summaryrefslogtreecommitdiff
path: root/libraries/integer-simple/GHC/Integer/Type.hs
blob: ed844f4efab905c7990874bffd8795218ef61b6c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981

{-# LANGUAGE CPP, MagicHash, NoImplicitPrelude, BangPatterns, UnboxedTuples,
             UnliftedFFITypes #-}

-- Commentary of Integer library is located on the wiki:
-- http://ghc.haskell.org/trac/ghc/wiki/Commentary/Libraries/Integer
--
-- It gives an in-depth description of implementation details and
-- decisions.

-----------------------------------------------------------------------------
-- |
-- Module      :  GHC.Integer.Type
-- Copyright   :  (c) Ian Lynagh 2007-2012
-- License     :  BSD3
--
-- Maintainer  :  igloo@earth.li
-- Stability   :  internal
-- Portability :  non-portable (GHC Extensions)
--
-- A simple definition of the 'Integer' type.
--
-----------------------------------------------------------------------------

#include "MachDeps.h"

module GHC.Integer.Type where

import GHC.Prim
import GHC.Classes
import GHC.Types
import GHC.Tuple ()
#if WORD_SIZE_IN_BITS < 64
import GHC.IntWord64
#endif

data Integer = Positive !Positive | Negative !Positive | Naught

-------------------------------------------------------------------
-- The hard work is done on positive numbers

-- Least significant bit is first

-- Positive's have the property that they contain at least one Bit,
-- and their last Bit is One.
type Positive = Digits
type Positives = List Positive

data Digits = Some !Digit !Digits
            | None
type Digit = Word#

-- XXX Could move [] above us
data List a = Nil | Cons a (List a)

mkInteger :: Bool   -- non-negative?
          -> [Int]  -- absolute value in 31 bit chunks, least significant first
                    -- ideally these would be Words rather than Ints, but
                    -- we don't have Word available at the moment.
          -> Integer
mkInteger nonNegative is = let abs = f is
                           in if nonNegative then abs else negateInteger abs
    where f [] = Naught
          f (I# i : is') = smallInteger i `orInteger` shiftLInteger (f is') 31#

errorInteger :: Integer
errorInteger = Positive errorPositive

errorPositive :: Positive
errorPositive = Some 47## None -- Random number

{-# NOINLINE smallInteger #-}
smallInteger :: Int# -> Integer
smallInteger i = if isTrue# (i >=# 0#) then wordToInteger (int2Word# i)
                 else -- XXX is this right for -minBound?
                      negateInteger (wordToInteger (int2Word# (negateInt# i)))

{-# NOINLINE wordToInteger #-}
wordToInteger :: Word# -> Integer
wordToInteger w = if isTrue# (w `eqWord#` 0##)
                  then Naught
                  else Positive (Some w None)

{-# NOINLINE integerToWord #-}
integerToWord :: Integer -> Word#
integerToWord (Positive (Some w _)) = w
integerToWord (Negative (Some w _)) = 0## `minusWord#` w
-- Must be Naught by the invariant:
integerToWord _ = 0##

{-# NOINLINE integerToInt #-}
integerToInt :: Integer -> Int#
integerToInt i = word2Int# (integerToWord i)

#if WORD_SIZE_IN_BITS == 64
-- Nothing
#elif WORD_SIZE_IN_BITS == 32
{-# NOINLINE integerToWord64 #-}
integerToWord64 :: Integer -> Word64#
integerToWord64 i = int64ToWord64# (integerToInt64 i)

{-# NOINLINE word64ToInteger #-}
word64ToInteger:: Word64# -> Integer
word64ToInteger w = if isTrue# (w `eqWord64#` wordToWord64# 0##)
                    then Naught
                    else Positive (word64ToPositive w)

{-# NOINLINE integerToInt64 #-}
integerToInt64 :: Integer -> Int64#
integerToInt64 Naught = intToInt64# 0#
integerToInt64 (Positive p) = word64ToInt64# (positiveToWord64 p)
integerToInt64 (Negative p)
    = negateInt64# (word64ToInt64# (positiveToWord64 p))

{-# NOINLINE int64ToInteger #-}
int64ToInteger :: Int64# -> Integer
int64ToInteger i
 = if isTrue# (i `eqInt64#` intToInt64# 0#)
   then Naught
   else if isTrue# (i `gtInt64#` intToInt64# 0#)
   then Positive (word64ToPositive (int64ToWord64# i))
   else Negative (word64ToPositive (int64ToWord64# (negateInt64# i)))
#else
#error WORD_SIZE_IN_BITS not supported
#endif

oneInteger :: Integer
oneInteger = Positive onePositive

negativeOneInteger :: Integer
negativeOneInteger = Negative onePositive

twoToTheThirtytwoInteger :: Integer
twoToTheThirtytwoInteger = Positive twoToTheThirtytwoPositive

{-# NOINLINE encodeDoubleInteger #-}
encodeDoubleInteger :: Integer -> Int# -> Double#
encodeDoubleInteger (Positive ds0) e0 = f 0.0## ds0 e0
    where f !acc None        (!_) = acc
          f !acc (Some d ds) !e   = f (acc +## encodeDouble# d e)
                                      ds
                                      -- XXX We assume that this adding to e
                                      -- isn't going to overflow
                                      (e +# WORD_SIZE_IN_BITS#)
encodeDoubleInteger (Negative ds) e
    = negateDouble# (encodeDoubleInteger (Positive ds) e)
encodeDoubleInteger Naught _ = 0.0##

foreign import ccall unsafe "__word_encodeDouble"
        encodeDouble# :: Word# -> Int# -> Double#

{-# NOINLINE encodeFloatInteger #-}
encodeFloatInteger :: Integer -> Int# -> Float#
encodeFloatInteger (Positive ds0) e0 = f 0.0# ds0 e0
    where f !acc None        (!_) = acc
          f !acc (Some d ds) !e   = f (acc `plusFloat#` encodeFloat# d e)
                                      ds
                                      -- XXX We assume that this adding to e
                                      -- isn't going to overflow
                                      (e +# WORD_SIZE_IN_BITS#)
encodeFloatInteger (Negative ds) e
    = negateFloat# (encodeFloatInteger (Positive ds) e)
encodeFloatInteger Naught _ = 0.0#

foreign import ccall unsafe "__word_encodeFloat"
    encodeFloat# :: Word# -> Int# -> Float#

{-# NOINLINE decodeFloatInteger #-}
decodeFloatInteger :: Float# -> (# Integer, Int# #)
decodeFloatInteger f = case decodeFloat_Int# f of
                       (# mant, exp #) -> (# smallInteger mant, exp #)

-- XXX This could be optimised better, by either (word-size dependent)
-- using single 64bit value for the mantissa, or doing the multiplication
-- by just building the Digits directly
{-# NOINLINE decodeDoubleInteger #-}
decodeDoubleInteger :: Double# -> (# Integer, Int# #)
decodeDoubleInteger d
 = case decodeDouble_2Int# d of
   (# mantSign, mantHigh, mantLow, exp #) ->
       (# (smallInteger mantSign) `timesInteger`
          (  (wordToInteger mantHigh `timesInteger` twoToTheThirtytwoInteger)
             `plusInteger` wordToInteger mantLow),
          exp #)

{-# NOINLINE doubleFromInteger #-}
doubleFromInteger :: Integer -> Double#
doubleFromInteger Naught = 0.0##
doubleFromInteger (Positive p) = doubleFromPositive p
doubleFromInteger (Negative p) = negateDouble# (doubleFromPositive p)

{-# NOINLINE floatFromInteger #-}
floatFromInteger :: Integer -> Float#
floatFromInteger Naught = 0.0#
floatFromInteger (Positive p) = floatFromPositive p
floatFromInteger (Negative p) = negateFloat# (floatFromPositive p)

{-# NOINLINE andInteger #-}
andInteger :: Integer -> Integer -> Integer
Naught     `andInteger` (!_)       = Naught
(!_)       `andInteger` Naught     = Naught
Positive x `andInteger` Positive y = digitsToInteger (x `andDigits` y)
{-
To calculate x & -y we need to calculate
    x & twosComplement y
The (imaginary) sign bits are 0 and 1, so &ing them give 0, i.e. positive.
Note that
    twosComplement y
has infinitely many 1s, but x has a finite number of digits, so andDigits
will return a finite result.
-}
Positive x `andInteger` Negative y = let y' = twosComplementPositive y
                                         z = y' `andDigitsOnes` x
                                     in digitsToInteger z
Negative x `andInteger` Positive y = Positive y `andInteger` Negative x
{-
To calculate -x & -y, naively we need to calculate
    twosComplement (twosComplement x & twosComplement y)
but
    twosComplement x & twosComplement y
has infinitely many 1s, so this won't work. Thus we use de Morgan's law
to get
    -x & -y = !(!(-x) | !(-y))
            = !(!(twosComplement x) | !(twosComplement y))
            = !(!(!x + 1) | (!y + 1))
            = !((x - 1) | (y - 1))
but the result is negative, so we need to take the two's complement of
this in order to get the magnitude of the result.
    twosComplement !((x - 1) | (y - 1))
            = !(!((x - 1) | (y - 1))) + 1
            = ((x - 1) | (y - 1)) + 1
-}
-- We don't know that x and y are /strictly/ greater than 1, but
-- minusPositive gives us the required answer anyway.
Negative x `andInteger` Negative y = let x' = x `minusPositive` onePositive
                                         y' = y `minusPositive` onePositive
                                         z = x' `orDigits` y'
                                         -- XXX Cheating the precondition:
                                         z' = succPositive z
                                     in digitsToNegativeInteger z'

{-# NOINLINE orInteger #-}
orInteger :: Integer -> Integer -> Integer
Naught     `orInteger` (!i)       = i
(!i)       `orInteger` Naught     = i
Positive x `orInteger` Positive y = Positive (x `orDigits` y)
{-
x | -y = - (twosComplement (x | twosComplement y))
       = - (twosComplement !(!x & !(twosComplement y)))
       = - (twosComplement !(!x & !(!y + 1)))
       = - (twosComplement !(!x & (y - 1)))
       = - ((!x & (y - 1)) + 1)
-}
Positive x `orInteger` Negative y = let x' = flipBits x
                                        y' = y `minusPositive` onePositive
                                        z = x' `andDigitsOnes` y'
                                        z' = succPositive z
                                    in digitsToNegativeInteger z'
Negative x `orInteger` Positive y = Positive y `orInteger` Negative x
{-
-x | -y = - (twosComplement (twosComplement x | twosComplement y))
        = - (twosComplement !(!(twosComplement x) & !(twosComplement y)))
        = - (twosComplement !(!(!x + 1) & !(!y + 1)))
        = - (twosComplement !((x - 1) & (y - 1)))
        = - (((x - 1) & (y - 1)) + 1)
-}
Negative x `orInteger` Negative y = let x' = x `minusPositive` onePositive
                                        y' = y `minusPositive` onePositive
                                        z = x' `andDigits` y'
                                        z' = succPositive z
                                    in digitsToNegativeInteger z'

{-# NOINLINE xorInteger #-}
xorInteger :: Integer -> Integer -> Integer
Naught     `xorInteger` (!i)       = i
(!i)       `xorInteger` Naught     = i
Positive x `xorInteger` Positive y = digitsToInteger (x `xorDigits` y)
{-
x ^ -y = - (twosComplement (x ^ twosComplement y))
       = - (twosComplement !(x ^ !(twosComplement y)))
       = - (twosComplement !(x ^ !(!y + 1)))
       = - (twosComplement !(x ^ (y - 1)))
       = - ((x ^ (y - 1)) + 1)
-}
Positive x `xorInteger` Negative y = let y' = y `minusPositive` onePositive
                                         z = x `xorDigits` y'
                                         z' = succPositive z
                                     in digitsToNegativeInteger z'
Negative x `xorInteger` Positive y = Positive y `xorInteger` Negative x
{-
-x ^ -y = twosComplement x ^ twosComplement y
        = (!x + 1) ^ (!y + 1)
        = (!x + 1) ^ (!y + 1)
        = !(!x + 1) ^ !(!y + 1)
        = (x - 1) ^ (y - 1)
-}
Negative x `xorInteger` Negative y = let x' = x `minusPositive` onePositive
                                         y' = y `minusPositive` onePositive
                                         z = x' `xorDigits` y'
                                     in digitsToInteger z

{-# NOINLINE complementInteger #-}
complementInteger :: Integer -> Integer
complementInteger x = negativeOneInteger `minusInteger` x

{-# NOINLINE shiftLInteger #-}
shiftLInteger :: Integer -> Int# -> Integer
shiftLInteger (Positive p) i = Positive (shiftLPositive p i)
shiftLInteger (Negative n) i = Negative (shiftLPositive n i)
shiftLInteger Naught       _ = Naught

{-# NOINLINE shiftRInteger #-}
shiftRInteger :: Integer -> Int# -> Integer
shiftRInteger (Positive p)   i = shiftRPositive p i
shiftRInteger j@(Negative _) i
    = complementInteger (shiftRInteger (complementInteger j) i)
shiftRInteger Naught         _ = Naught

{-# NOINLINE popCountInteger #-}
popCountInteger :: Integer -> Int#
popCountInteger (Positive p) = popCountPositive p
popCountInteger Naught       = 0#
popCountInteger (Negative n) = negateInt# (popCountPositive n)

popCountPositive :: Positive -> Int#
popCountPositive p = word2Int# (go 0## p)
  where
  go :: Word# -> Positive -> Word#
  go acc# None = acc#
  go acc# (Some d ds) = go (popCnt# d `plusWord#` acc#) ds

-- | 'Integer' for which only /n/-th bit is set. Undefined behaviour
-- for negative /n/ values.
bitInteger :: Int# -> Integer
bitInteger i# = if isTrue# (i# <# 0#)
                then Naught
                else Positive (bitPositive i#)

-- Assumes 0 <= i
bitPositive :: Int# -> Positive
bitPositive i#
    = if isTrue# (i# >=# WORD_SIZE_IN_BITS#)
      then Some 0## (bitPositive (i# -# WORD_SIZE_IN_BITS#))
      else Some (uncheckedShiftL# 1## i#) None

testBitInteger :: Integer -> Int# -> Bool
testBitInteger (!_) i# | isTrue# (i# <# 0#) = False
testBitInteger Naught       _  = False
testBitInteger (Positive p) i# = isTrue# (testBitPositive p i#)
  where
  -- Straightforward decrement of 'j#' by the word size stopping when
  -- 'j#' is less than the word size or the number runs out.
  testBitPositive :: Positive -> Int# -> Int#
  testBitPositive None          _ = 0#
  testBitPositive (Some w# ws)  j#
    = if isTrue# (j# >=# WORD_SIZE_IN_BITS#)
      then testBitPositive ws (j# -# WORD_SIZE_IN_BITS#)
      else neWord# (uncheckedShiftL# 1## j# `and#` w#) 0##
testBitInteger (Negative n) i# = isTrue# (testBitNegative n i#)
  where
  -- For negative numbers, we want to inspect the correct bit of the two's
  -- complement. Like for positive numbers, we walk down the words until
  -- 'j#' is less than the word size (or the number runs out).
  testBitNegative :: Positive -> Int# -> Int#
  testBitNegative (Some 0## ws) j#
    -- If the number starts (on the low end) with a bunch of '0##' and 'j#'
    -- falls in those, we know that @n - 1@ would have flipped all those
    -- bits, so @!(n - 1) & i@ is false.
    = if isTrue# (j# >=# WORD_SIZE_IN_BITS#)
      then testBitNegative ws (j# -# WORD_SIZE_IN_BITS#)
      else 1#
  testBitNegative (Some w# ws) j#
    -- Yet, as soon as we find something that isn't a '0##', we can subtract
    -- and forget about the 1 altogether!
    = testBitNegativeMinus1 (Some (w# `minusWord#` 1##) ws) j#
  testBitNegative None _ = 0# -- XXX Can't happen due to Positive's invariant

  testBitNegativeMinus1 :: Positive -> Int# -> Int#
  testBitNegativeMinus1 None         _ = 1#
  testBitNegativeMinus1 (Some w# ws) j#
    = if isTrue# (j# >=# WORD_SIZE_IN_BITS#)
      then testBitNegativeMinus1 ws (j# -# WORD_SIZE_IN_BITS#)
      else neWord# (uncheckedShiftL# 1## j# `and#` not# w#) 0##

twosComplementPositive :: Positive -> DigitsOnes
twosComplementPositive p = flipBits (p `minusPositive` onePositive)

flipBits :: Digits -> DigitsOnes
flipBits ds = DigitsOnes (flipBitsDigits ds)

flipBitsDigits :: Digits -> Digits
flipBitsDigits None = None
flipBitsDigits (Some w ws) = Some (not# w) (flipBitsDigits ws)

{-# NOINLINE negateInteger #-}
negateInteger :: Integer -> Integer
negateInteger (Positive p) = Negative p
negateInteger (Negative p) = Positive p
negateInteger Naught       = Naught

-- Note [Avoid patError]
{-# NOINLINE plusInteger #-}
plusInteger :: Integer -> Integer -> Integer
Positive p1    `plusInteger` Positive p2 = Positive (p1 `plusPositive` p2)
Negative p1    `plusInteger` Negative p2 = Negative (p1 `plusPositive` p2)
Positive p1    `plusInteger` Negative p2
    = case p1 `comparePositive` p2 of
      GT -> Positive (p1 `minusPositive` p2)
      EQ -> Naught
      LT -> Negative (p2 `minusPositive` p1)
Negative p1    `plusInteger` Positive p2
    = Positive p2 `plusInteger` Negative p1
Naught         `plusInteger` Naught         = Naught
Naught         `plusInteger` i@(Positive _) = i
Naught         `plusInteger` i@(Negative _) = i
i@(Positive _) `plusInteger` Naught         = i
i@(Negative _) `plusInteger` Naught         = i

{-# NOINLINE minusInteger #-}
minusInteger :: Integer -> Integer -> Integer
i1 `minusInteger` i2 = i1 `plusInteger` negateInteger i2

{-# NOINLINE timesInteger #-}
timesInteger :: Integer -> Integer -> Integer
Positive p1 `timesInteger` Positive p2 = Positive (p1 `timesPositive` p2)
Negative p1 `timesInteger` Negative p2 = Positive (p1 `timesPositive` p2)
Positive p1 `timesInteger` Negative p2 = Negative (p1 `timesPositive` p2)
Negative p1 `timesInteger` Positive p2 = Negative (p1 `timesPositive` p2)
(!_)        `timesInteger` (!_)        = Naught

{-# NOINLINE divModInteger #-}
divModInteger :: Integer -> Integer -> (# Integer, Integer #)
n `divModInteger` d =
    case n `quotRemInteger` d of
        (# q, r #) ->
            if signumInteger r `eqInteger`
               negateInteger (signumInteger d)
            then (# q `minusInteger` oneInteger, r `plusInteger` d #)
            else (# q, r #)

{-# NOINLINE divInteger #-}
divInteger :: Integer -> Integer -> Integer
n `divInteger` d = quotient
    where (# quotient, _ #) = n `divModInteger` d

{-# NOINLINE modInteger #-}
modInteger :: Integer -> Integer -> Integer
n `modInteger` d = modulus
    where (# _, modulus #) = n `divModInteger` d

{-# NOINLINE quotRemInteger #-}
quotRemInteger :: Integer -> Integer -> (# Integer, Integer #)
Naught      `quotRemInteger` (!_)        = (# Naught, Naught #)
(!_)        `quotRemInteger` Naught
    = (# errorInteger, errorInteger #) -- XXX Can't happen
-- XXX _            `quotRemInteger` Naught     = error "Division by zero"
Positive p1 `quotRemInteger` Positive p2 = p1 `quotRemPositive` p2
Negative p1 `quotRemInteger` Positive p2 = case p1 `quotRemPositive` p2 of
                                           (# q, r #) ->
                                               (# negateInteger q,
                                                  negateInteger r #)
Positive p1 `quotRemInteger` Negative p2 = case p1 `quotRemPositive` p2 of
                                           (# q, r #) ->
                                               (# negateInteger q, r #)
Negative p1 `quotRemInteger` Negative p2 = case p1 `quotRemPositive` p2 of
                                           (# q, r #) ->
                                               (# q, negateInteger r #)

{-# NOINLINE quotInteger #-}
quotInteger :: Integer -> Integer -> Integer
x `quotInteger` y = case x `quotRemInteger` y of
                    (# q, _ #) -> q

{-# NOINLINE remInteger #-}
remInteger :: Integer -> Integer -> Integer
x `remInteger` y = case x `quotRemInteger` y of
                   (# _, r #) -> r

{-# NOINLINE gcdInteger #-}
gcdInteger :: Integer -> Integer -> Integer
gcdInteger (Positive a) (Positive b) = Positive (gcdPositive a b)
gcdInteger (Positive a) (Negative b) = Positive (gcdPositive a b)
gcdInteger (Negative a) (Positive b) = Positive (gcdPositive a b)
gcdInteger (Negative a) (Negative b) = Positive (gcdPositive a b)
gcdInteger Naught                  b = absInteger b
gcdInteger a                  Naught = absInteger a

gcdPositive :: Positive -> Positive -> Positive
gcdPositive p1 p2 = case p1 `quotRemPositive` p2 of
                        (# _, Positive r #) -> gcdPositive p2 r
                        (# _, Naught     #) -> p2
                        (# _, Negative _ #) -> errorPositive -- XXX Can't happen


{-# NOINLINE lcmInteger #-}
lcmInteger :: Integer -> Integer -> Integer
lcmInteger (Positive a) (Positive b) = Positive (lcmPositive a b)
lcmInteger (Positive a) (Negative b) = Positive (lcmPositive a b)
lcmInteger (Negative a) (Positive b) = Positive (lcmPositive a b)
lcmInteger (Negative a) (Negative b) = Positive (lcmPositive a b)
lcmInteger Naught                  _ = Naught
lcmInteger _                  Naught = Naught

lcmPositive :: Positive -> Positive -> Positive
lcmPositive p1 p2 = case p1 `quotRemPositive` (p1 `gcdPositive` p2) of
                        (# Positive q, _ #) -> q `timesPositive` p2
                        (# _,          _ #) -> errorPositive -- XXX Can't happen


{-# NOINLINE compareInteger #-}
compareInteger :: Integer -> Integer -> Ordering
Positive x `compareInteger` Positive y = x `comparePositive` y
Positive _ `compareInteger` (!_)       = GT
Naught     `compareInteger` Naught     = EQ
Naught     `compareInteger` Negative _ = GT
Negative x `compareInteger` Negative y = y `comparePositive` x
(!_)       `compareInteger` (!_)       = LT

{-# NOINLINE eqInteger# #-}
eqInteger# :: Integer -> Integer -> Int#
x `eqInteger#` y = case x `compareInteger` y of
                        EQ -> 1#
                        _  -> 0#

{-# NOINLINE neqInteger# #-}
neqInteger# :: Integer -> Integer -> Int#
x `neqInteger#` y = case x `compareInteger` y of
                         EQ -> 0#
                         _  -> 1#

{-# INLINE eqInteger  #-}
{-# INLINE neqInteger #-}
eqInteger, neqInteger :: Integer -> Integer -> Bool
eqInteger  a b = isTrue# (a `eqInteger#`  b)
neqInteger a b = isTrue# (a `neqInteger#` b)

instance  Eq Integer  where
    (==) = eqInteger
    (/=) = neqInteger

{-# NOINLINE ltInteger# #-}
ltInteger# :: Integer -> Integer -> Int#
x `ltInteger#` y = case x `compareInteger` y of
                        LT -> 1#
                        _  -> 0#

{-# NOINLINE gtInteger# #-}
gtInteger# :: Integer -> Integer -> Int#
x `gtInteger#` y = case x `compareInteger` y of
                        GT -> 1#
                        _  -> 0#

{-# NOINLINE leInteger# #-}
leInteger# :: Integer -> Integer -> Int#
x `leInteger#` y = case x `compareInteger` y of
                        GT -> 0#
                        _  -> 1#

{-# NOINLINE geInteger# #-}
geInteger# :: Integer -> Integer -> Int#
x `geInteger#` y = case x `compareInteger` y of
                        LT -> 0#
                        _  -> 1#

{-# INLINE leInteger #-}
{-# INLINE ltInteger #-}
{-# INLINE geInteger #-}
{-# INLINE gtInteger #-}
leInteger, gtInteger, ltInteger, geInteger :: Integer -> Integer -> Bool
leInteger a b = isTrue# (a `leInteger#` b)
gtInteger a b = isTrue# (a `gtInteger#` b)
ltInteger a b = isTrue# (a `ltInteger#` b)
geInteger a b = isTrue# (a `geInteger#` b)

instance Ord Integer where
    (<=) = leInteger
    (>)  = gtInteger
    (<)  = ltInteger
    (>=) = geInteger
    compare = compareInteger

{-# NOINLINE absInteger #-}
absInteger :: Integer -> Integer
absInteger (Negative x) = Positive x
absInteger x = x

{-# NOINLINE signumInteger #-}
signumInteger :: Integer -> Integer
signumInteger (Negative _) = negativeOneInteger
signumInteger Naught       = Naught
signumInteger (Positive _) = oneInteger

{-# NOINLINE hashInteger #-}
hashInteger :: Integer -> Int#
hashInteger = integerToInt

-------------------------------------------------------------------
-- The hard work is done on positive numbers

onePositive :: Positive
onePositive = Some 1## None

halfBoundUp, fullBound :: () -> Digit
lowHalfMask :: () -> Digit
highHalfShift :: () -> Int#
twoToTheThirtytwoPositive :: Positive
#if WORD_SIZE_IN_BITS == 64
halfBoundUp   () = 0x8000000000000000##
fullBound     () = 0xFFFFFFFFFFFFFFFF##
lowHalfMask   () = 0xFFFFFFFF##
highHalfShift () = 32#
twoToTheThirtytwoPositive = Some 0x100000000## None
#elif WORD_SIZE_IN_BITS == 32
halfBoundUp   () = 0x80000000##
fullBound     () = 0xFFFFFFFF##
lowHalfMask   () = 0xFFFF##
highHalfShift () = 16#
twoToTheThirtytwoPositive = Some 0## (Some 1## None)
#else
#error Unhandled WORD_SIZE_IN_BITS
#endif

digitsMaybeZeroToInteger :: Digits -> Integer
digitsMaybeZeroToInteger None = Naught
digitsMaybeZeroToInteger ds = Positive ds

digitsToInteger :: Digits -> Integer
digitsToInteger ds = case removeZeroTails ds of
                     None -> Naught
                     ds' -> Positive ds'

digitsToNegativeInteger :: Digits -> Integer
digitsToNegativeInteger ds = case removeZeroTails ds of
                             None -> Naught
                             ds' -> Negative ds'

removeZeroTails :: Digits -> Digits
removeZeroTails (Some w ds) = if isTrue# (w `eqWord#` 0##)
                              then case removeZeroTails ds of
                                   None -> None
                                   ds' -> Some w ds'
                              else Some w (removeZeroTails ds)
removeZeroTails None = None

#if WORD_SIZE_IN_BITS < 64
word64ToPositive :: Word64# -> Positive
word64ToPositive w
 = if isTrue# (w `eqWord64#` wordToWord64# 0##)
   then None
   else Some (word64ToWord# w) (word64ToPositive (w `uncheckedShiftRL64#` 32#))

positiveToWord64 :: Positive -> Word64#
positiveToWord64 None = wordToWord64# 0## -- XXX Can't happen
positiveToWord64 (Some w None) = wordToWord64# w
positiveToWord64 (Some low (Some high _))
    = wordToWord64# low `or64#` (wordToWord64# high `uncheckedShiftL64#` 32#)
#endif

-- Note [Avoid patError]
comparePositive :: Positive -> Positive -> Ordering
Some x xs `comparePositive` Some y ys = case xs `comparePositive` ys of
                                        EQ ->      if isTrue# (x `ltWord#` y) then LT
                                              else if isTrue# (x `gtWord#` y) then GT
                                              else                                 EQ
                                        res -> res
None      `comparePositive` None      = EQ
(Some {}) `comparePositive` None      = GT
None      `comparePositive` (Some {}) = LT

plusPositive :: Positive -> Positive -> Positive
plusPositive x0 y0 = addWithCarry 0## x0 y0
 where -- digit `elem` [0, 1]
       -- Note [Avoid patError]
       addWithCarry :: Digit -> Positive -> Positive -> Positive
       addWithCarry c None            None            = addOnCarry c None
       addWithCarry c xs@(Some {})    None            = addOnCarry c xs
       addWithCarry c None            ys@(Some {})    = addOnCarry c ys
       addWithCarry c xs@(Some x xs') ys@(Some y ys')
        = if isTrue# (x `ltWord#` y) then addWithCarry c ys xs
          -- Now x >= y
          else if isTrue# (y `geWord#` halfBoundUp ())
               -- So they are both at least halfBoundUp, so we subtract
               -- halfBoundUp from each and thus carry 1
               then case x `minusWord#` halfBoundUp () of
                    x' ->
                     case y `minusWord#` halfBoundUp () of
                     y' ->
                      case x' `plusWord#` y' `plusWord#` c of
                      this ->
                       Some this withCarry
          else if isTrue# (x `geWord#` halfBoundUp ())
               then case x `minusWord#` halfBoundUp () of
                    x' ->
                     case x' `plusWord#` y `plusWord#` c of
                     z ->
                      -- We've taken off halfBoundUp, so now we need to
                      -- add it back on
                      if isTrue# (z `ltWord#` halfBoundUp ())
                       then Some (z `plusWord#`  halfBoundUp ()) withoutCarry
                       else Some (z `minusWord#` halfBoundUp ()) withCarry
          else Some (x `plusWord#` y `plusWord#` c) withoutCarry
           where withCarry    = addWithCarry 1## xs' ys'
                 withoutCarry = addWithCarry 0## xs' ys'

       -- digit `elem` [0, 1]
       addOnCarry :: Digit -> Positive -> Positive
       addOnCarry (!c) (!ws) = if isTrue# (c `eqWord#` 0##)
                               then ws
                               else succPositive ws

-- digit `elem` [0, 1]
succPositive :: Positive -> Positive
succPositive None = Some 1## None
succPositive (Some w ws) = if isTrue# (w `eqWord#` fullBound ())
                           then Some 0## (succPositive ws)
                           else Some (w `plusWord#` 1##) ws

-- Requires x > y
-- In recursive calls, x >= y and x == y => result is None
-- Note [Avoid patError]
minusPositive :: Positive -> Positive -> Positive
Some x xs `minusPositive` Some y ys
 = if isTrue# (x `eqWord#` y)
   then case xs `minusPositive` ys of
        None -> None
        s -> Some 0## s
   else if isTrue# (x `gtWord#` y) then
        Some (x `minusWord#` y) (xs `minusPositive` ys)
   else case (fullBound () `minusWord#` y) `plusWord#` 1## of
        z -> -- z = 2^n - y, calculated without overflow
         case z `plusWord#` x of
         z' -> -- z = 2^n + (x - y), calculated without overflow
          Some z' ((xs `minusPositive` ys) `minusPositive` onePositive)
xs@(Some {}) `minusPositive` None      = xs
None         `minusPositive` None      = None
None         `minusPositive` (Some {}) = errorPositive -- XXX Can't happen
-- XXX None `minusPositive` _ = error "minusPositive: Requirement x > y not met"

-- Note [Avoid patError]
timesPositive :: Positive -> Positive -> Positive
-- XXX None's can't happen here:
None            `timesPositive` None        = errorPositive
None            `timesPositive` (Some {})   = errorPositive
(Some {})       `timesPositive` None        = errorPositive
-- x and y are the last digits in Positive numbers, so are not 0:
xs@(Some x xs') `timesPositive` ys@(Some y ys')
 = case xs' of
   None ->
       case ys' of
           None ->
               x `timesDigit` y
           Some {} ->
               ys `timesPositive` xs
   Some {} ->
       case ys' of
       None ->
           -- y is the last digit in a Positive number, so is not 0.
           let zs = Some 0## (xs' `timesPositive` ys)
           in -- We could actually skip this test, and everything would
              -- turn out OK. We already play tricks like that in timesPositive.
              if isTrue# (x `eqWord#` 0##)
              then zs
              else (x `timesDigit` y) `plusPositive` zs
       Some {} ->
           (Some x None `timesPositive` ys) `plusPositive`
           Some 0## (xs' `timesPositive` ys)

{-
-- Requires arguments /= 0
Suppose we have 2n bits in a Word. Then
    x = 2^n xh + xl
    y = 2^n yh + yl
    x * y = (2^n xh + xl) * (2^n yh + yl)
          = 2^(2n) (xh yh)
          + 2^n    (xh yl)
          + 2^n    (xl yh)
          +        (xl yl)
                   ~~~~~~~ - all fit in 2n bits
-}
timesDigit :: Digit -> Digit -> Positive
timesDigit (!x) (!y)
 = case splitHalves x of
   (# xh, xl #) ->
    case splitHalves y of
    (# yh, yl #) ->
     case xh `timesWord#` yh of
     xhyh ->
      case splitHalves (xh `timesWord#` yl) of
      (# xhylh, xhyll #) ->
       case xhyll `uncheckedShiftL#` highHalfShift () of
       xhyll' ->
        case splitHalves (xl `timesWord#` yh) of
        (# xlyhh, xlyhl #) ->
         case xlyhl `uncheckedShiftL#` highHalfShift () of
         xlyhl' ->
          case xl `timesWord#` yl of
          xlyl ->
           -- Add up all the high word results. As the result fits in
           -- 4n bits this can't overflow.
           case xhyh `plusWord#` xhylh `plusWord#` xlyhh of
           high ->
           -- low: xhyll<<n + xlyhl<<n + xlyl
            -- From this point we might make (Some 0 None), but we know
            -- that the final result will be positive and the addition
            -- will work out OK, so everything will work out in the end.
            -- One thing we do need to be careful of is avoiding returning
            -- Some 0 (Some 0 None) + Some n None, as this will result in
            -- Some n (Some 0 None) instead of Some n None.
            let low = Some xhyll' None `plusPositive`
                      Some xlyhl' None `plusPositive`
                      Some xlyl   None
            in if isTrue# (high `eqWord#` 0##)
               then low
               else Some 0## (Some high None) `plusPositive` low

splitHalves :: Digit -> (# {- High -} Digit, {- Low -} Digit #)
splitHalves (!x) = (# x `uncheckedShiftRL#` highHalfShift (),
                      x `and#` lowHalfMask () #)

-- Assumes 0 <= i
shiftLPositive :: Positive -> Int# -> Positive
shiftLPositive p i
    = if isTrue# (i >=# WORD_SIZE_IN_BITS#)
      then shiftLPositive (Some 0## p) (i -# WORD_SIZE_IN_BITS#)
      else smallShiftLPositive p i

-- Assumes 0 <= i < WORD_SIZE_IN_BITS#
smallShiftLPositive :: Positive -> Int# -> Positive
smallShiftLPositive (!p) 0# = p
smallShiftLPositive (!p) (!i) =
    case WORD_SIZE_IN_BITS# -# i of
    j -> let f carry None = if isTrue# (carry `eqWord#` 0##)
                            then None
                            else Some carry None
             f carry (Some w ws) = case w `uncheckedShiftRL#` j of
                                   carry' ->
                                    case w `uncheckedShiftL#` i of
                                    me ->
                                     Some (me `or#` carry) (f carry' ws)
         in f 0## p

-- Assumes 0 <= i
shiftRPositive :: Positive -> Int# -> Integer
shiftRPositive None _ = Naught
shiftRPositive p@(Some _ q) i
    = if isTrue# (i >=# WORD_SIZE_IN_BITS#)
      then shiftRPositive q (i -# WORD_SIZE_IN_BITS#)
      else smallShiftRPositive p i

-- Assumes 0 <= i < WORD_SIZE_IN_BITS#
smallShiftRPositive :: Positive -> Int# -> Integer
smallShiftRPositive (!p) (!i) =
    if isTrue# (i ==# 0#)
    then Positive p
    else case smallShiftLPositive p (WORD_SIZE_IN_BITS# -# i) of
         Some _ p'@(Some _ _) -> Positive p'
         _                    -> Naught

-- Long division
quotRemPositive :: Positive -> Positive -> (# Integer, Integer #)
(!xs) `quotRemPositive` (!ys)
    = case f xs of
      (# d, m #) -> (# digitsMaybeZeroToInteger d,
                       digitsMaybeZeroToInteger m #)
    where
          subtractors :: Positives
          subtractors = mkSubtractors (WORD_SIZE_IN_BITS# -# 1#)

          mkSubtractors (!n) = if isTrue# (n ==# 0#)
                               then Cons ys Nil
                               else Cons (ys `smallShiftLPositive` n)
                                         (mkSubtractors (n -# 1#))

          -- The main function. Go the end of xs, then walk
          -- back trying to divide the number we accumulate by ys.
          f :: Positive -> (# Digits, Digits #)
          f None = (# None, None #)
          f (Some z zs)
              = case f zs of
                (# ds, m #) ->
                    let -- We need to avoid making (Some Zero None) here
                        m' = some z m
                    in case g 0## subtractors m' of
                       (# d, m'' #) ->
                        (# some d ds, m'' #)

          g :: Digit -> Positives -> Digits -> (# Digit, Digits #)
          g (!d) Nil             (!m) = (# d, m #)
          g (!d) (Cons sub subs) (!m)
              = case d `uncheckedShiftL#` 1# of
                d' ->
                 case m `comparePositive` sub of
                 LT -> g d' subs m
                 _  -> g (d' `plusWord#` 1##)
                         subs
                         (m `minusPositive` sub)

some :: Digit -> Digits -> Digits
some (!w) None  = if isTrue# (w `eqWord#` 0##) then None else Some w None
some (!w) (!ws) = Some w ws

-- Note [Avoid patError]
andDigits :: Digits -> Digits -> Digits
andDigits None          None          = None
andDigits (Some {})     None          = None
andDigits None          (Some {})     = None
andDigits (Some w1 ws1) (Some w2 ws2) = Some (w1 `and#` w2) (andDigits ws1 ws2)

-- DigitsOnes is just like Digits, only None is really 0xFFFFFFF...,
-- i.e. ones off to infinity. This makes sense when we want to "and"
-- a DigitOnes with a Digits, as the latter will bound the size of the
-- result.
newtype DigitsOnes = DigitsOnes Digits

-- Note [Avoid patError]
andDigitsOnes :: DigitsOnes -> Digits -> Digits
andDigitsOnes (DigitsOnes None)          None          = None
andDigitsOnes (DigitsOnes None)          ws2@(Some {}) = ws2
andDigitsOnes (DigitsOnes (Some {}))     None          = None
andDigitsOnes (DigitsOnes (Some w1 ws1)) (Some w2 ws2)
    = Some (w1 `and#` w2) (andDigitsOnes (DigitsOnes ws1) ws2)

-- Note [Avoid patError]
orDigits :: Digits -> Digits -> Digits
orDigits None          None          = None
orDigits None          ds@(Some {})  = ds
orDigits ds@(Some {})  None          = ds
orDigits (Some w1 ds1) (Some w2 ds2) = Some (w1 `or#` w2) (orDigits ds1 ds2)

-- Note [Avoid patError]
xorDigits :: Digits -> Digits -> Digits
xorDigits None          None          = None
xorDigits None          ds@(Some {})  = ds
xorDigits ds@(Some {})  None          = ds
xorDigits (Some w1 ds1) (Some w2 ds2) = Some (w1 `xor#` w2) (xorDigits ds1 ds2)

-- XXX We'd really like word2Double# for this
doubleFromPositive :: Positive -> Double#
doubleFromPositive None = 0.0##
doubleFromPositive (Some w ds)
    = case splitHalves w of
      (# h, l #) ->
       (doubleFromPositive ds *## (2.0## **## WORD_SIZE_IN_BITS_FLOAT##))
       +## (int2Double# (word2Int# h) *##
              (2.0## **## int2Double# (highHalfShift ())))
       +## int2Double# (word2Int# l)

-- XXX We'd really like word2Float# for this
floatFromPositive :: Positive -> Float#
floatFromPositive None = 0.0#
floatFromPositive (Some w ds)
    = case splitHalves w of
      (# h, l #) ->
       (floatFromPositive ds `timesFloat#` (2.0# `powerFloat#` WORD_SIZE_IN_BITS_FLOAT#))
       `plusFloat#` (int2Float# (word2Int# h) `timesFloat#`
             (2.0# `powerFloat#` int2Float# (highHalfShift ())))
       `plusFloat#` int2Float# (word2Int# l)

{-
Note [Avoid patError]

If we use the natural set of definitions for functions, e.g.:

    orDigits None          ds            = ds
    orDigits ds            None          = ds
    orDigits (Some w1 ds1) (Some w2 ds2) = Some ... ...

then GHC may not be smart enough (especially when compiling with -O0)
to see that all the cases are handled, and will thus insert calls to
base:Control.Exception.Base.patError. But we are below base in the
package hierarchy, so this causes build failure!

We therefore help GHC out, by being more explicit about what all the
cases are:

    orDigits None          None          = None
    orDigits None          ds@(Some {})  = ds
    orDigits ds@(Some {})  None          = ds
    orDigits (Some w1 ds1) (Some w2 ds2) = Some ... ...
-}