1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
|
-- |
-- Language.Haskell.TH.Lib contains lots of useful helper functions for
-- generating and manipulating Template Haskell terms
-- Note: this module mostly re-exports functions from
-- Language.Haskell.TH.Lib.Internal, but if a change occurs to Template
-- Haskell which requires breaking the API offered in this module, we opt to
-- copy the old definition here, and make the changes in
-- Language.Haskell.TH.Lib.Internal. This way, we can retain backwards
-- compatibility while still allowing GHC to make changes as it needs.
module Language.Haskell.TH.Lib (
-- All of the exports from this module should
-- be "public" functions. The main module TH
-- re-exports them all.
-- * Library functions
-- ** Abbreviations
InfoQ, ExpQ, TExpQ, DecQ, DecsQ, ConQ, TypeQ, KindQ, TyVarBndrQ,
TyLitQ, CxtQ, PredQ, DerivClauseQ, MatchQ, ClauseQ, BodyQ, GuardQ,
StmtQ, RangeQ, SourceStrictnessQ, SourceUnpackednessQ, BangQ,
BangTypeQ, VarBangTypeQ, StrictTypeQ, VarStrictTypeQ, FieldExpQ, PatQ,
FieldPatQ, RuleBndrQ, TySynEqnQ, PatSynDirQ, PatSynArgsQ,
FamilyResultSigQ, DerivStrategyQ,
-- ** Constructors lifted to 'Q'
-- *** Literals
intPrimL, wordPrimL, floatPrimL, doublePrimL, integerL, rationalL,
charL, stringL, stringPrimL, charPrimL, bytesPrimL, mkBytes,
-- *** Patterns
litP, varP, tupP, unboxedTupP, unboxedSumP, conP, uInfixP, parensP,
infixP, tildeP, bangP, asP, wildP, recP,
listP, sigP, viewP,
fieldPat,
-- *** Pattern Guards
normalB, guardedB, normalG, normalGE, patG, patGE, match, clause,
-- *** Expressions
dyn, varE, unboundVarE, labelE, implicitParamVarE, conE, litE, staticE,
appE, appTypeE, uInfixE, parensE, infixE, infixApp, sectionL, sectionR,
lamE, lam1E, lamCaseE, tupE, unboxedTupE, unboxedSumE, condE, multiIfE,
letE, caseE, appsE, listE, sigE, recConE, recUpdE, stringE, fieldExp,
-- **** Ranges
fromE, fromThenE, fromToE, fromThenToE,
-- ***** Ranges with more indirection
arithSeqE,
fromR, fromThenR, fromToR, fromThenToR,
-- **** Statements
doE, mdoE, compE,
bindS, letS, noBindS, parS, recS,
-- *** Types
forallT, forallVisT, varT, conT, appT, appKindT, arrowT, infixT,
uInfixT, parensT, equalityT, listT, tupleT, unboxedTupleT, unboxedSumT,
sigT, litT, wildCardT, promotedT, promotedTupleT, promotedNilT,
promotedConsT, implicitParamT,
-- **** Type literals
numTyLit, strTyLit,
-- **** Strictness
noSourceUnpackedness, sourceNoUnpack, sourceUnpack,
noSourceStrictness, sourceLazy, sourceStrict,
isStrict, notStrict, unpacked,
bang, bangType, varBangType, strictType, varStrictType,
-- **** Class Contexts
cxt, classP, equalP,
-- **** Constructors
normalC, recC, infixC, forallC, gadtC, recGadtC,
-- *** Kinds
varK, conK, tupleK, arrowK, listK, appK, starK, constraintK,
-- *** Type variable binders
plainTV, kindedTV,
-- *** Roles
nominalR, representationalR, phantomR, inferR,
-- *** Top Level Declarations
-- **** Data
valD, funD, tySynD, dataD, newtypeD,
derivClause, DerivClause(..),
stockStrategy, anyclassStrategy, newtypeStrategy,
viaStrategy, DerivStrategy(..),
-- **** Class
classD, instanceD, instanceWithOverlapD, Overlap(..),
sigD, kiSigD, standaloneDerivD, standaloneDerivWithStrategyD, defaultSigD,
-- **** Role annotations
roleAnnotD,
-- **** Type Family / Data Family
dataFamilyD, openTypeFamilyD, closedTypeFamilyD, dataInstD,
newtypeInstD, tySynInstD,
tySynEqn, injectivityAnn, noSig, kindSig, tyVarSig,
-- **** Fixity
infixLD, infixRD, infixND,
-- **** Foreign Function Interface (FFI)
cCall, stdCall, cApi, prim, javaScript,
unsafe, safe, interruptible, forImpD,
-- **** Functional dependencies
funDep,
-- **** Pragmas
ruleVar, typedRuleVar,
valueAnnotation, typeAnnotation, moduleAnnotation,
pragInlD, pragSpecD, pragSpecInlD, pragSpecInstD, pragRuleD, pragAnnD,
pragLineD, pragCompleteD,
-- **** Pattern Synonyms
patSynD, patSynSigD, unidir, implBidir, explBidir, prefixPatSyn,
infixPatSyn, recordPatSyn,
-- **** Implicit Parameters
implicitParamBindD,
-- ** Reify
thisModule
) where
import Language.Haskell.TH.Lib.Internal hiding
( tySynD
, dataD
, newtypeD
, classD
, pragRuleD
, dataInstD
, newtypeInstD
, dataFamilyD
, openTypeFamilyD
, closedTypeFamilyD
, tySynEqn
, forallC
, forallT
, sigT
, plainTV
, kindedTV
, starK
, constraintK
, noSig
, kindSig
, tyVarSig
, derivClause
, standaloneDerivWithStrategyD
, tupE
, unboxedTupE
, Role
, InjectivityAnn
)
import Language.Haskell.TH.Syntax
import Control.Applicative ( liftA2 )
import Foreign.ForeignPtr
import Data.Word
import Prelude
-- All definitions below represent the "old" API, since their definitions are
-- different in Language.Haskell.TH.Lib.Internal. Please think carefully before
-- deciding to change the APIs of the functions below, as they represent the
-- public API (as opposed to the Internal module, which has no API promises.)
-------------------------------------------------------------------------------
-- * Dec
tySynD :: Quote m => Name -> [TyVarBndr] -> m Type -> m Dec
tySynD tc tvs rhs = do { rhs1 <- rhs; return (TySynD tc tvs rhs1) }
dataD :: Quote m => m Cxt -> Name -> [TyVarBndr] -> Maybe Kind -> [m Con] -> [m DerivClause]
-> m Dec
dataD ctxt tc tvs ksig cons derivs =
do
ctxt1 <- ctxt
cons1 <- sequenceA cons
derivs1 <- sequenceA derivs
return (DataD ctxt1 tc tvs ksig cons1 derivs1)
newtypeD :: Quote m => m Cxt -> Name -> [TyVarBndr] -> Maybe Kind -> m Con -> [m DerivClause]
-> m Dec
newtypeD ctxt tc tvs ksig con derivs =
do
ctxt1 <- ctxt
con1 <- con
derivs1 <- sequenceA derivs
return (NewtypeD ctxt1 tc tvs ksig con1 derivs1)
classD :: Quote m => m Cxt -> Name -> [TyVarBndr] -> [FunDep] -> [m Dec] -> m Dec
classD ctxt cls tvs fds decs =
do
decs1 <- sequenceA decs
ctxt1 <- ctxt
return $ ClassD ctxt1 cls tvs fds decs1
pragRuleD :: Quote m => String -> [m RuleBndr] -> m Exp -> m Exp -> Phases -> m Dec
pragRuleD n bndrs lhs rhs phases
= do
bndrs1 <- sequenceA bndrs
lhs1 <- lhs
rhs1 <- rhs
return $ PragmaD $ RuleP n Nothing bndrs1 lhs1 rhs1 phases
dataInstD :: Quote m => m Cxt -> Name -> [m Type] -> Maybe Kind -> [m Con] -> [m DerivClause]
-> m Dec
dataInstD ctxt tc tys ksig cons derivs =
do
ctxt1 <- ctxt
ty1 <- foldl appT (conT tc) tys
cons1 <- sequenceA cons
derivs1 <- sequenceA derivs
return (DataInstD ctxt1 Nothing ty1 ksig cons1 derivs1)
newtypeInstD :: Quote m => m Cxt -> Name -> [m Type] -> Maybe Kind -> m Con -> [m DerivClause]
-> m Dec
newtypeInstD ctxt tc tys ksig con derivs =
do
ctxt1 <- ctxt
ty1 <- foldl appT (conT tc) tys
con1 <- con
derivs1 <- sequenceA derivs
return (NewtypeInstD ctxt1 Nothing ty1 ksig con1 derivs1)
dataFamilyD :: Quote m => Name -> [TyVarBndr] -> Maybe Kind -> m Dec
dataFamilyD tc tvs kind
= pure $ DataFamilyD tc tvs kind
openTypeFamilyD :: Quote m => Name -> [TyVarBndr] -> FamilyResultSig
-> Maybe InjectivityAnn -> m Dec
openTypeFamilyD tc tvs res inj
= pure $ OpenTypeFamilyD (TypeFamilyHead tc tvs res inj)
closedTypeFamilyD :: Quote m => Name -> [TyVarBndr] -> FamilyResultSig
-> Maybe InjectivityAnn -> [m TySynEqn] -> m Dec
closedTypeFamilyD tc tvs result injectivity eqns =
do eqns1 <- sequenceA eqns
return (ClosedTypeFamilyD (TypeFamilyHead tc tvs result injectivity) eqns1)
tySynEqn :: Quote m => (Maybe [TyVarBndr]) -> m Type -> m Type -> m TySynEqn
tySynEqn tvs lhs rhs =
do
lhs1 <- lhs
rhs1 <- rhs
return (TySynEqn tvs lhs1 rhs1)
forallC :: Quote m => [TyVarBndr] -> m Cxt -> m Con -> m Con
forallC ns ctxt con = liftA2 (ForallC ns) ctxt con
-------------------------------------------------------------------------------
-- * Type
forallT :: Quote m => [TyVarBndr] -> m Cxt -> m Type -> m Type
forallT tvars ctxt ty = do
ctxt1 <- ctxt
ty1 <- ty
return $ ForallT tvars ctxt1 ty1
sigT :: Quote m => m Type -> Kind -> m Type
sigT t k
= do
t' <- t
return $ SigT t' k
-------------------------------------------------------------------------------
-- * Kind
plainTV :: Name -> TyVarBndr
plainTV = PlainTV
kindedTV :: Name -> Kind -> TyVarBndr
kindedTV = KindedTV
starK :: Kind
starK = StarT
constraintK :: Kind
constraintK = ConstraintT
-------------------------------------------------------------------------------
-- * Type family result
noSig :: FamilyResultSig
noSig = NoSig
kindSig :: Kind -> FamilyResultSig
kindSig = KindSig
tyVarSig :: TyVarBndr -> FamilyResultSig
tyVarSig = TyVarSig
-------------------------------------------------------------------------------
-- * Top Level Declarations
derivClause :: Quote m => Maybe DerivStrategy -> [m Pred] -> m DerivClause
derivClause mds p = do
p' <- cxt p
return $ DerivClause mds p'
standaloneDerivWithStrategyD :: Quote m => Maybe DerivStrategy -> m Cxt -> m Type -> m Dec
standaloneDerivWithStrategyD mds ctxt ty = do
ctxt' <- ctxt
ty' <- ty
return $ StandaloneDerivD mds ctxt' ty'
-------------------------------------------------------------------------------
-- * Bytes literals
-- | Create a Bytes datatype representing raw bytes to be embedded into the
-- program/library binary.
--
-- @since 2.16.0.0
mkBytes
:: ForeignPtr Word8 -- ^ Pointer to the data
-> Word -- ^ Offset from the pointer
-> Word -- ^ Number of bytes
-> Bytes
mkBytes = Bytes
-------------------------------------------------------------------------------
-- * Tuple expressions
tupE :: Quote m => [m Exp] -> m Exp
tupE es = do { es1 <- sequenceA es; return (TupE $ map Just es1)}
unboxedTupE :: Quote m => [m Exp] -> m Exp
unboxedTupE es = do { es1 <- sequenceA es; return (UnboxedTupE $ map Just es1)}
|