t x[], const mp_size_t xn,
const mp_limb_t y)
{
assert (xn > 0);
assert (xn == 1 || y != 0);
if (xn == 1)
return integer_gmp_gcd_word(x[0], y);
return mpn_gcd_1(x, xn, y);
}
mp_size_t
integer_gmp_mpn_gcd(mp_limb_t r[],
const mp_limb_t x0[], const mp_size_t xn,
const mp_limb_t y0[], const mp_size_t yn)
{
assert (xn >= yn);
assert (yn > 0);
assert (xn == yn || yn > 1 || y0[0] != 0);
/* post-condition: rn <= xn */
if (yn == 1) {
if (y0[0]) {
r[0] = integer_gmp_mpn_gcd_1(x0, xn, y0[0]);
return 1;
} else { /* {y0,yn} == 0 */
assert (xn==yn); /* NB: redundant assertion */
memcpy(r, x0, xn*sizeof(mp_limb_t));
return xn;
}
} else {
// mpn_gcd() seems to require non-trivial normalization of its
// input arguments (which does not seem to be documented anywhere,
// see source of mpz_gcd() for more details), so we resort to just
// use mpz_gcd() which does the tiresome normalization for us at
// the cost of a few additional temporary buffer allocations in
// C-land.
const mpz_t op1 = CONST_MPZ_INIT(x0, xn);
const mpz_t op2 = CONST_MPZ_INIT(y0, yn);
mpz_t rop;
mpz_init (rop);
mpz_gcd(rop, op1, op2);
const mp_size_t rn = rop[0]._mp_size;
assert(rn > 0);
assert(rn <= xn);
/* the allocation/memcpy of the result can be neglectable since
mpz_gcd() already has to allocate other temporary buffers
anyway */
memcpy(r, rop[0]._mp_d, rn*sizeof(mp_limb_t));
mpz_clear(rop);
return rn;
}
}
/* wraps mpz_gcdext()
*
* Set g to the greatest common divisor of x and y, and in addition
* set s and t to coefficients satisfying x*s + y*t = g.
*
* The {gp,gn} array is zero-padded (as otherwise 'gn' can't be
* reconstructed).
*
* g must have space for exactly gn=min(xn,yn) limbs.
* s must have space for at least xn limbs.
*
* return value: signed 'sn' of {sp,sn}
*/
mp_size_t
integer_gmp_gcdext(mp_limb_t s0[], mp_limb_t g0[],
const mp_limb_t x0[], const mp_size_t xn,
const mp_limb_t y0[], const mp_size_t yn)
{
const mp_size_t gn0 = mp_size_minabs(xn, yn);
const mpz_t x = CONST_MPZ_INIT(x0, mp_limb_zero_p(x0,xn) ? 0 : xn);
const mpz_t y = CONST_MPZ_INIT(y0, mp_limb_zero_p(y0,yn) ? 0 : yn);
mpz_t g, s;
mpz_init (g);
mpz_init (s);
mpz_gcdext (g, s, NULL, x, y);
const mp_size_t gn = g[0]._mp_size;
assert(0 <= gn && gn <= gn0);
memset(g0, 0, gn0*sizeof(mp_limb_t));
memcpy(g0, g[0]._mp_d, gn*sizeof(mp_limb_t));
mpz_clear (g);
const mp_size_t ssn = s[0]._mp_size;
const mp_size_t sn = mp_size_abs(ssn);
assert(sn <= mp_size_abs(xn));
memcpy(s0, s[0]._mp_d, sn*sizeof(mp_limb_t));
mpz_clear (s);
if (!sn) {
s0[0] = 0;
return 1;
}
return ssn;
}
/* Truncating (i.e. rounded towards zero) integer division-quotient of MPN */
void
integer_gmp_mpn_tdiv_q (mp_limb_t q[],
const mp_limb_t n[], const mp_size_t nn,
const mp_limb_t d[], const mp_size_t dn)
{
/* qn = 1+nn-dn; rn = dn */
assert(nn>=dn);
if (dn > 128) {
// Use temporary heap allocated throw-away buffer for MPNs larger
// than 1KiB for 64bit-sized limbs (larger than 512bytes for
// 32bit-sized limbs)
mp_limb_t *const r = malloc(dn*sizeof(mp_limb_t));
mpn_tdiv_qr(q, r, 0, n, nn, d, dn);
free (r);
} else { // allocate smaller arrays on the stack
mp_limb_t r[dn];
mpn_tdiv_qr(q, r, 0, n, nn, d, dn);
}
}
/* Truncating (i.e. rounded towards zero) integer division-remainder of MPNs */
void
integer_gmp_mpn_tdiv_r (mp_limb_t r[],
const mp_limb_t n[], const mp_size_t nn,
const mp_limb_t d[], const mp_size_t dn)
{
/* qn = 1+nn-dn; rn = dn */
assert(nn>=dn);
const mp_size_t qn = 1+nn-dn;
if (qn > 128) {
// Use temporary heap allocated throw-away buffer for MPNs larger
// than 1KiB for 64bit-sized limbs (larger than 512bytes for
// 32bit-sized limbs)
mp_limb_t *const q = malloc(qn*sizeof(mp_limb_t));
mpn_tdiv_qr(q, r, 0, n, nn, d, dn);
free (q);
} else { // allocate smaller arrays on the stack
mp_limb_t q[qn];
mpn_tdiv_qr(q, r, 0, n, nn, d, dn);
}
}
/* Wraps GMP's 'mpz_sizeinbase()' function */
HsWord
integer_gmp_mpn_sizeinbase(const mp_limb_t s[], const mp_size_t sn,
const HsInt base)
{
assert (2 <= base && base <= 256);
if (mp_limb_zero_p(s,sn)) return 1;
const mpz_t zs = CONST_MPZ_INIT(s, sn);
return mpz_sizeinbase(zs, base);
}
/* Single-limb version of 'integer_gmp_mpn_sizeinbase()' */
HsWord
integer_gmp_mpn_sizeinbase1(const mp_limb_t s, const HsInt base)
{
return s ? integer_gmp_mpn_sizeinbase(&s, 1, base) : 1;
}
/* Wrapper around GMP's 'mpz_export()' function */
HsWord
integer_gmp_mpn_export(const mp_limb_t s[], const mp_size_t sn,
void *destptr, HsInt destofs, HsInt msbf)
{
/* TODO: implement w/o GMP, c.f. 'integer_gmp_mpn_import()' */
assert (msbf == 0 || msbf == 1);
if (mp_limb_zero_p(s,sn)) return 0;
const mpz_t zs = CONST_MPZ_INIT(s, sn);
size_t written = 0;
// mpz_export (void *rop, size_t *countp, int order, size_t size, int endian,
// size_t nails, const mpz_t op)
(void) mpz_export(((char *)destptr)+destofs, &written, !msbf ? -1 : 1,
/* size */ 1, /* endian */ 0, /* nails */ 0, zs);
return written;
}
/* Single-limb version of 'integer_gmp_mpn_export()' */
HsWord
integer_gmp_mpn_export1(const mp_limb_t s,
void *destptr, const HsInt destofs, const HsInt msbf)
{
/* TODO: implement w/o GMP */
return integer_gmp_mpn_export(&s, 1, destptr, destofs, msbf);
}
/* Import single limb from memory location
*
* We can't use GMP's 'mpz_import()'
*/
HsWord
integer_gmp_mpn_import1(const uint8_t *srcptr, const HsWord srcofs,
const HsWord srclen, const HsInt msbf)
{
assert (msbf == 0 || msbf == 1);
assert (srclen <= SIZEOF_HSWORD);
srcptr += srcofs;
HsWord result = 0;
if (msbf)
for (unsigned i = 0; i < srclen; ++i)
result |= (HsWord)srcptr[i] << ((srclen-i-1)*8);
else // lsbf
for (unsigned i = 0; i < srclen; ++i)
result |= (HsWord)srcptr[i] << (i*8);
return result;
}
/* import into mp_limb_t[] from memory location */
void
integer_gmp_mpn_import(mp_limb_t * restrict r, const uint8_t * restrict srcptr,
const HsWord srcofs, const HsWord srclen,
const HsInt msbf)
{
assert (msbf == 0 || msbf == 1);
srcptr += srcofs;
const unsigned limb_cnt_rem = srclen % SIZEOF_HSWORD;
const mp_size_t limb_cnt = srclen / SIZEOF_HSWORD;
if (msbf) {
if (limb_cnt_rem) { // partial limb
r[limb_cnt] = integer_gmp_mpn_import1(srcptr, 0, limb_cnt_rem, 1);
srcptr += limb_cnt_rem;
}
for (unsigned ri = 0; ri < limb_cnt; ++ri) {
r[limb_cnt-ri-1] = integer_gmp_mpn_import1(srcptr, 0, SIZEOF_HSWORD, 1);
srcptr += SIZEOF_HSWORD;
}
} else { // lsbf
for (unsigned ri = 0; ri < limb_cnt; ++ri) {
r[ri] = integer_gmp_mpn_import1(srcptr, 0, SIZEOF_HSWORD, 0);
srcptr += SIZEOF_HSWORD;
}
if (limb_cnt_rem) // partial limb
r[limb_cnt] = integer_gmp_mpn_import1(srcptr, 0, limb_cnt_rem, 0);
}
}
/* Scan for first non-zero byte starting at srcptr[srcofs], ending at
* srcptr[srcofs+srclen-1];
*
* If no non-zero byte found, returns srcofs+srclen; otherwise returns
* index of srcptr where first non-zero byte was found.
*/
HsWord
integer_gmp_scan_nzbyte(const uint8_t *srcptr,
const HsWord srcofs, const HsWord srclen)
{
// TODO: consider implementing this function in Haskell-land
srcptr += srcofs;
for (unsigned i = 0; i < srclen; ++i)
if (srcptr[i])
return srcofs+i;
return srcofs+srclen;
}
/* Reverse scan for non-zero byte
* starting at srcptr[srcofs+srclen-1], ending at srcptr[srcofs].
*
* Returns new length srclen1 such that srcptr[srcofs+i] == 0 for
* srclen1 <= i < srclen.
*/
HsWord
integer_gmp_rscan_nzbyte(const uint8_t *srcptr,
const HsWord srcofs, const HsWord srclen)
{
// TODO: consider implementing this function in Haskell-land
srcptr += srcofs;
for (unsigned i = srclen; i > 0; --i)
if (srcptr[i-1])
return i;
return 0;
}
/* wrapper around mpz_probab_prime_p */
HsInt
integer_gmp_test_prime(const mp_limb_t s[], const mp_size_t sn, const HsInt rep)
{
if (mp_limb_zero_p(s,sn)) return 0;
const mpz_t sz = CONST_MPZ_INIT(s, sn);
// int mpz_probab_prime_p (const mpz_t n, int reps)
return mpz_probab_prime_p(sz, rep);
}
/* wrapper around mpz_probab_prime_p */
HsInt
integer_gmp_test_prime1(const mp_limb_t limb, const HsInt rep)
{
if (!limb) return 0;
return integer_gmp_test_prime(&limb, 1, rep);
}
/* wrapper around mpz_nextprime()
*
* Stores next prime (relative to {sp,sn}) in {rp,sn}.
* Return value is most significant limb of {rp,sn+1}.
*/
mp_limb_t
integer_gmp_next_prime(mp_limb_t rp[], const mp_limb_t sp[],
const mp_size_t sn)
{
assert (sn>=0);
if (!sn) return 2;
if (sn == 1 && sp[0] < 2) {
rp[0] = 2;
return 0;
}
const mpz_t op = CONST_MPZ_INIT(sp, sn);
mpz_t rop;
mpz_init (rop);
mpz_nextprime (rop, op);
const mp_size_t rn = rop[0]._mp_size;
// copy result into {rp,sn} buffer
assert (rn == sn || rn == sn+1);
memcpy(rp, rop[0]._mp_d, sn*sizeof(mp_limb_t));
const mp_limb_t result = rn>sn ? rop[0]._mp_d[sn] : 0;
mpz_clear (rop);
return result;
}
/* wrapper around mpz_nextprime()
*
* returns next prime modulo 2^GMP_LIMB_BITS
*/
mp_limb_t
integer_gmp_next_prime1(const mp_limb_t limb)
{
if (limb < 2) return 2;
const mpz_t op = CONST_MPZ_INIT(&limb, 1);
mpz_t rop;
mpz_init (rop);
mpz_nextprime (rop, op);
assert (rop[0]._mp_size > 0);
const mp_limb_t result = rop[0]._mp_d[0];
mpz_clear (rop);
return result;
}
/* wrapper around mpz_powm()
*
* Store '(B^E) mod M' in {rp,rn}
*
* rp must have allocated mn limbs; This function's return value is
* the actual number rn (0 < rn <= mn) of limbs written to the rp limb-array.
*
* bn and en are allowed to be negative to denote negative numbers
*/
mp_size_t
integer_gmp_powm(mp_limb_t rp[], // result
const mp_limb_t bp[], const mp_size_t bn, // base
const mp_limb_t ep[], const mp_size_t en, // exponent
const mp_limb_t mp[], const mp_size_t mn) // mod
{
assert(!mp_limb_zero_p(mp,mn));
if ((mn == 1 || mn == -1) && mp[0] == 1) {
rp[0] = 0;
return 1;
}
if (mp_limb_zero_p(ep,en)) {
rp[0] = 1;
return 1;
}
const mpz_t b = CONST_MPZ_INIT(bp, mp_limb_zero_p(bp,bn) ? 0 : bn);
const mpz_t e = CONST_MPZ_INIT(ep, mp_limb_zero_p(ep,en) ? 0 : en);
const mpz_t m = CONST_MPZ_INIT(mp, mn);
mpz_t r;
mpz_init (r);
mpz_powm(r, b, e, m);
const mp_size_t rn = r[0]._mp_size;
if (rn) {
assert(0 < rn && rn <= mn);
memcpy(rp, r[0]._mp_d, rn*sizeof(mp_limb_t));
}
mpz_clear (r);
if (!rn) {
rp[0] = 0;
return 1;
}
return rn;
}
/* version of integer_gmp_powm() for single-limb moduli */
mp_limb_t
integer_gmp_powm1(const mp_limb_t bp[], const mp_size_t bn, // base
const mp_limb_t ep[], const mp_size_t en, // exponent
const mp_limb_t m0) // mod
{
assert(m0);
if (m0==1) return 0;
if (mp_limb_zero_p(ep,en)) return 1;
const mpz_t b = CONST_MPZ_INIT(bp, mp_limb_zero_p(bp,bn) ? 0 : bn);
const mpz_t e = CONST_MPZ_INIT(ep, en);
const mpz_t m = CONST_MPZ_INIT(&m0, !!m0);
mpz_t r;
mpz_init (r);
mpz_powm(r, b, e, m);
assert(r[0]._mp_size == 0 || r[0]._mp_size == 1);
const mp_limb_t result = r[0]._mp_size ? r[0]._mp_d[0] : 0;
mpz_clear (r);
return result;
}
/* version of integer_gmp_powm() for single-limb arguments */
mp_limb_t
integer_gmp_powm_word(const mp_limb_t b0, // base
const mp_limb_t e0, // exponent
const mp_limb_t m0) // mod
{
return integer_gmp_powm1(&b0, !!b0, &e0, !!e0, m0);
}
/* wrapper around mpz_invert()
*
* Store '(1/X) mod abs(M)' in {rp,rn}
*
* rp must have allocated mn limbs; This function's return value is
* the actual number rn (0 < rn <= mn) of limbs written to the rp limb-array.
*
* Returns 0 if inverse does not exist.
*/
mp_size_t
integer_gmp_invert(mp_limb_t rp[], // result
const mp_limb_t xp[], const mp_size_t xn, // base
const mp_limb_t mp[], const mp_size_t mn) // mod
{
if (mp_limb_zero_p(xp,xn)
|| mp_limb_zero_p(mp,mn)
|| ((mn == 1 || mn == -1) && mp[0] == 1)) {
rp[0] = 0;
return 1;
}
const mpz_t x = CONST_MPZ_INIT(xp, xn);
const mpz_t m = CONST_MPZ_INIT(mp, mn);
mpz_t r;
mpz_init (r);
const int inv_exists = mpz_invert(r, x, m);
const mp_size_t rn = inv_exists ? r[0]._mp_size : 0;
if (rn) {
assert(0 < rn && rn <= mn);
memcpy(rp, r[0]._mp_d, rn*sizeof(mp_limb_t));
}
mpz_clear (r);
if (!rn) {
rp[0] = 0;
return 1;
}
return rn;
}
/* Version of integer_gmp_invert() operating on single limbs */
mp_limb_t
integer_gmp_invert_word(const mp_limb_t x0, const mp_limb_t m0)
{
if (!x0 || m0<=1) return 0;
if (x0 == 1) return 1;
const mpz_t x = CONST_MPZ_INIT(&x0, 1);
const mpz_t m = CONST_MPZ_INIT(&m0, 1);
mpz_t r;
mpz_init (r);
const int inv_exists = mpz_invert(r, x, m);
const mp_size_t rn = inv_exists ? r[0]._mp_size : 0;
assert (rn == 0 || rn == 1);
const mp_limb_t r0 = rn ? r[0]._mp_d[0] : 0;
mpz_clear (r);
return r0;
}
/* Wrappers for GMP 4.x compat
*
* In GMP 5.0 the following operations were added:
*
* mpn_sqr, mpn_and_n, mpn_ior_n, mpn_xor_n, mpn_nand_n, mpn_nior_n,
* mpn_xnor_n, mpn_andn_n, mpn_iorn_n, mpn_com, mpn_neg, mpn_copyi,
* mpn_copyd, mpn_zero
*
* We use some of those, but for GMP 4.x compatibility we need to
* emulate those (while incurring some overhead).
*/
#if __GNU_MP_VERSION < 5
#define MPN_LOGIC_OP_WRAPPER(MPN_WRAPPER, MPZ_OP) \
void \
MPN_WRAPPER(mp_limb_t *rp, const mp_limb_t *s1p, \
const mp_limb_t *s2p, mp_size_t n) \
{ \
assert(n > 0); \
\
const mpz_t s1 = CONST_MPZ_INIT(s1p, n); \
const mpz_t s2 = CONST_MPZ_INIT(s2p, n); \
\
mpz_t r; \
mpz_init (r); \
MPZ_OP (r, s1, s2); \
\
const mp_size_t rn = r[0]._mp_size; \
memset (rp, 0, n*sizeof(mp_limb_t)); \
memcpy (rp, r[0]._mp_d, mp_size_minabs(rn,n)*sizeof(mp_limb_t)); \
\
mpz_clear (r); \
}
static void
__mpz_andn(mpz_t r, const mpz_t s1, const mpz_t s2)
{
mpz_t s2c;
mpz_init (s2c);
mpz_com (s2c, s2);
mpz_and (r, s1, s2c);
mpz_clear (s2c);
}
MPN_LOGIC_OP_WRAPPER(integer_gmp_mpn_and_n, mpz_and)
MPN_LOGIC_OP_WRAPPER(integer_gmp_mpn_andn_n, __mpz_andn)
MPN_LOGIC_OP_WRAPPER(integer_gmp_mpn_ior_n, mpz_ior)
MPN_LOGIC_OP_WRAPPER(integer_gmp_mpn_xor_n, mpz_xor)
#else /* __GNU_MP_VERSION >= 5 */
void
integer_gmp_mpn_and_n(mp_limb_t *rp, const mp_limb_t *s1p,
const mp_limb_t *s2p, mp_size_t n)
{
mpn_and_n(rp, s1p, s2p, n);
}
void
integer_gmp_mpn_andn_n(mp_limb_t *rp, const mp_limb_t *s1p,
const mp_limb_t *s2p, mp_size_t n)
{
mpn_andn_n(rp, s1p, s2p, n);
}
void
integer_gmp_mpn_ior_n(mp_limb_t *rp, const mp_limb_t *s1p,
const mp_limb_t *s2p, mp_size_t n)
{
mpn_ior_n(rp, s1p, s2p, n);
}
void
integer_gmp_mpn_xor_n(mp_limb_t *rp, const mp_limb_t *s1p,
const mp_limb_t *s2p, mp_size_t n)
{
mpn_xor_n(rp, s1p, s2p, n);
}
#endif
|